
Efficient Cross-Level Processor Verification using
Coverage-guided Fuzzing

Niklas Bruns
Institute of Computer Science, University of Bremen

Bremen, Germany
nbruns@uni-bremen.de

Vladimir Herdt
Institute of Computer Science, University of Bremen

Cyber-Physical Systems, DFKI GmbH
Bremen, Germany

vherdt@uni-bremen.de

Daniel Große
Institute for Complex Systems, Johannes Kepler University

Linz, Austria
Cyber-Physical Systems, DFKI GmbH

Bremen, Germany
daniel.grosse@jku.at

Rolf Drechsler
Institute of Computer Science, University of Bremen

Cyber-Physical Systems, DFKI GmbH
Bremen, Germany

drechsler@informatik.uni-bremen.de

ABSTRACT
In this paper, we propose a novel simulation-based cross-level ap-
proach for processor verification at the Register-Transfer Level
(RTL). We leverage state-of-the-art coverage-guided fuzzing tech-
niques from the software domain to generate processor-level input
stimuli. An Instruction Set Simulator (ISS) is utilized as a reference
model for the RTL processor under test in an efficient co-simulation
setting. To further boost the fuzzing effectiveness, we devised cus-
tom mutation procedures tailored for the processor verification
domain. Our experiments using the popular open-source RISC-
V based VexRiscv processor demonstrate the effectiveness of our
approach in finding intricate bugs at the processor level.

CCS CONCEPTS
•Hardware→ Simulation and emulation;Equivalence check-
ing.

KEYWORDS
Cross-Level Verification, Processor Verification, Fuzzing

ACM Reference Format:
Niklas Bruns, Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2022. Ef-
ficient Cross-Level Processor Verification using Coverage-guided Fuzzing.
In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22),
June 6–8, 2022, Irvine, CA, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3526241.3530340

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530340

1 INTRODUCTION
The fast-growing Internet-of-Things (IoT) and wearable markets
have unleashed a high demand for scalable and customized com-
puting cores with rapidly changing requirements. As a reaction,
Instruction Set Architectures (ISAs) are in demand like never before.
In particular, the modern free and open source RISC-V [38, 39] ISA
is designed in a modular and extensible way in order to facilitate
building very application specific processors tailored for the specific
use-case at hand. Thus, many emerging embedded systems inte-
grate a RISC-V core at their heart. Highly efficient techniques for
processor verification at the Register-Transfer Level (RTL) are crucial
these days to keep up with the short innovation cycles. Due to their
ease of use and scalability, simulation-based verification techniques
are still prevalent. However, they rely on strong test generation
techniques for processor-level input stimuli to ensure a thorough
verification process. In the software domain, fuzzing is such a strong
test generation technique that has been shown very effective, versa-
tile and comparatively easy to use.With it’s roots going back to [34],
fuzzing since then enjoyed great popularity and celebrated enor-
mous successes in various verification scenarios. State-of-the-art
fuzzing techniques employ so called coverage-guided techniques
that rely on mutation-based algorithms to generate new inputs.
Notable representatives in this modern Coverage-guided Fuzzing
(CGF) category are AFL [6] and LLVM libFuzzer [7]. Both have a
very impressive bug finding record [6, 7]. Recognizing the fuzzing
achievements, Microsoft and Google have launched large scale
cloud-based fuzzing services [8, 9]. Moreover, fuzzing is used as
continuous testing technique in many prominent software projects
such as Chromium [3]. Despite the tremendous and ongoing suc-
cess story of fuzzing in the software domain, the applications in
the hardware domain are much more limited thus far.

Contribution: In this paper, we propose to leverage state-of-
the-art CGF techniques for processor verification at the RTL. An
Instruction Set Simulator (ISS) is utilized as a reference model for
the RTL-core under test in an efficient cross-level co-simulation
setting. The fuzzing process is guided by the code coverage of the
reference ISS as well as by the core under test. Since the fuzzer can
generate unstructured randomized input data, we carefully devised

https://doi.org/10.1145/3526241.3530340
https://doi.org/10.1145/3526241.3530340
https://doi.org/10.1145/3526241.3530340

our co-simulation to enable feeding the same instruction sequences
to both models and supporting arbitrary instruction sequences,
including the handling of potential infinite loops. To boost the
fuzzing effectiveness, we developed custom mutation procedures
tailored for the generation of common instruction patterns. As a
case study, we present results on the verification of the popular
open source RISC-V based VexRiscv processor [15]. Our experi-
ments demonstrate that 1) our fuzzer optimizations improve the
verification result statistically significant compared to a baseline
state-of-the-art CGF, and 2) our fuzzing-based approach has been
very effective in finding numerous intricate bugs in VexRiscv.

2 RELATEDWORK
Simulation-based approaches that rely on test generation tech-
niques have a long history in the processor verification domain,
hence several approaches have been proposed to improve the gen-
eration of processor-level stimuli for verification purposes. One
direction is to employ model-based test generators which use an
input format specification to guide the generation process [17].
Constraints are leveraged for specification purposes and processed
by Constraint Satisfaction Problem (CSP) / Satisfiability Modulo The-
ories (SMT) solver in [20, 21]. Optimization techniques to propagate
constraints among multiple instructions more effectively have been
presented in [29]. [32] proposed to mine processor manuals to ob-
tain an input model automatically which can be utilized for test
generation purposes. Other notable approaches include coverage-
guided test generation based on bayesian networks [22] and other
machine learning techniques [28]. Moreover, formal methods based
on symbolic execution techniques have been utilized for test-case
generation at the ISS level [37]. Finally, fuzzing-based techniques
have been employed to test processor emulators by comparing
their execution results against a physical CPU [33]. For RISC-V
specifically, a number of verification techniques have emerged re-
cently. The baseline are semi hand-written directed test-suites that
cover different RISC-V instruction sets [2, 12, 18]. Other simulation-
based approaches generate instruction sequences by combining pre-
defined randomized patterns [1] and by utilized constraint-based
specifications [14, 24]. CGF based on LLVM libFuzzer has been
proposed for RISC-V ISS verification [26]. However, the approach
works by generating standalone executable test-cases instead of
using a co-simulation environment and targets a different level
of abstraction than our approach. [27] also propose a cross-level
co-simulation based approach for processor verification at the RTL
which was extended by [19]. These approaches are arguably the
most similar to our approach. However, these approaches has some
limitations in it’s usability and required manual effort. They gener-
ate one single endless instruction stream that dynamically evolves
at runtime, this means that for the same program counter, different
instructions will be returned over time. Moreover, in combination
with the different fetch behavior of the ISS and RTL-core, for ex-
ample the core has a pipeline with branch prediction and hence
performs speculative pre-fetching of instructions, this dynamic
instruction stream property makes the co-simulation setup very
complex. A deep pipeline understanding is required to feed the
same instructions into the ISS and RTL-core as well as extract reg-
ister values at the right time points to compare execution results.

In addition, the setup is highly architecture specific and thus re-
quires significant manual effort to support different configurations.
Finally, a custom instruction stream generator is employed to gen-
erate the single endless instruction stream, which again requires
significant effort to setup effectively. In contrast, our proposed
approach enables a much more simplified co-simulation setup by
generating test-cases one after another. This also allows to test
different configurations of the core much more easily. At the same
time, we also do not impose restrictions on the test-cases, i.e. our
setup supports arbitrary control flows (including self-loops) and
load / store instructions. Moreover, we rely on existing state-of-the-
art fuzzing algorithms which we further boosted with lightweight
domain specific fuzzing extensions. In combination we achieve
an easy to use, yet very powerful framework for comprehensive
processor verification at the RTL. Only very few approaches using
fuzzing for hardware verification have been proposed. [31] com-
bines fuzzing with FPGA acceleration. [35] presents a fuzzer for
SpinalHDL designs and automates the generation of input corpus
and fuzzer harness. Another approach has been presented in [36].
At first glance, the approach seems similar to ours, but there are
some fundamental differences. The goal of the approach is to verify
individual IP blocks such as AES or HMAC, i.e. HW peripherals,
rather than verifying an entire processor core as in our approach.
Also, they generate TileLink bus protocol instructions for their
testbench implementation, while our approach generates processor
core instructions directly. This has the advantage that the fuzzer
does not have to follow a bus protocol, and as a consequence, it
does not require a bus-centric grammar but can robustly mutate
binary instructions. Additionally, their approach does not include
a method to check for errors in the DUT automatically. Lastly, in
the RISC-V domain, a few formal approaches have been proposed
which are based on model checking techniques [11, 13], but formal
techniques may be susceptible to scalability issues.

3 PRELIMINARIES
3.1 AFL
American Fuzzy Lop (AFL) [6] is an out-of-process coverage-guided
grey box fuzzer. Out-of-process fuzzers, in contrast to in-process
fuzzers, reset the whole process and the Software Under Test (SUT)
does not require a custom reset function. AFL uses its trim mutation
to reduce the size of each test vector (without changing the mea-
sured coverage) because the execution of small test vectors trends
to be faster than the execution of big test vectors. To discover new
behaviors, AFL uses a manifold of mutations. The detection of new
behaviors is realized through edge coverage. Notable mutations are
the bitflip mutations, the arithmetic mutations and havoc mutation.
The bitflip mutation flips a variety number of bits, the arithmetic
mutation adds/subtracts integers and the havoc mutation is a com-
bination of a multitude of individual mutations and applies them at
random positions.

3.2 RISC-V
RISC-V is a free and open ISA that is defined by the global non-
profit organization RISC-V International [10]. A major goal during
the definition of RISC-V was to create a suitable ISA for nearly
any computing device. Hence, RISC-V has a very modular design.

Fuzzer

Total
Coverage

Test Vector

Execution Feedback
(Coverage + Return Code)

RTL-Core

ISS

Translation
Buffer

Co-Simulation

Execution
Controller

Regs

Regs

instrumented
with tracing

PC + Instr
Logging

(Return Code)

Post-processor

Testset

Test Vector
Test Vector

Test Vector

Step 1: Fuzzing Loop
(CFG + Co-Simulation)

Step 2: Testset Post-processing

Mutations

(1) (2)

(3)

(4)

(5) (6)

(7)

(8)

Clust. Testset

Test Vector
Test Vector

Test Vector

(9)

(10)

(11)

Figure 1: Overview on processor verification

The ISA specification consists of two volumes[38, 39]. The first
volume is called the Unprivileged Specification and the second one
Privileged Specification. RISC-V consists of multiple n-bit-base inte-
ger sets (RV32I, RV64I, RV128I) and several optional standard base
extensions like multiply/divide (M) or compressed instructions (C).
Moreover, space for custom instructions has been reserved. These
base integer sets and extensions are defined in the first volume.
The second volume specifies the RISC-V privileged architecture. It
includes important functionalities required for operating systems
and other sophisticated hardware / software interactions. Central
aspects for these functionalities are the Control and Status Registers
(CSRs), which are registers serving a special purpose.

4 PROCESSOR VERIFICATION USING
FUZZING

In this section, we present our cross-level processor verification ap-
proach that is based on co-simulation and Coverage-Guided Fuzzing
(CGF). Fig. 1 shows an overview. Essentially, our approach consists
of two subsequent steps: 1) a fuzzing loop based on CGF (top of
Fig. 1) to generate a set of test vectors, and 2) postprocessing (below
dashed line in Fig. 1) to reduce the generated set. In the following,
we provide a general overview on both steps and then detail the
most important parts in the following subsections. The complete
flow starts with the CGF-based fuzzing loop. The Fuzzer (1) gener-
ates test vectors (2) which are used as instruction stream for the co-
simulation. The co-simulation is a combination of the RTL-core (3)
under test and a reference ISS (4). An essential component of the co-
simulation is the Translation Buffer (5) which transforms a fuzzer
generated (bounded) test vector into an endless instruction stream
through cyclic repetition. The Translation Buffer helps in decou-
pling the co-simulation setup from micro-architecture specific opti-
mizations such as pipelining. We will present more details on the
Translation Buffer in Section 4.1. The RTL-core and ISS execute
the (endless) instruction stream delivered by the Translation Buffer.
We use a maximum instruction execution count in the ISS in com-
bination with heuristic cycle detection techniques to efficiently set
a runtime limit on each test vector execution. Parallel to the execu-
tion, the Execution Controller (6) of our approach checks whether
the behavior of the processors are equal. This is realized through
register value comparison. If the register values are not equal, the

Table 1: Translation Buffer execution example

Translation Buffer ISS RTL
ID Instr. ADDR Instr ADDR Instr
0 LWU x8, x0, 48 0x00 ID: 0 0x00 ID: 0
1 lb x6, x2, 52 0x20 ID: 1
2 lw x6, x8, 49 0x24 ID: 2
3 c.slli x6, 9 0x28 ID: 3
4 c.addi4spn x14, 332 0x04 ID: 4
0 LWU x8, x0, 48 0x08 ID: 0
...

execution will be terminated with an error. The functional principle
of the Execution Controller is described in Section 4.2. The whole
co-simulation, which includes the RTL-core and ISS, is instrumented
to collect coverage. The vast advantage of collecting the whole co-
simulation coverage is that the coverage of one core acts as virtual
coverage1 for the other one. The coverage and the return code
are given as execution feedback (7) to the fuzzer, in our approach
using a shared memory. The fuzzer collects the test vectors (8) and
categorize them in two sets. The first set contains all test vectors
that result in an equal behavior for both processors and the second
set contains all test vectors that are triggering a behavior mismatch.
The fuzzer quits if a given fuzzing timeout is reached. To improve
the verification results, we designed custom mutations (9) that en-
hance the fuzzing efficiency. As we have shown in our experiments,
the enhancement is statistically significant (see Section 5). We pro-
vide a detailed description of this mutations in Section 4.3. To reduce
the manual labor of verification engineers, we introduced a post-
processing step (bottom of Fig. 1) that clusters the test vectors which
trigger mismatches (10) in order to encapsulate test vectors that
detect the same bug. Therefore, the co-simulation is compiled with
more extensive logging instrumentation to provide the additional
required feedback for the post-processing. The functionality of this
post-processing (11) component is presented in Section 4.4.

4.1 Translation Buffer
In this section we describe our Translation Buffer that transforms
the fuzzing test vector into a deterministic endless instruction
stream. If the transformationwould not be deterministic, the fuzzing
performance would be greatly reduced because the fuzzer assumes a
deterministic execution. Our Translation Buffer is based on the con-
cept of a ring buffer. Generally, a ring buffer is a circular queue that
works according to the FIFO principle. It is possible to write an infi-
nite number of values into a ring buffer because if it is full, the oldest
values will be overwritten. A typical ring buffer is empty when all
values were read once. As you can see, a typical ring buffer solves
the inverse of our actual problem, because we need infinite reading
and not writing. Thus we need to customize the ring buffer. For
our approach, the size of our Translation Buffer must be initialized
with the number of instructions contained in the test vector with
the consequence that no instruction has to be overwritten. When
all instructions in the ring buffer are read, the internal read pointer

1Virtual coverage describes the concept of improving the coverage measurement
granularity through inserting synthetic coverage points to enhance coverage-guided
verification performance. A detailed explanation, as well as the advantages of virtual
coverage, can be found in [23].

will be reset, and thus the Translation Buffer delivers the same in-
struction sequence as directly after the initialization. Thus, our
Translation Buffer provides an endless instruction stream by cyclic
repetition. In the following, we describe how our Translation Buffer
is used to generate an endless instruction stream for the processor
verification. Therefore, we prepared an RV32I example, shown in
Table 1, that demonstrate the instruction generation in combina-
tion with the different fetch behaviors of the ISS and the RTL-core,
caused by pipelining. The first third of the table shows the func-
tionality of the Translation Buffer, the second third the use of the
Translation Buffer values by the ISS, and the last third the use by
the RTL-core. In this example, the fuzzer generates a 160bit test
vector that is loaded into the Translation Buffer. Every entry of
the Translation Buffer has the size of a 32bit instruction. Conse-
quently, the Translation Buffer has five entries (160÷32 = 5). At the
beginning, the ISS loads 0x00 as first instruction, because the PC
is initialized with zero. The Translation Buffer supplies the LWU
instruction at ID 0 to the ISS. Because LWU is a pure RV64I instruc-
tion, and hence invalid in RV32I, the ISS raises an illegal instruction
exception and jumps to the trap handler, which has been initialized
by default to the address 0x20. The ISS executes the instructions
at 0x20 and 0x24 (ID 1 & 2) successfully. Then, the ISS loads the
compressed instruction c.slli x6, 9 at 0x28 (ID 3). The ISS raises
an illegal instruction exception because compressed instructions
are disabled in this setting. The ISS executes the trap loop until
the Execution Controller terminates the ISS. After termination of
the ISS, the Execution Controller starts execution of the RTL-core.
The execution begins again at 0x00. To ensure that the ISS and
the RTL-core get the same instruction stream, already-fetched in-
structions are cached in the Translation Buffer. In this example,
the RTL-core illegally executes the LWU instruction successfully,
and afterwards it executes the instruction at 0x04. This address
was not fetched previously by the ISS, and as a consequence, a new
value must be supplied by the Translation Buffer (ID 4). Because
the RTL-core in our example has a multistage pipeline, it fetches
the command at the address 0x08 at the same time as it tries to
execute the command at 0x04. The Translation Buffer delivers the
LWU instruction (ID 0) again because this Translation Buffer does
not hold any further unused instructions. Now that we have de-
scribed our Translation Buffers in detail, we will continue with the
description of the Execution Controller.

4.2 Execution Controller
The purpose of the Execution Controller is twofold. Firstly, it pre-
vents infinite loops, and secondly it detects mismatches between the
processor cores. Because our test vectors are interpreted as arbitrary
endless instruction streams, a test vector can result in an infinite
loop. Due to the fact that the fuzzing performance hugely depends
on the fast execution of test vectors, it is important to detect infinite
loops as soon as possible. An infinite loop is detected (conserva-
tively) when a new program counter address is equal to an already
executed program counter address and the register values are un-
changed too. Additionally, we set a hard limit of 10,000 instruction
executions for the ISS to handle the halting problem. Now to the
second purpose of the Execution Controller. As mentioned earlier,
the second purpose is to detect processor core mismatches. It is

challenging to compare very different implementations of the same
functionality. This is especially true when comparing an ISS and a
RTL-core with pipelining. In order to compare the functionality of
the processor cores it is essential to identify important behaviors
and to choose the right time to compare. We have observed that
important functionalities sooner or later lead to a value change in a
register. For example the instruction add x1, x2, x3 reads the values
of register x2 and x3, adds them together and writes the result to
x1. As a consequence, we compare the register values to detect
functional mismatches. It is important that the register values are
compared (or logged) right after the processor cores executed the
respective instruction completely. Thus, a processor core instruc-
tion execution synchronization is needed because otherwise, many
false mismatches are detected. It is easy to detect the complete in-
struction execution of an ISS but it is very difficult to detect in case
of a pipelined RTL processor. A pipelined processor core speeds up
the execution through parallelization and has no general signal to
indicate a complete instruction execution. Moreover, comparing
the registers too frequently leads to performance degradation. It is
unnecessary to compare the registers when no value has changed.
For example, if the addition instruction from before has not the
target register x1 but x0 (add x0, x2, x3), then no register value
changes because the value of register x0 is always zero. Thus, a
comparison of the register values should only be executed if a reg-
ister was changed. Consequently, we use for synchronization and
comparison time points when register values were really changed.
To demonstrate the behavior of the Execution Controller, we look
again at Table 1. First, we look at the instruction execution of the
ISS. The ISS raises an illegal instruction exception because LWU
x8, x0, 48 is no RV32I instruction and jumps to the trap handler at
address 0x20. Then, it executes the LB and LW instructions which
respectively change the register x6. The ISS does not execute the
compressed instruction c.slli but raises an illegal instruction excep-
tion and jumps to the trap handler again. After the execution of the
ISS, the RTL-core starts the instruction execution. In contrast to the
ISS, the RTL-core, in our example, erroneously executes the LWU x8,
x0, 48 instruction (not lb x6, x2, 52) that leads to a change in the reg-
ister x8. The Execution Controller detects a register value change
and executes a register value comparison between the registers of
the ISS and the RTL-core, discovers the mismatches between x8
and x6, throws an error and stops the simulation. Thus, a mismatch
was found between the ISS and RTL-core.

4.3 Enhanced Mutations
To enhance the fuzzing performance of AFL, a state-of-the-art
coverage-guided fuzzer, we designed a set of problem-specific muta-
tions. The first is named Fast Exploration and the second Enhanced
Havoc. In the following paragraphs, we will present these muta-
tions.

4.3.1 Fast Exploration. The Fast Exploration is a deterministic mu-
tation that was designed to boost the exploration speed of our
fuzzer. To accomplish this, we add a preliminary exploration phase
before the normal mutation procedure. It begins with the insertion
of each RISC-V instruction at the beginning of every test vector.
The value of each instruction argument is fixed to src/dest regis-
ter x0 and immediate 0. For example, we insert the addi x0, x0, 0

instruction. After the instruction insertion, the fuzzer executes the
newly generated test vector and saves it if it increases the cover-
age. By storing only test vectors that increase test coverage, you
limit the state-space and thus prevent a state-space explosion. Next,
we use the bitflip mutation. The purpose of the bitflips is to cover
possible arguments and to uncover unknown instructions. These
two mutations are iteratively repeated until no new test vectors
are found. Thus, with this new mutation prephase, one can cover
an extensive range of the RISC-V instruction sequence state space
without encountering scalability problems or depending on a lucky
random seed. Furthermore, this prephase has, for several reasons,
a very low overhead. The first reason for the low overhead is that
RV32I only contains 40 different instructions. The second reason
is that the two operations in this phase are not applied to every
generated test vector but only to test vectors that reach new cover-
age points. The third reason is that the bitflip mutation does not
add any new actual overhead since bitflip was only moved to this
phase and would otherwise have been executed later. For a detailed
description of the AFL mutation flow, we refer to [5]. Implementing
this mutation for our case study was straightforward because AFL’s
simplistic design makes adjustments to the control flow easy.

4.3.2 Enhanced Havoc. The original havoc mutation is a combina-
tion of single mutations applied at random positions. Similar to our
Fast Exploration Mutation, we have added the insertion of RISC-V
instructions. However, in contrast, the instruction arguments are
not fixed to zero and also support compressed instructions. In addi-
tion to the insertion that makes the test vector longer, we added a
replacement variant that does not change the size of the test vector.
Furthermore, we have integrated improvements for CSR testing.
As we mentioned earlier, the CSRs are the backbone of RISC-V
privileged architecture [39]. To accommodate this, we have also
added CSR instruction insertion/replacement functionality. Here,
the functionality always adds two CSR instructions. The first in-
struction always writes a CSR, and the second reads the same CSR.
Thus, a possible CSR misbehavior is propagated directly into the
register and thus made detectable for the Execution Controller.

4.4 Post Processing
Fuzzing is a very efficient verification methodology. It generates
many test vectors, reaches high coverage, and uncovers numer-
ous bugs. After the test generation, it is crucial to investigate the
reported errors carefully. During this procedure, it can often be
noticed that many test vectors reveal the same bug. To save manual
analysis time, it is helpful to cluster the test vectors that detect the
same bug. In this section, we describe our automatic post-processing
step for test vector clustering. Every cluster is represented through
a unique test vector that behaves like every other test vector in
this cluster. For the post-processing we use a custom version of
the co-simulation which logs all executed instructions with the
corresponding addresses. To use this version for fuzzing is not
reasonable because it is much slower due to the hard disk write ac-
cesses. Another difference is, that the post-processing co-simulation
does not need the coverage instrumentation which is essential for
fuzzing. Next, we extract the instruction, which leads to the bug.
The post-processing distinguishes the mismatches in two cases.
Firstly, instruction addresses of the ISS and the RTL-core do not

Table 2: Fuzzing Results
Vanilla AFL Enhanced AFL

Run #Queue #Unique-Crash #Queue #Unique-Crash
0 3312 217 2628 274
1 3008 223 2450 286
2 2439 206 2367 281
3 3264 237 2691 354
4 2219 163 2442 230
5 2505 263 2915 315
6 2385 310 2540 281
7 2335 207 3614 382
8 2551 276 2885 289
9 3313 244 2698 287
10 3127 265 2514 250
Mean 2768.90 237.36 2613.09 274.43
Median 2551.00 223.00 2614.00 281.00
Sum 30458.00 1619.00 28744.00 2021.00

have deviations. In this case, the mismatch arises from a result
difference of the last executed instruction. In the second case, an
instruction address mismatch has occurred and leads to the case
that different instructions have been executed. Thus, the erroneous
instruction is the last instruction that was executed before the in-
struction address mismatch. The post-processor now clusters the
test vectors based on the executed commands up to the point where
the faulty command was executed.

5 EVALUATION
In this section, we present our case study and discuss the eval-
uation results. Our case study aims to evaluate the applicability
of fuzzing in combination with co-simulation for processor verifi-
cation. As Device Under Test (DUT), we choose the popular open
source RISC-V VexRiscv processor, which is available as an RTL
description. As reference ISS, we extracted the ISS from the open
source RISC-V VP [25]. VexRiscv is a configurable and 4-stage
pipelined RTL-core written in SpinalHDL, which is a higher-level
language for VHDL/Verilog generation[4]. As a case-study, in the
following, we use the RV32IM configuration of VexRiscv. However,
compared to [27], which requires significant manual effort to setup
an appropriate co-simulation for different processor configurations,
our approach could also be directly used to test different processor
configurations. RISC-V VP is a virtual prototype written in SystemC
TLM that supports many RISC-V instruction sets. To enable the
co-simulation, we translated the RTL-core to C++ using the free and
open tool verilator [16] and embedded it into a common SystemC
testbench with the ISS. Because SystemC has no functionality to
reset the whole simulation inclusive the scheduler, we used as base-
line the out-of-process fuzzer AFL 2.56b [6]. Our evaluation process
is guided by [30] in order to guarantee quality and comparability.
Due to the random nature of fuzzing, we used eleven runs per fuzzer
and the standard statistical test from the fuzzing community named
Mann-Whitney U Test. The Mann-Whitney U Test checks whether
the central tendencies of two independent samples are different. It
is a non-parametric test that makes no assumption about normal
distribution and consequently works for small sample sizes[30]. To
make the case study realistic, we used a run time limit of 24 hours.
We use random seeds and as corpus, we considered the 32bit long

value 0𝑥0000 which essentially represents an empty corpus. All
experiments are conducted on a Linux machine with an Intel Xeon
Gold 5122 CPU with 3.60GHz. In the following, we compare the
fuzzing results of AFL with the results of our (mutation) enhanced
AFL version (Section 5.1). Afterwards, we present the bugs which
we have found with our methodology in more details (Section 5.2).

5.1 Vanilla AFL vs. Enhanced AFL
Table 2 illustrates the fuzzer run results of our case study. It allows
comparisons between the runs of the unmodified state-of-the-art
fuzzer AFL 2.56b (Vanilla AFL) and our optimized AFL version (En-
hanced AFL). For clarification, the values in the column #Queue are
the number of of the test vectors that increase the coverage and
cause no execution mismatch of the co-simulation, and the values
in the column #Unique-Crash are the number of unique test vectors
that cause an execution mismatch. The procedure for the identifica-
tion of unique crashes has been described in Section 4.4. On average,
Enhanced AFL generates fewer #Queue test vectors than Vanilla
AFL, which is better as it can provide the same coverage results
with fewer test vectors. We statistically analyzed the #Queue values
with the one-tailed Mann-Whitney U Test. The critical threshold
of the U-value at the confidence interval of 95% is 34. The U-value
for the #Queue column is 60 (z-score: 0, p-value: 0.5). Therefore,
even though the result appears to be better, the improvements are
not statistically significant according to this standard statistical
test. In practice, this means that this divergence is negligible. Also,
it should be noted that the average line and branch coverage for
Vanilla AFL and Enhanced AFL are equal. Thus, we can assume that
the #Queue test vectors are of equivalent quality. On average, En-
hanced AFL generates more #Unique-Crash test vectors than Vanilla
AFL. Again, we statistically analyzed the values with the one-tailed
Mann-Whitney U Test. The critical threshold of the U-value at the
confidence interval of 99% is 25. The U-value is 17 (z-score: -2.8236,
p-value: 0.0024). Because the p-value is lower than 0.1, the result is
not only significant but actually highly significant. Thus, we have
shown that Enhanced AFL is highly significant better at detect-
ing errors. In total, the Unique-Crash test vectors of Vanilla AFL
execute 20,4130 and of Enhanced AFL 135,139 instructions. As men-
tioned earlier, Enhanced AFL has generated more test vectors that
successfully uncover bugs. Thus, Enhanced AFL generates more
and shorter (less executed instructions) test vectors than Vanilla
AFL . Shorter instruction sequences benefit debugging because the
verification engineer has to analyze less state space and instruction
behavior. Fig. 2 shows the instruction execution frequency of the
unique test vectors. Overall, one can see in this graph that the test
vectors of Enhanced AFL have a more uniform execution frequency
than the test vectors of Vanilla AFL. The shorter test vectors and
more uniform instruction execution frequency are a consequence
of Fast Exploration because it injects many instruction & argument
combinations at the beginning of the test vectors. Thus, we have
shown that Enhanced AFL is highly significant better at detecting
errors, it generates more test vectors with additionally better qual-
ity. In addition, we have also demonstrated that Enhanced AFL has
no disadvantageous effects on overall test generation and coverage.

5.2 Manual Analysis
In our evaluation, we configured the VexRiscv to support the in-
struction subset RV32IM. We found some errors associated with
the decoder and many associated with CSRs. In this section, we
present the found errors. We will begin with the decoder bugs.

5.2.1 Decoder Bugs. The most obvious bug is that the VexRiscv ex-
ecutes the RV64I LWU instruction, i.e. the instruction is only valid
on a 64 bit and not 32 bit RISC-V core. The execution should not
happen because we configured the core only to support RV32IM in-
structions. Moreover, VexRiscv executes several illegal instructions.
This behavior traces back to 3 similar decoding bugs of the SLLI,
SRLI and SRAI instructions. These three errors have in common,
that the encodings contain an additional incorrect don’t care bit.
Thus, the processor misinterprets many illegal instructions as SLLI,
SRLI, or SRAI instruction, respectively.

5.2.2 CSR Bugs. Now we describe the CSR bugs. The RISC-V priv-
ileged architecture specifies the following four ID CSRs: mvendorid,
marchid, mimpid, and mhartid. These CSRs are read-only and pro-
vide hardware identifiers. In these four CSRs, we found the same
bug. VexRiscv erroneously does not raise an exception at a write
attempt. The RISC-V privileged architecture also specifies many
read-only counter CSRs for performancemeasurements. The follow-
ing cycle CSRs have the same bug: cycle, cycleh, instret, instreth. A
write attempt does not result in a raised exception. At the same time,
all counter CSRs should be defined and allow a read access. How-
ever, VexRiscv erroneously raises an exception on a read access to
the following counter CSRs: time, timeh, hpmcounter, hpmcounterh,
mcounteren, mhpmcounter3-31, mhpmcounter3-31h, and mhpmevent.
It should be noted that we also observed many value discrepancies
for the counter CSRs. These mismatches are no bugs but the result
of different micro-architectural details varieties. We also observed
bugs in trap handling CSRs. If a trap is taken in machine mode, it is
specified that the virtual address of the triggering instruction must
be written into the mepc CSR. The implementation of this CSR is
faulty in VexRiscv because the lowest two bits of the mepc CSR are
not masked. The CSRmtval is quite similar tomepc. If an exception
is raised, mtval is set to zero or to an exception-specific information.
If an illegal instruction exception is raised, it is defined that the
triggering instruction must be written into the CSR mtval. If we
make an ecall with incorrect parameters, the VexRiscv core writes
the instruction to mtval. This is a bug because it is not an illegal
instruction, so it must write the virtual address of the instruction
into mtval. In addition, we observed a mismatch between VexRiscv
and the RISC-V VP ISS in case of compressed instructions. If we
execute a compressed instruction with VexRiscv, the core correctly
raises an illegal instruction fault and then fills the 16bit compressed
instruction into the CSR mtval. In contrast, the RISC-V VP fills
the whole decoded 32bit into the mtval instruction because the VP
RV32IM decoder does not support compressed instruction (RV32C).
However, the RISC-V specification is unclear at this point. This
demonstrates that the specification itself needs clarification at spe-
cific points. Finally, we found a bug in themisa CSR implementation
of VexRiscv. This CSR shows which instruction sets are enabled and
allows to enable and disable instruction sets. We found out that the
misa CSR of the VexRiscv cores allows arbitrary values like zero.

Figure 2: Instruction Execution Frequency

This is illegal because it is not allowed that the complete instruction
set is disabled. In summary, we demonstrated that our enhancedmu-
tations improve the fuzzing results statistically significant and we
have shown the successful application of our approach by finding
24 bugs in the popular and well-tested RTL-core VexRiscv.

6 DISCUSSION AND FUTUREWORK
Our fuzzing methodology revealed 24 bugs in the well tested RTL-
core VexRiscv. Thus, the results demonstrate the applicability of
CGF in combination with co-simulation for cross-level processor
verification. We improved the verification results of a state-of-the-
art fuzzer highly significant by devising a set of optimized fuzzing
mutations. For future work we plan to focus on hybrid techniques
combining fuzzing with formal verification.

ACKNOWLEDGMENTS
This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project Scale4Edge
under contract no. 16ME0127, within the project VerSys under
contract no. 01IW1900, and by the LIT Secure and Correct Systems
Lab funded by the State of Upper Austria.

REFERENCES
[1] 2012. RISC-V Torture Test Generator. https://github.com/ucb-bar/riscv-torture.
[2] 2013. RISC-V ISA Tests. https://github.com/riscv/riscv-tests.
[3] 2016. Fuzz testing in Chromium. https://chromium.googlesource.com/chromium/

src/+/master/testing/libfuzzer/README.md
[4] 2016. SpinalHDL. https://github.com/SpinalHDL/SpinalHDL
[5] 2018. AFL: Understanding the status screen. https://github.com/google/AFL/

blob/fab1ca5ed7e3552833a18fc2116d33a9241699bc/docs/status_screen.txt.
[6] 2018. american fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[7] 2018. libFuzzer - a library for coverage-guided fuzz testing. https://llvm.org/

docs/LibFuzzer.html.
[8] 2018. Microsoft security development lifecycle. https://www.microsoft.com/en-

us/sdl/process/verification.aspx.
[9] 2018. OSS-Fuzz - Continuous Fuzzing for Open Source Software. https://github.

com/google/oss-fuzz.
[10] 2020. About RISC-V. https://riscv.org/about/
[11] 2020. OneSpin 360 DV RISC-V Verification App. https://www.onespin.com/

solutions/risc-v.
[12] 2020. RISC-V Compliance Task Group. https://github.com/riscv/riscv-

compliance.
[13] 2020. RISC-V Formal Verification Framework. https://github.com/SymbioticEDA/

riscv-formal.
[14] 2020. RISCV-DV. https://github.com/google/riscv-dv.
[15] 2020. VexRiscv. https://github.com/SpinalHDL/VexRiscv Commit:

98de02051e1a5c9400c022dc61acd4bd0507f8a5.
[16] 2021. verilator. https://www.veripool.org/verilator/.
[17] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv. 2004.

Genesys-Pro: innovations in test program generation for functional processor
verification. IEEE Design & Test of Comp. (2004), 84–93.

[18] Niklas Bruns, Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2021. Toward
RISC-V CSR Compliance Testing. IEEE Embedded Systems Letters 13, 4 (2021),
202–205.

[19] Niklas Bruns, Vladimir Herdt, Eyck Jentzsch, and Rolf Drechsler. 2022. Cross-
level processor verification via endless randomized instruction stream generation
with coverage-guided aging. In Design, Automation and Test in Europe.

[20] Brian Campbell and Ian Stark. 2014. Randomised Testing of a Microprocessor
Model Using SMT-Solver State Generation. In Formal Methods for Industrial
Critical Systems, Frédéric Lang and Francesco Flammini (Eds.). 185–199.

[21] R. Emek, I. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz, M. Farkash, I. Dozoretz,
and A. Goldin. 2002. X-Gen: a random test-case generator for systems and SoCs.
In IEEE International High Level Design Validation and Test Workshop. 145–150.

[22] S. Fine and A. Ziv. 2003. Coverage directed test generation for functional verifi-
cation using Bayesian networks. In Design Automation Conf. 286–291.

[23] Laurent Fournier and Avi Ziv. 2008. Using Virtual Coverage to Hit Hard-To-
Reach Events. In Hardware and Software: Verification and Testing. Springer Berlin
Heidelberg, 104–119.

[24] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Towards Specification
and Testing of RISC-V ISA Compliance. In Design, Automation and Test in Europe.
995–998.

[25] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2018. Extensible
and Configurable RISC-V based Virtual Prototype. In Forum on Specification and
Design Languages.

[26] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2019. Verifying
Instruction Set Simulators using Coverage-guided Fuzzing. In Design, Automation
and Test in Europe.

[27] Vladimir Herdt, Daniel Große, Eyck Jentzsch, and Rolf Drechsler. 2020. Efficient
Cross-Level Testing for Processor Verification: A RISC- V Case-Study. In Forum
on Specification and Design Languages. 1–7.

[28] Charalambos Ioannides, Geoff Barrett, and Kerstin Eder. 2011. Feedback-Based
Coverage Directed Test Generation: An Industrial Evaluation. In Hardware and
Software: Verification and Testing, Sharon Barner, Ian Harris, Daniel Kroening,
and Orna Raz (Eds.).

[29] Y. Katz, M. Rimon, and A. Ziv. 2012. Generating instruction streams using abstract
CSP. In Design, Automation and Test in Europe. 15–20.

[30] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[31] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In International
Conference on Computer-Aided Design. 1–8.

[32] Weiqin Ma, A. Forin, and Jyh-Charn Liu. 2010. Rapid prototyping and compact
testing of CPU emulators. In RSP. 1–7.

[33] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU Emulators. In ISSTA. 261–272.

[34] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM (1990), 32–44.

[35] Katharina Ruep and Daniel Große. 2022. SpinalFuzz: Coverage-Guided Fuzzing
for SpinalHDL Designs. In European Test Symposium.

[36] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2021. Fuzzing Hardware Like Software. CoRR
abs/2102.02308 (2021). arXiv:2102.02308 https://arxiv.org/abs/2102.02308

[37] Harry Wagstaff, Tom Spink, and Björn Franke. 2014. Automated ISA branch cov-
erage analysis and test case generation for retargetable instruction set simulators.
In CASES. 1–10.

[38] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set
Manual; Volume I: Unprivileged ISA. RISC-V Foundation.

[39] Andrew Waterman and Krste Asanović (Eds.). 2019. The RISC-V Instruction Set
Manual; Volume II: Privileged Architecture. RISC-V Foundation.

https://github.com/ucb-bar/riscv-torture
https://github.com/riscv/riscv-tests
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md
https://github.com/SpinalHDL/SpinalHDL
https://github.com/google/AFL/blob/fab1ca5ed7e3552833a18fc2116d33a9241699bc/docs/status_screen.txt
https://github.com/google/AFL/blob/fab1ca5ed7e3552833a18fc2116d33a9241699bc/docs/status_screen.txt
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://riscv.org/about/
https://www.onespin.com/solutions/risc-v
https://www.onespin.com/solutions/risc-v
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://github.com/google/riscv-dv
https://github.com/SpinalHDL/VexRiscv
https://www.veripool.org/verilator/
https://arxiv.org/abs/2102.02308
https://arxiv.org/abs/2102.02308

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 AFL
	3.2 RISC-V

	4 Processor Verification using Fuzzing
	4.1 Translation Buffer
	4.2 Execution Controller
	4.3 Enhanced Mutations
	4.4 Post Processing

	5 Evaluation
	5.1 Vanilla AFL vs. Enhanced AFL
	5.2 Manual Analysis

	6 Discussion and Future Work
	Acknowledgments
	References

