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ABSTRACT
In recent years, machine learning has become increasingly impor-
tant in daily life. One of the most popular machine learning models
used in many applications is an Artificial Neural Network (ANN).
While in applications such as automatic speech recognition there
is sufficient knowledge about the expected behavior for each input
to use supervised learning, other applications like robot control
define only an overall target so that the expected output for a given
input can be ambiguous, making supervised learning inapplicable.
Therefore, Topology andWeight Evolving ANN (TWEANN) has been
developed in the past to evolve ANN topologies and connection
weights. However, challenges of TWEANN are the design of ge-
netic recombination and the exploration of huge search spaces for
suitable solutions induced in particular by large-scale problems
which can lead to impractical runtimes.

To address the aforementioned issues, this paper proposes a
novel evolutionary framework to evolve ensemble learners as spe-
cialized ANNs in a divide-and-conquer manner. Specifically, genetic
recombination is heavily orchestrated for ANN combinations to
effectively find suitable solutions in the search space restricted by
ensemble methods. Experiments on various benchmark problems
for solving control tasks show that the proposed framework clearly
outperforms existing TWEANN algorithms.
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• Computing methodologies → Neural networks; Genetic
algorithms; Ensemble methods;
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• Applied computing→ Computer games.
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1 INTRODUCTION
In the course of technological progress, big data is nowadays pro-
cessed in many computer systems [18]. Useful applications are,
e. g., automatic speech recognition and robot control. Due to the in-
creased complexity, interest in machine learning has been growing
in recent decades in numerous areas such as the video game indus-
try and medicine [11], making it an essential part of the software
design process for many applications [17].

In order to meet user requirements, there is a need to continu-
ously improve algorithms and models in machine learning. A suit-
able model to realize artificial intelligences for big data problems is
a deep Artificial Neural Network (ANN) [2]. For example, ANNs can
be predetermined for automatic speech recognition by using input
neurons to receive acoustic observations and pass their activations
forward to output neurons for classifying words on a dictionary.
By adjusting connection weights in order to minimize a loss func-
tion using gradient descent algorithms such as backpropagation,
acoustic observations can be mapped to expected words, with the
goal of being able to generalize after supervised learning [12].

Unlike supervised learning, unambiguous outputs do not usually
exist for robot control tasks. During Reinforcement Learning (RL)
using algorithms like deep Q-learning, a (software) robot is trained
by receiving feedback from value functions on its actions made
by an ANN to improve the behavior in an unknown environment
using backpropagation [9]. Another approach is taken by Neu-
roevolution (NE) that evolves ANNs gradient-free using Genetic
Algorithms (GAs), which are a class of evolutionary algorithms [7].
Compared to Q-learning, direct exploration for solutions in the
search space is possible without indirect inference from value func-
tions, and problems with hard-to-compute or without gradients can
be handled effectively [15]. Studies have shown that NE is more
efficient than RL algorithms like Q-learning for various problems
such as robot control [15, 16].

Subsequently, improvements have been researched, especially
in terms of NE algorithms. These include, e. g., conventional NE
to evolve weights for a fixed ANN topology, novelty search [6] to
explore many solutions in the search space without genetic recom-
bination, and Topology and Weight Evolving ANN (TWEANN) [13]
that evolves both the topology of the ANN and its weights.

Although TWEANN has demonstrated that it can efficiently
solve various control problems, there are still challenges to over-
come: design of genetic recombination and the lack of scalability,
i. e. for large-scale problems an impractical amount of learning time
must be spent to find suitable solutions in a huge search space [3].

To address these issues, in this workwe present a novel evolution-
ary framework for the evolution of ensemble learners as specialized
ANNs in a Divide and Conquer (D&C) manner. While genetic recom-
bination is heavily orchestrated for ANN combinations to effectively
find suitable solutions in the search space, Ensemble Learning (EL)
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methods restrict this space. Experiments on benchmark problems
for solving control tasks demonstrate that our proposed framework
significantly improves the generalization performance of evolved
ANNs compared to related TWEANN algorithms, and there is a
speedup by a factor of about 10 on average.

In summary, the main contributions are described as follows:
• Recombination for ANN combinations;
• EL methods for search space restriction;
• Framework evaluation and experimental comparison with
related TWEANN algorithms on benchmark problems.

This paper is organized as follows: At first, we give an overview
of related TWEANN algorithms in Section 2. Section 3 presents
the proposed approaches for the evolution of ensemble learners. In
Section 4, the experimental setup is shown and results are discussed.
Finally, Section 5 concludes the paper.

2 RELATEDWORK
The efficiency of TWEANN depends to a large extent on two fac-
tors [3]: design of recombination and search space size. In order to
optimize these essential factors, based on ideas in [14], a lot of
research has been conducted in TWEANN in the last decades. A
comprehensive survey is available in [8]. In the following, we briefly
describe TWEANN algorithms that have achieved promising results
using related approaches.

Turbo NeuroEvolution of Augmenting Topologies (TNEAT) [5]
is an extension of NEAT [14] with D&C methods. It pursues the
idea of using multiple populations to evolve ANN combinations,
where each population provides an ANN as part of the combination.
Generally, the populations are trained using an approach named
Interleaving, i. e. every ANN of each population is evaluated in com-
bination with every ANN of the other populations. Depending on
the problem, there is another approach called Relay that divides
input data into sequences of equal length, using a different popu-
lation for each sequence. If a population does not find a solution,
another population takes control to continue the search.

Artificial Life Form (ALF) [4] has the following advantages com-
pared with NEAT: speciation via semantic similarity, dynamic popu-
lations, and use of fitness-based genetic operators. First, the seman-
tic ANN behavior is used for species classification to improve the
search for suitable solutions. Second, the population is dynamically
adjusted depending on deleted species to be able to leave unsuitable
search regions faster. Third, fitness is used in genetic operations to
increase the probability of optimization success.

Although these TWEANN algorithms have demonstrated to be
able to successfully solve RL problems, they come with some draw-
backs. TNEAT’s Interleaving needs exponential time because it is
always necessary to compute fitness over entire population combi-
nations. This limitation also makes other D&C methods, based on
EL [10], impractical. TNEAT’s Relay fails in non-deterministic en-
vironments and tends to overfit. Considering ALF, it can be noticed
that no D&C methods are integrated to effectively address large-
scale problems. Hence, the main goal of this work is to overcome
these limitations:

(1) Exponential time for the evolution of ANN combinations;
(2) Failure of learning in non-deterministic environments;
(3) Poor generalization performance due to overfitting.
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Figure 1: Basic principle of genetic recombination for simul-
taneous evolution of ANN combinations

3 EVOLUTION OF ENSEMBLE LEARNERS
In this section, we present our novel approaches for the evolution
of ensemble learners to improve performance in solving large-scale
problems in detail. To this end, Section 3.1 describes a recombination
operator that effectively enables ANN combinations for finding
solutions in the search space restricted by EL methods, which are
then explained in Section 3.2.

3.1 Recombination for ANN Combinations
Related TWEANN algorithms generally start with initializing a pop-
ulation of random candidate solutions (individuals) within species
to solve a problem formulated as a search in a multidimensional
parameter space, where each individual represents a point in the
search space [8]. A potential solution (individual’s phenotype) is
encoded into a genotype that corresponds to a single ANN. During
generations, the search space is explored for a suitable individual
by modifying ANNs of fitter parents using genetic operators: While
mutations cause random perturbations to ANNs, genetic recombina-
tion mixes ANN topologies in the hope of breeding fitter offsprings.
In order to provide ANN combinations for specialized exploration,
TNEAT’s Interleaving [5] instantiates multiple populations but this
leads to significant complications during the learning process as
explained in the last section.

Thus, considering the factor design of recombination, limita-
tion (1) listed in Section 2 is addressed by introducing an adapted
recombination operator that can simultaneously evolve specialized
ANN combinations, which is a prerequisite of applying EL methods.
The basic principle is shown in Figure 1, where each individual
contains a generic vector with multiple genotypes (here: ANNs).
Genotypes are compared fitness-based as in [4], i. e. with a higher
probability a genotype of the fitter parent is inherited by the child.
Assuming that the genotypes of both parents are assigned to the
same subproblems, the child can inherit one genotype for each sub-
problem. As a result, this new operator enhances the capabilities
of TWEANN to recombine an ensemble of learners with superior
performance compared to both parents.

3.2 EL Methods for Search Space Restriction
The goal of TWEANN is exploring the search space for the best indi-
vidual, i. e. until the predetermined fitness threshold is reached. The
corresponding fitness is generally computed by transforming an
ANN into a phenotype using a decoding function and evaluating it
for the whole problem using a fitness function with forward passes
to compute the loss [7]. In order to be able to evaluate subproblems
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Figure 2: Concepts of EL methods for ANN combinations

and therefore to restrict the search space, an efficient way must
be found to assign them. TNEAT’s Relay described in Section 2
bypasses the poor time complexity of Interleaving by dividing the
whole problem into consecutive sequences that are solved sequen-
tially, where a specific population is responsible for one subproblem
represented by a sequence. Nevertheless, Relay relies on the deter-
ministic behavior of the respective problem. Once a population has
finished learning, the evolved ANN can no longer be updated, i. e.
evolved ANNs cannot handle random events. Due to the sequen-
tial distribution, it also becomes difficult to find patterns during
learning that are useful after the training process.

Therefore, considering the factor search space size, limitation (2)
and (3) listed in Section 2 are addressed by using EL concepts for
evaluation of subproblems shown in Figure 2. One concept for di-
viding a given problem into multiple genotypes in a D&C manner
is to predetermine several distinct subproblems. A developed EL
method that follows this concept is called Output Distribution and
is illustrated in Figure 2a. With known 𝑛 subproblems, each of the
𝑛 genotypes can be assigned one, where this method uses special-
ized ANNs that refer to the number of output neurons. The concept
of another EL method named Bootstrap Aggregating is shown in Fig-
ure 2b. Compared to Output Distribution, no distinct subproblems
need to be identified before learning. Instead, multiple weak learn-
ers are evolved that collaboratively predict for each ANN input. No
distribution is required since each ensemble learner is contributing
equally to the output given an arbitrary input. The advantage of this
method is the majority vote, yielding a more fault-tolerant output
behavior of the individual. In particular, faulty outputs of single
ANNs in the ensemble can be compensated by the other ANNs.
As a result, such concepts have excellent generalization properties
compared to single learners [10].

4 EXPERIMENTAL RESULTS
This section summarizes the experiments conducted to empirically
analyze the proposed approaches from the last section and demon-
strates their benefits. To this end, Section 4.1 discusses the system
specification and benchmark problems used for the following per-
formance evaluations. Section 4.2 presents the impact of our ap-
proaches by comparing them against related TWEANN algorithms
to test their suitability for solving large-scale RL problems.

4.1 Experimental Setup
In order to evaluate the proposed approaches, they were imple-
mented in ALF [4] using C++20 as it has outperformed NEAT [14]
on several control tasks. Thus, ALF has been extended and is now
considered as an evolutionary framework because of its generic
genotype vector described in the last section. However, without
using the novel approaches, in this work it is simply called ALF
for better distinction. For performance evaluation, the framework
is compared with related TWEANN algorithms discussed in Sec-
tion 2: TNEAT’s Interleaving, TNEAT’s Relay, ALF, and Relay of
ALF implemented for better comparability.

Three experiments were conducted because of the limitations
identified. Due to representative purposes, Double Pole Balanc-
ing Without Velocities (DPNV) [14], Snake [19], and Super Mario
Bros. (SMB) [4] were used as benchmarks for robot control. To allow
a fair comparison, the same settings were used in all experiments;
they were not tuned for any particular problem. The population size
was set to 200 based on analyses presented in [1]. The size of ANN
combinations was adjusted to the number of populations in [5]
and therefore set to 5. The probability of reproducing an offspring
using recombination was 70 %, which is common for GAs [14].
Algorithm-specific parameters corresponded to the default settings.

To demonstrate the scalability of the framework against limita-
tion (1) listed in Section 2, the well-known DPNV problem was set
up as in [14] and compared to TNEAT’s Interleaving.1 Framework’s
Output Distribution was not used here because there is only one
output neuron. The criteria for success on this task was keeping
both poles balanced for several time steps.

To show the framework’s learning ability in non-deterministic
environments against limitation (2), Snake was set up similarly
to [19] and compared to Relay. This problem is suitable as apples
appear randomly on the board. It was measured how much time
the snake needs to eat 20 apples on average during 10 games.

To compare generalization performance with Relay in terms of
limitation (3), SMB was configured as in [4]. Level 2-4 was used as
the reference level for learning, measuring the time in minutes to
finish the level at x-coordinate 2,167. Then, levels 1-4 and 3-4 were
used as validation levels for testing to measure the generalization
performance in x-coordinates, i. e. the position reached by Mario
using the trained ANNs from the reference level.

All evaluations were carried out on a Fedora 37 machine with
an Intel Xeon E5-2680 v1 CPU with 3.5 GHz and 32 GB of main
memory. For each benchmark problem, 10 runs were performed
and the average was calculated. The Time Out (TO) was set to 24 h.

4.2 Performance Evaluation
The results of the DPNV experiment can be seen in Figure 3 and
demonstrate that framework’s Bootstrap Aggregating increases
the scalability of ALF and outperforms TNEAT’s Interleaving as
multiple weak learners are trained more efficiently. Considering
the runtimes for all time steps, Bootstrap Aggregating solves DPNV
faster than Interleaving by a factor of about 10.

The results of the Snake experiment (Table 1) show that Relay
fails to solve this problem. The reason is that ANNs learned based
on sequences do not provide reliable output for inference results
1Due to its high complexity, this D&C method is used only for this experiment.
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Figure 3: Results of the DPNV experiment

Table 1: Results of the Snake experiment

Algorithm Learning time in minutes

TNEAT’s Relay TO
ALF 45
ALF’s Relay TO
Framework’s Output Distribution 13
Framework’s Bootstrap Aggregating 36

Table 2: Learning results of the SMB experiment

Algorithm Learning time in minutes

TNEAT’s Relay 547
ALF 986
ALF’s Relay 521
Framework’s Output Distribution 629
Framework’s Bootstrap Aggregating 803
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Figure 4: Test results of the SMB experiment

in non-deterministic environments like Snake. The framework,
especially Output Distribution that increases the performance by
a factor of about 3 compared to ALF, solves Snake the fastest due
to simultaneous evolution. In this context, Bootstrap Aggregating
needs more learning time because of the higher fault tolerance.

While the learning results for the SMB experiment are visualized
in Table 2, the test results can be seen in Figure 4: level 1-4 (Fig-
ure 4a) and level 3-4 (Figure 4b). Although the framework needs
more learning time for level 2-4 compared to Relay due to the de-
terministic behavior of this problem, it can generalize significantly
better. Compared to, e. g., ALF, the best performance achieved by
framework’s Output Distribution increases by a factor of about 3
w. r. t. the validation levels. Since ANNs are usually used to achieve
high generalization performance, this is a successful compromise.

5 CONCLUSION
In this paper, we presented a novel evolutionary framework that can
evolve ensemble learners as specialized ANNs in a D&Cmanner. To
this end, genetic recombination for ANN combinations was heav-
ily orchestrated to effectively find individuals in the search space
restricted by ELmethods. Experimental results on large-scale bench-
mark problems for robot control confirmed that the implemented
framework clearly outperforms related TWEANN algorithms. It
significantly improves the generalization performance of evolved
ANNs and there is a speedup by a factor of about 10 on average.

Future work will focus on a deeper analysis of the genetic muta-
tion operator to avoid connection weights without impact on the
output neurons. Additionally, further genotypes will be explored
to evaluate different types of classifiers.
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