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Abstract—Constrained IoT devices with limited computing
resources are on the rise. They utilize low-end multithreaded
operating systems (e.g. RIOT) where each thread is assigned a
fixed stack size during the development process. In this regard,
it is important to choose an appropriate stack size which does
not cause stack overflows and at the same time does not waste
scarce memory resources by overestimating the required thread
stack size.

In this paper we propose an in-vivo technique for stack
overflow detection and stack size estimation that leverages
Virtual Prototypes (VPs) and is specifically tailored for low-end
multithreaded IoT operating systems. We focus on SystemC-
based VPs which operate on the TLM abstraction level. VPs
are an industrial proven modeling standard to enable early
software development and testing. We propose a non-intrusive
extension for existing VPs which allows detecting stack overflows
and provides a stack size estimation, which is beneficial to a VP-
based development process. Our analysis works in-vivo, hence no
modification of the executed software binary is required between
testing and deployment. Our evaluation using the RIOT operating
system revealed two previously unknown stack overflows in RIOT
and identified potential stack size overestimation.

Index Terms—Memory Usage, Constrained Devices, Virtual
Prototypes, RISC-V, RIOT, Stack Overflows, IoT

I. INTRODUCTION

With the rise of the Internet of Things (IoT), heavily
constrained devices with limited computing resources are
becoming increasingly popular. As per RFC 7228 [1], these
limitations exist to reduce the production cost and/or the
physical size of these devices [1, Section 2.1]. A common
example of a limited resource on constrained devices is
available memory. While conventional devices (e.g. laptops,
desktops, or servers) have several gigabytes of memory at
their disposal, constrained devices only have access to a few
hundred kilobytes of memory [1, Section 3]. For this reason,
software written for these devices does not use dynamic
memory allocations to avoid memory fragmentation. Instead,
memory is statically allocated. In a multithreaded environment
this creates an interesting problem regarding the allocation of
stack space for different threads executed by the software.
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As the stack space is also statically allocated at compile-
time, the programmer must choose an appropriate maximum
stack size before deploying the software. If the code executed
in a given thread does not use the allocated stack space
in its entirety, memory is wasted thus potentially causing
increased production costs. If the stack size—chosen by the
programmer—is too small for the thread using it, a stack
overflow might occur.

On conventional devices, stack overflows will typically
result in a crash due to the violation of employed memory
protections. These memory protections are implemented using
Memory Management Units (MMU) or Memory Protection
Units (MPU). Both are specialized hardware components
allowing for the fine-grained protection of selected memory
regions. Unfortunately, a survey by Wetzels found that only
47.1% of surveyed constrained devices supported an MMU
while 11.8% supported an MPU [2]. Meaning, almost one
half of surveyed constrained devices provided no hardware
support for memory protections, likely to further reduce pro-
duction costs. As such, stack overflows and similar memory
corruptions are often not detected on constrained devices [3].
In the worst case, an undetected stack overflow might allow an
attacker to subvert program control flow and achieve remote
code execution.

We believe it to be essential to detect stack overflows
in a development environment before the software is being
deployed in production. Furthermore, doing so would allow for
an estimate of the stack size required for different threads exe-
cuted by the software. In this regard, it is desirable to estimate
stack size requirements as early as possible in the development
process to assess production costs and determine how code
changes—affecting stack usage—would impact these costs.

Software for constrained devices interacts closely with
hardware peripherals and often relies on custom peripherals.
Unfortunately, custom hardware is not commonly available
during early stages of software development. For this reason,
Virtual Prototypes (VPs) are employed in this domain during
early development phases. VPs provide an abstract model
of the utilized hardware platform and allow early execution
of software targeting this platform. They are predominantly
created in SystemC TLM [4]. While prior work has already



presented techniques for detecting stack overflows and estimat-
ing stack size requirements, these approaches do not integrate
well with VPs and therefore do not address challenges specific
to the development of constrained IoT devices.

To address these challenges, we built upon prior work
by Park et al. which proposes a dynamic stack overflow
detection and stack size estimation technique. This technique
requires custom compilers and software instrumentation [5].
We illustrate that sanity checks originally performed in the
software—using code inserted by a custom compiler—can also
be performed in the VP. Thereby allowing the analysis to be
performed in-vivo, without any instrumentation or modifica-
tion of the executed software. Meaning, the analyzed binary
can afterwards be flashed on the constrained devices as-is,
thereby guaranteeing that observed stack usage behavior will
not change due to employed instrumentations. We evaluate
our approach by applying it to the RIOT operating system
where we identified two previously unknown stack overflows
and potential stack size overestimation.

II. RELATED WORK

Prior work has already proposed a variety of techniques
to prevent stack overflows and/or reduce stack usage on
embedded systems. One solution for reducing stack usage is to
resize thread stacks dynamically as needed [6], [7], [8]. In this
regard, Biswas et al. propose adding additional sanity checks
to the compiled software to detect stack overflows and resize
the stack segment if an overflow is detected [6]. Similarly,
Kim et al. measure stack usage periodically at run-time and
perform stack reallocations if needed [7]. Behren et al. present
an operating system which adopts a dynamic stack allocation
technique [8]. Unfortunately, these techniques impact run-time
behavior and can also cause memory fragmentation both of
which we believe to be undesirable, especially on constrained
devices which provide realtime guarantees.

For this reason, a different branch of research focuses on
determining worst case stack usage prior to software deploy-
ment. A popular approach for doing so is static analysis [9],
[10], [11]. Regehr et al. and Brylow et al. present such an
approach which specifically focuses on interrupt-driven em-
bedded software [9], [11]. However, static approaches cannot
handle recursive functions and indirect function calls. This
problem is resolved in prior work by requiring programmers
to provide annotations for loop bounds and indirect calls. For
example, prior work by Kästner et al. requires programmers
to manually add annotations in the formal AIS language
[10]. Unfortunately, manual effort makes it more laborious to
employ such techniques.

Lastly, different dynamic testing approaches for finding
stack overflows have been proposed [5], [12], [13]. Regehr
uses random testing to determine worst case stack usage and
compares results with the aforementioned static approach by
the same author [13]. Prior work by Zhang et al. relies on
memory protection mechanisms provided by the processor
[12]. Related work by Park et al. uses a modified C compiler
to add sanity checks to the preamble of each compiled function
to detect stack overflows and estimate worst case stack size
[5]. This hinders adaption of such approaches. In order to ease

1: procedure CHECK STACK(func)
2: thread← current thread()
3: required← current stackuse+ func.stackuse
4:
5: if required > thread.stacksize then
6: handle stack overflow()
7: else if required > max stackuse[thread] then
8: max stackuse[thread]← required
9: end if

10: end procedure

Fig. 1. Stack overflow detection and stack size estimation algorithm [5].

employment in the constrained devices domain, we believe it
to be desirable to detect stack overflows during normal testing
already performed today with VPs in early stages of software
development. Contrary to prior dynamic testing approaches,
our approach allows for an in-vivo analysis requiring no
modification or instrumentation of the executed software.

III. BACKGROUND

This section will serve as a brief primer on VPs. Further-
more, a dynamic algorithm for detecting stack overflows will
be presented. This algorithm is based on prior work by Park
et al. [5].

A. Virtual Prototypes

VPs provide an abstract model of a hardware platform,
thereby allowing early execution of software targeting this
platform. VPs are often written in SystemC [4], a C++ class
library which enhances the C++ programming language with
facilities for modeling hardware systems. VPs utilize Sys-
temC Transaction-Level modeling (TLM) to describe hardware
interactions based on a bus architecture where transactions
are exchanged over this bus [4, p. 413]. Compared to more
accurate modeling levels (e.g. RTL), TLM operates on a higher
abstraction level which improves simulation performance and
makes it easier to add new peripherals. This eases modeling
of constrained devices with custom peripherals. By allowing
early execution of embedded software, VPs can also be used
to verify this software during early development stages.

B. Stack Overflow Detection

In order to identify stack overflows in a multithreaded
Operating System (OS), the following information needs to
be available to the overflow detection technique:

1) The currently active thread executed by the OS at a
particular point in time.

2) The allocated thread stack size, i.e. the total size of the
stack memory region for the currently active thread.

3) The amount of used thread stack memory at a partic-
ular point in time during thread execution.

Interestingly, the same information is required to estimate
stack size requirements of executed threads. Figure 1 presents
an algorithm for stack overflow detection and stack size
estimation which utilizes the aforementioned information. The
algorithm exploits the fact that information is stored on a
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Fig. 2. Architectural overview of our proposed approach.

per-function basis on the stack. The algorithm runs before
each function execution which is central to preemptively
detect stack overflows, thereby preventing the system from
malfunctioning.

Firstly, the algorithm determines the currently active thread
(Line 2) on which the given function is about to be executed.
Afterwards, in Line 3, the amount of stack space required
to safely execute the function is computed. This computation
is based on the amount of stack space currently in use and
the stack space required by the given function (e.g. memory
used for local function variables). The resulting value is then
compared to the total thread stack size in Line 5. If the
required thread stack size exceeds the total allocated thread
stack size, execution of the current function would lead to a
stack overflow and a stack overflow handler is invoked in Line
6. Otherwise, the maximum stack usage for the current thread
is updated, if it exceeds a previously measured value (Line 7
- Line 8).

Prior work by Park et al. presents an implementation of
this algorithm which relies on a modified C compiler and
instrumentations of the executed software [5]. In section IV,
we propose a VP-based implementation of this algorithm
which allows performing the analysis in-vivo without any
software modifications.

IV. APPROACH

In the following subsections, we will describe how we
implemented the algorithm from subsection III-B in a VP
context.

A. Overview
Figure 2 shows an overview of our approach. In order to

integrate the stack overflow detection and stack size estimation
algorithm with a SystemC-based VP, only the Instruction
Set Simulator (ISS) has to be modified. The ISS (left to
the center of Figure 2) is responsible for fetching, decoding,
and executing instructions. On each instruction execution we
check if the currently executed instruction—as specified by
the Program Counter (PC) register—corresponds to the entry
address of a new function. If so, we execute the algorithm from

subsection III-B before executing the instruction specified by
the PC.

For execution of this algorithm, the following information
needs to be obtained and managed by the VP alongside soft-
ware execution: The currently active thread (1), the allocated
thread stack size (2), and the amount of thread stack memory
in use (3). Figure 2 provides an overview of the components
required to extract this information. Extracting the currently
active thread (1) and the allocated thread stack size (2) is an
OS-specific process. Our architecture provides an abstract OS
support component (left to the center of Figure 2) which is re-
sponsible for extracting this information. Commonly, metadata
information for threads is stored in so-called Thread Control
Block (TCB) by the OS (right to the center of Figure 2). The
OS support component accesses these TCBs to extract the
active thread and the total thread stack size for OS threads.
This component needs to be manually implemented for the
specific OS utilized by the executed software. We present an
exemplary OS support component implementation for RIOT
in section V.

Regarding the extraction of currently used stack memory
(3), recall that the stack is just a memory region where the
executed software stores information about active functions
(e.g. local variables). From the VP perspective, an access to
information on the stack is just a load/store instruction relative
to the current position in the stack memory region. Instruction
set architectures provide a general purpose register, called
the Stack Pointer (SP), to store the current position in the
stack memory region. As such, the amount of currently used
stack memory can be determined by consulting this register.
Assuming the stack grows downward, the maximum stack
usage of a given thread can be determined by storing the
minimum SP value measured on a per-thread basis (left to
the center of Figure 2).

On each executed instruction, the VP consults a generated
database to check if the instruction addresses matches the start
address of a function. This database is referred to as Stack
Usage Database at the bottom left of Figure 2. It provides
a mapping Function Address 7→ Function Stack Usage and is
thus used by the VP to predict the total required stack space
for each executed function as done in Line 3 of Figure 1.
The stack usage database is generated through a custom tool
called stack-usage-db using information extracted from
the compiled software (bottom right of Figure 2). This process
is further described in the following section.

B. Stack Usage Database

Modern versions of the GCC compiler toolchain support a
command-line flag called -fstack-usage. This flag causes
the compiler to emit stack usage information for individual
functions. In C, the compilation process involves compiling
separate translation units into separate object files, these object
files are then passed to a linker which generates an exe-
cutable file from the object files [14, Section 5.1.1]. With the
-fstack-usage command-line flag activated, GCC outputs
a separate file with stack usage information for each compiled
translation unit in addition to the object file.



1 nano-vfprintf.c:392:1:__sfputc_r 0 static
2 nano-vfprintf.c:403:1:__sfputs_r 32 static
3 nano-vfprintf.c:348:1:__sprint_r 16 static
4 stdio.h:503:5:_vfprintf_r 176 static
5 stdio.h:206:5:vfprintf 0 static

Fig. 3. Example -fstack-usage file generated by GCC.

An example stack usage file is shown in Figure 3. The
file consists of multiple lines, each representing information
about a function defined in the associated translation unit. Each
line consists of three fields providing different information.
The first field states the source file where the function is
defined, the line/column number, and the function name.
The second field states the stack usage in bytes. The third
is a qualifier which further specifies how the function uses
the stack. A function may have unbounded stack usage if
it uses Variable Length Arrays (VLAs) where the size of
an object on the function stack depends on a variable [14,
Section 6.7.5.2]. Functions with an unbounded stack are not
supported by our approach but are automatically identified by
our tooling—using the aforementioned qualifier—and cause an
error message to be emitted. The experiments we performed
with RIOT indicate that VLAs are not widely used in the low-
end IoT domain.

The problem with the format shown in Figure 3, is that
it does not contain any information about text segment ad-
dresses of these functions because this information is only
available after linking all object files into a binary. How-
ever, as per subsection IV-A functions must be identified by
their address. For this reason, we wrote a tool—referred to
as stack-usage-db in Figure 2—which merges multiple
-fstack-usage files into a single stack usage database
which is indexed by function text segment addresses. In order
to identify the text segment addresses of utilized functions,
the tool operates on a linked ELF binary. It iterates over
all function symbols defined in the binary and determines
the -fstack-usage file for a given symbol from DWARF
[15] debug information contained in the binary. That is, the
DWARF source line information, which describes where a
symbol is defined, is compared against the first field of all
-fstack-usage files generated by the compiler. If the
-fstack-usage file for a given symbol was found, the
stack usage in bytes for the function represented by this
symbol is added to the database. Thereby iteratively creating a
mapping Function Address 7→ Function Stack Usage. Lastly,
the database generated by the stack-usage-db tool is
passed to the VP on simulation start. This enables the VP
to determine whether a new function is being executed (by
checking if the database contains a function starting at PC)
and allows determining the stack usage requirements of this
function. The source code of the stack-usage-db tool is
available on GitHub1.

1https://github.com/agra-uni-bremen/stack-usage-db

C. OS Integration

Apart from stack usage information about individual func-
tions, the VP also needs to determine the currently executed
thread and its associated stack size. As discussed in sub-
section IV-A, extracting this information requires OS-specific
code because multithreaded systems represent information
about threads in different ways. However, in order to im-
plement a scheduler the OS will store metadata information
for threads in TCBs. TCBs are stored in memory, therefore
it is possible for the VP to extract information about a
specific thread by accessing the memory location where this
information is stored.

Similarly, operating systems often include symbols to allow
a debugger to determine the currently active thread, the offset
of information in the TCBs, et cetera. Our approach relies on
the OS to provide such symbols. As part of the OS support
component, we extract the address of these symbols in the
executed ELF file using libdwfl from elfutils2 directly
in the VP. For example, this allows us to determine the memory
address of the variable which stores the currently active thread.
In the VP context, a SystemC TLM read transaction is then
emitted for this address, thereby causing SystemC to retrieve
the active thread ID from guest memory. Many operating
systems (e.g. RIOT) store the allocated total stack size in
the TCB as well, thereby allowing the VP to access this
information via the OS support component3. The next section
further describe extraction of information from TCBs using
RIOT as an example OS.

V. EVALUATION

We have implemented our proposed technique on top of
riscv-vp, an open source SystemC-based VP for the RISC-
V architecture. The original riscv-vp source code is freely
available on GitHub4 [16]. In total we had to modify roughly
600LOC in riscv-vp which shows that a non-intrusive
integration of our technique into existing VPs is possible.
We evaluated our implementation by applying it to RIOT,
an open source OS for the low-end IoT which is further
described in a publication by Baccelli et al. [17]. We choose
RIOT as it supports the RISC-V architecture and the SiFive
HiFive15 platform, which is also supported by riscv-vp.
Furthermore, a survey conducted by Hahm et al. among
operating systems for the low-end IoT domain identified RIOT
as the “most prominent open source OS” with multithreading
support [18, p. 732].

Multithreading is a core concept of RIOT. Most impor-
tantly, RIOT’s default network stack (GNRC) implements
each network protocol as a separate thread. Different protocol
implementations communicate with each other using message
passing, a form of interprocess communication. For example,
the IPv6 and UDP implementation run in separate threads and
the IPv6 thread passes network packets to the UDP thread
for further processing [19]. As such, RIOT-based embedded

2https://sourceware.org/elfutils/
3If this information is not available in the TCB, it can be supplied separately.
4https://github.com/agra-uni-bremen/riscv-vp
5https://www.sifive.com/boards/hifive1
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applications consist of multiple threads. Each thread has its
own statically allocated thread stack, thus the pre-allocated
stack space has a significant impact on RIOT’s memory
footprint. In 2018, a minimal RIOT configuration required
3.2 kB of ROM and 2.8 kB of RAM, of which 2.2 kB where
thread stack space [17, p. 4436]. Presently, RIOT thread
sizes are approximated through pre-defined macros such as
THREAD_STACKSIZE_DEFAULT.

In the following, we will describe how we integrated our
technique with RIOT (subsection V-A) and discuss stack
overflows we encountered in RIOT during this integration
(subsection V-B). Furthermore, we will report results on
the measured thread stack size in preexisting RIOT test
applications and compare our results with the approximated
pre-allocated stack space (subsection V-C). Lastly, we will
evaluate the performance impact our proposed technique has
on VP execution speed (subsection V-D). The artifacts for this
evaluation are available on Zenodo [20].

A. Integration

As described in section IV, our approach does not require
instrumentations or modifications of the tested software. In-
stead, we extract information about active threads by reading
guest memory from the VP. RIOT already provides dedicated
debug symbols which allow a debugger to determine infor-
mation about active threads. For example, RIOT provides a
symbol which allows retrieving an identifier for the currently
active thread. This information is already used by debuggers,
such as OpenOCD6, to allow for selective debugging of
individual RIOT threads. Based on these symbols, we extract
the TCBs for RIOT threads and offsets for information stored
inside the TCBs.

In RIOT, all thread stack spaces are disjunct. We infer the
currently active thread from the SP value by iterating over
all thread stack spaces and checking to which stack space
the current SP value belongs. Alternatively, it would also be
possible to determine the current thread by ID. However, RIOT
uses a dedicated stack for handling interrupts (referred to
as ISR stack in the following). Code executed on the ISR
stack does not belong to any thread and has no thread ID,
identifying the current thread by SP allowed us to detect
two stack overflows on the ISR stack which will be further
described in the next subsection.

B. Stack Overflows

As part of our experiments, we encountered two stack
overflows on RIOT’s ISR stack. Both occurred during
debugging of our RIOT integration. For debugging pur-
poses, RIOT includes several builtin printf invocations
which are abstracted through a pre-processor DEBUG macro
and normally disabled. These debug statements can be
enabled on a per-file basis. When doing so, the stack
space of the associated thread is normally increased by
THREAD_EXTRA_STACKSIZE_PRINTF. This is necessary
as the printf family of functions has a comparatively
large stack usage. Unfortunately, this approach does not work

6http://openocd.org/

TABLE I
STACK SIZE ESTIMATED FOR RIOT’S GNRC TEST CASES.

Test Case Thread MS CS Used

gnrc ipv6 nib

ISR 128B 512B 25%
idle 76B 256B 29.69%

ipv6 544B 1024B 53.12%
main 716B 1280B 55.94%

mockup eth 516B 1024B 50.39%

gnrc ndp

ISR 128B 512B 25%
idle 72B 256B 28.12%

main 456B 1280B 35.62%
test-netif 440B 1024B 42.97%

gnrc rpl p2p

ISR 96B 512B 18.75%
idle 80B 256B 31.25%

ipv6 228B 1024B 22.27%
main 304B 1280B 23.75%

gnrc sock udp

ISR 176B 512B 34.38%
idle 80B 256B 31.25%

ipv6 388B 1024B 37.89%
main 576B 1280B 45%

udp 304B 1024B 29.69%

for the ISR stack since this stack is not allocated in a C
file as a static char array but instead pre-allocated in the
linker script. As such, enabling debug statements in functions
executed on the ISR stack causes stack overflows and can
lead to weird behavior during debugging. We encountered this
issue while debugging the RIOT thread creation code from
core/thread.c. We have also reported this issue to RIOT
developers, at the time of writing it has not yet been fixed7.

RIOT also includes a build configuration, called
DEVELHELP, which enables more helpful error messages
but does not allow for verbose debugging of individual files.
As an example, the trap handler for the RISC-V architecture
prints the value of several RISC-V Control and Status
Registers (CSRs), using printf, if DEVELHELP is enabled
and an unknown trap is encountered. This is useful for easily
determining where an unexpected trap occurred. However,
since the trap handler is also executed on the ISR stack and
the ISR stack is too small to execute printf functions, this
code path also results in a stack overflow. We encountered
this stack overflow as we initially raised a custom trap in
the VP when encountering stack overflows. Since this trap
is unknown to RIOT, it would cause RIOT to attempt to
print the aforementioned debug information which would
then result in a stack overflow on the ISR stack and a nested
raise of the corresponding trap. We also reported this issue to
RIOT developers, one way of fixing it would be switching to
a more stack space efficient method for printing CSR values
in the trap handler8. The fact that we managed to identify two
edge cases where a stack overflow occurs in RIOT illustrates
the effectiveness of our proposed technique.

C. Stack Size Estimation

In order to evaluate the stack size estimation aspect of our
proposed technique, we measured the maximum stack usage
for several preexisting test cases for RIOT’s network stack
GNRC. The results are shown in Table I. Each application

7https://github.com/RIOT-OS/RIOT/issues/16395
8https://github.com/RIOT-OS/RIOT/issues/16448
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TABLE II
BENCHMARKS RESULTS FOR TESTS/BENCH_RUNTIME_COREAPIS .

Benchmark Modified VP Baseline Slowdown
nop loop 0.71 s 0.33 s 53.52%
mutex init 0.0 s 0.0 s 0%
mutex lock/unlock 14.8 s 6.7 s 54.73%
thread flags set 7.22 s 3.3 s 54.29%
thread flags clear 3.98 s 1.61 s 59.55%
thread flags set/wait any 19.96 s 8.5 s 57.41%
thread flags set/wait all 17.37 s 7.33 s 57.8%
thread flags set/wait one 21.31 s 8.91 s 58.19%
msg try receive 10.75 s 4.26 s 60.37%
msg avail 3.03 s 0.99 s 67.33%
Average - - 52.32%

starts multiple threads and was executed until a pre-defined
cancellation point was reached (e.g. TestRunner_end). For
each thread in each test case, Table I shows the measured
maximum stack usage (MS) and the configured stack size (CS)
in bytes. Lastly, the percentage of configured stack space that
was actually used by the test case is shown in the last column
of Table I.

The majority of executed test cases use less than 50% of the
configured stack space. This confirms our initial hypothesis
that RIOT threads are largely overprovisioned in terms of
stack size. It also noticeable that stack sizes are often re-
used and not tailored to a specific application. Most notably,
all executed test cases use the default main stack size of
1024B. Please note though that the executed test cases are not
specifically designed to yield the worst case stack usage. As
such, measurements from Table I only indicate the maximum
stack usage measured but not necessarily the worst possible
stack usage. Nonetheless, they serve as a good indicator and
may help developers in iteratively optimizing the stack sizes
of their application. We focus on in-vivo dynamic analysis in
this publication, we will further discuss techniques to address
the aforementioned shortcoming in section VI.

D. Performance Impact

As discussed in section IV, our approach relies on sanity
checks performed during the execution of RISC-V instructions
and thus has an impact on execution performance. We mea-
sured this impact by executing RIOT benchmarks specifically
designed to gather performance statistics.

The utilized benchmark performs several consecutive in-
vocations of different functions from the RIOT API. In Ta-
ble II we compare our implementation against the original
riscv-vp version as found on GitHub9. All tests have been
performed on an Intel i7-8565U system running Alpine Linux.
The first column in Table II (Benchmarks) shows the executed
benchmark function, the second the time it took to execute
it with our implementation (Modified VP), and the third the
execution time with the original riscv-vp (Baseline). The
fourth column (Slowdown) displays the relative slowdown
caused by our implemented stack overflow detection and stack
size estimation technique. On average, execution is slowed
down by 52.32% through our employed technique.

9All benchmarks have been performed with the riscv-vp command-line
options --use-dmi and --tlm-global-quantum=10000 enabled.

We believe this to be an acceptable overhead during devel-
opment. Currently, our implementation performs sanity checks
for each executed instruction to implement the algorithm from
subsection III-B. The performance impact may be reduced by
only performing these checks after jump instructions, which
are commonly used by compilers to execute a new function.

VI. DISCUSSION AND FUTURE WORK

The evaluation demonstrates that our approach is capa-
ble of uncovering stack overflows in real-word software for
constrained devices. While we focus on the in-vivo analysis
technique itself in this paper, we believe that our approach
can be improved further by not relying on pre-defined test
cases or manual testing to discover stack overflows in the
executed software. Since we rely on performed tests, our
employed stack size estimation technique does not offer any
guarantees that the measured stack usage is actually the worst
case stack usage of a given thread. An interesting direction
for future work would be investigating whether our approach
can be improved by employing software testing techniques
which enumerate (all) reachable programs paths automatically.
A promising technique in this regard is symbolic execution.
Symbolic execution engines—like KLEE [21], FIE [22], or
S²E [23]—mark input variables as symbolic and enumerate
reachable program paths based on these symbolic inputs.
Symbolic execution has also been recently integrated with
SystemC-based VPs [24]. In regards to constrained devices,
this is especially interesting when considering our proposed
stack size estimation technique. Due to memory limitations,
the state space on constrained devices is often smaller than on
conventional ones, potentially even allowing for a complete
analysis using symbolic execution in this domain [22, p. 23].
If a complete analysis is possible, this could allow offering
guarantees regarding the estimated thread stack size.

VII. CONCLUSION

We presented a stack overflow detection and stack size es-
timation technique for multithreaded operating systems which
we implemented as an in-vivo analysis using VPs (section IV).
This allows finding stack overflows and gives programmers an
estimate regarding thread stack usage during early software
development, without any modifications or instrumentations of
the executed software. By avoiding software modifications, we
can ensure that the observed behavior does not change when
deploying the software. Our implementation is specifically
tailored to constrained devices where stack overflows would
normally go undetected due to the lack of memory protections.
In this regard, our technique enabled us to find two previously
unknown stack overflows in the low-end IoT operating system
RIOT which we reported to RIOT developers (subsection V-B).
Additionally, preliminary results obtained using our stack size
estimation technique indicate that existing RIOT application
potentially overestimate thread stack sizes, thereby wasting
memory (subsection V-C). We intend to further improve our
proposed technique in future work by combining it with
symbolic execution (section VI). Our current implementation
is freely available on GitHub10.

10https://github.com/agra-uni-bremen/fdl21-stackuse-vp

https://github.com/agra-uni-bremen/fdl21-stackuse-vp
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M. Wählisch, “Connecting the World of Embedded Mo-
biles: The RIOT Approach to Ubiquitous Networking for
the Internet of Things,” Computing Research Repository,
vol. abs/1801.02833, 2018. [Online]. Available: http://arxiv.
org/abs/1801.02833.

[20] S. Tempel, V. Herdt, and R. Drechsler, Artifacts for the FDL21
Paper: In-Vivo Stack Overflow Detection and Stack Size Esti-
mation for Low-End Multithreaded Operating Systems using
Virtual Prototypes, Zenodo, Sep. 2021. DOI: 10.5281/zenodo.
5091709.

[21] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” in Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
ser. OSDI’08, San Diego, California: USENIX Association,
2008, pp. 209–224.

[22] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE
on Firmware: Finding Vulnerabilities in Embedded Systems
Using Symbolic Execution,” in 22nd USENIX Security Sym-
posium (USENIX Security 13), Washington, D.C.: USENIX
Association, Aug. 2013, pp. 463–478, ISBN: 978-1-931971-
03-4. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/davidson.

[23] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Plat-
form for in-Vivo Multi-Path Analysis of Software Systems,”
in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVI, Newport Beach, Cal-
ifornia, USA: Association for Computing Machinery, 2011,
pp. 265–278, ISBN: 9781450302661. DOI: 10.1145/1950365.
1950396.

[24] S. Tempel, V. Herdt, and R. Drechsler, “An Effective Method-
ology for Integrating Concolic Testing with SystemC-based
Virtual Prototypes,” in Design, Automation and Test in Europe
Conference (DATE). Design, Automation & Test in Europe
(DATE-2021), Grenoble, France, Feb. 2021.

https://doi.org/10.17487/RFC7228
https://doi.org/10.17487/RFC7228
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc7228.txt
https://www.usenix.org/publications/login/summer2017/wetzels
https://www.usenix.org/publications/login/summer2017/wetzels
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://standards.ieee.org/standard/1666-2011.html
https://standards.ieee.org/standard/1666-2011.html
https://doi.org/10.1145/1196636.1196637
https://doi.org/10.1109/ISCE.2007.4382142
https://doi.org/10.1145/945445.945471
https://doi.org/10.1145/1113830.1113833
https://doi.org/10.1109/ICSE.2001.919080
https://doi.org/10.1145/1086228.1086282
https://www.iso.org/standard/29237.html
http://www.dwarfstd.org/doc/DWARF4.pdf
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/JIOT.2015.2505901
http://arxiv.org/abs/1801.02833
http://arxiv.org/abs/1801.02833
https://doi.org/10.5281/zenodo.5091709
https://doi.org/10.5281/zenodo.5091709
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396

	Introduction
	Related Work
	Background
	Virtual Prototypes
	Stack Overflow Detection

	Approach
	Overview
	Stack Usage Database
	OS Integration

	Evaluation
	Integration
	Stack Overflows
	Stack Size Estimation
	Performance Impact

	Discussion and Future Work
	Conclusion

