
2022 The 22st International Conference on Control, Automation and Systems (ICCAS 2022)
BEXCO, Busan, Korea, Nov. 27∼Dec. 01, 2022

Symbolic Fault Injection for Plan-based Robotics

Tim Meywerk1∗, Vladimir Herdt1,2 and Rolf Drechsler1,2

1Group of Computer Architecture, University of Bremen, Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{tmeywerk, vherdt, drechsler}@uni-bremen.de
∗ Corresponding author

Abstract: Autonomous robots are being used increasingly in safety-critical environments. Due to their dynamic nature
and uncertainty, failures of low-level actions are common. In plan-based robotics, these failures are handled inside the
higher-level plans, using a multitude of failure handling strategies. With the increasing complexity of robotic plans, failures
may be accidentally left unhandled. This will usually stop the plan entirely. To avoid such a situation, the failure handling
should ideally be complete, i. e. there should be no failure that can reach the top-level of the execution.
In this paper, we propose to use formal methods, in particular symbolic fault injection to tackle the problem of finding
unhandled failures or proving that no such failure exists. We implement symbolic fault injection for the CRAM Planning
Language (CPL). We base our work on the worst-case assumption that any low-level action may fail at any time with any of
its possible types of failure. Our work builds upon an existing symbolic execution engine for CPL and extends it to reason
about CPL’s failure handling mechanism. We also present a way to implement the worst-case assumption directly into CPL.
Our experimental evaluation suggests that symbolic fault injection is a suitable and scalable method to find unhandled
failures in robotic plans.

Keywords: Formal Verification, Autonomous Robots, Planning, Fault Tolerance

1. INTRODUCTION

Autonomous robots are being used increasingly in
safety-critical environments. These robots need to be
reliable to avoid human injuries or material damage, espe-
cially when they act outside of an operator’s reach. The dy-
namic and uncertain environments of autonomous robots
pose a significant challenge for many low-level actions
such as grasping an object or navigating to an exact po-
sition. While progress is being made in the accuracy of
these low-level actions, avoiding failures altogether seems
hardly possible. In an autonomous setting, the robot has to
recover from low-level failures by itself to be able to still
reach its goal. This need for autonomous failure handling
has been recognized in the literature and a multitude of
failure handling strategies have been described [1–3].

The focus of this paper is on plan-based robotics, where
failure handling strategies are usually part of a manually
written robotic plan. Here, failures are treated similarly
to programming exceptions, i. e. a low-level module may
throw a failure and a higher-level plan has to define han-
dlers to deal with the occurring failures. Failures that are
not properly handled will usually cause the robotic plan
to crash, stopping the robot entirely.

Ideally, a robotic plan would be written in such a way
that all possible low-level failures are handled inside the
plan, without any crashes and the need of external inter-
ference. With the increasing complexity of robotic plans
however, finding unhandled failures is a challenging task.

The typical method of finding unhandled failures are
simulations. These are however inherently incomplete and
will often not find failures that occur only occasionally.

The research reported in this paper has been supported by the German Re-
search Foundation DFG, as part of Collaborative Research Center (Son-
derforschungsbereich) 1320 EASE – Everyday Activity Science and En-
gineering, University of Bremen (http://www.ease-crc.org/).
The research was conducted in sub-project P04.

To tackle this problem, we instead propose to use formal
methods, in particular symbolic fault injection to find
cases in which failures are not properly handled.

Our method is based on the worst-case assumption that
any low-level action may fail at any time with any of its
possible failure types. We then use symbolic execution to
find all cases in which failures are left unhandled.

We use the CRAM Planning Language (CPL) [4]
in combination with the symbolic execution engine
SEECER [5]. In this work, we extend SEECER to be able
to reason about the CPL’s failure handling mechanism.
We also present a general methodology to implement our
worst-case-assumption directly in CPL and present an
optimization technique to increase the scalability of our
approach. Our method is complete, i. e. it is able to pro-
duce either a complete list of all unhandled failures or
guarantee that no such failure exists. Since we reason
directly on the plan code, we are not limited to certain
failure handling strategies.

The remainder of this paper is structured as follows:
In the following Section 2 we go over the background
necessary for understanding this paper. In Section 3 we
present other works related to our approach. Section 4
contains our main contribution, namely the methodology
of symbolic fault injection for plan-based robotics. In
Section 5 we present experimental results and Section 6
concludes the paper.

2. PRELIMINARIES

In the following we present relevant background infor-
mation on the CRAM planning language (Section 2.1) and
the SEECER symbolic execution engine (Section 2.2).

2.1. CRAM Planning Language
The Cognitive Robot Abstract Machine (CRAM) is a

powerful framework for the generation and execution of

http://www.ease-crc.org/

1 (perform (an a c t i o n
2 (t y p e s e a r c h i n g)
3 (o b j e c t ? o b j e c t− d e s i g n a t o r)
4 (c o n t e x t ? c o n t e x t)
5 (r o b o t− l o c a t i o n ? b a s e− l o c a t i o n)))

Fig. 1.: Performing an action designator in CPL

1 (with− fa i lure−handl ing
2 ((f a i l u r e− t y p e (e)
3 h a n d l e r))
4 body)

Fig. 2.: CPL failure handling

robotic plans. The CRAM Planning Language (CPL) is a
core module of CRAM, which allows to define flexible,
hierarchical plans for cognitive robots. It is built upon the
Common Lisp programming language. The CPL interacts
with the environment through means of action designa-
tors. A designator describes parameters of an action to
be executed. In many cases, certain parameters can be
omitted. Once the designator is executed, the missing
parameters are filled in through different reasoning mech-
anisms. Designators are executed through the perform
function.

Example 1. Figure 1 shows a typical call to this func-
tion. The keyword an builds a designator with the type
of designator given as the first argument. In addition to
the action designators shown here, there are also designa-
tors for objects and locations. The remaining arguments
further specify the action. In this case the robot is in-
structed to search for an object, whose designator is given
in ?object-designator, while standing at the loca-
tion given in ?base-location. All other parameters
such as the object’s likely location are automatically in-
ferred from the context argument.

The CPL provides extensive failure handling ca-
pabilities to deal with any unforeseen events caused
by the highly dynamic environments of autonomous
robots. Failure handling is initiated through the
with-failure-handling macro. Figure 2 shows
the general structure of the macro. The body of the macro
is executed first. Whenever a failure of type failure-type
occurs during execution of the body, the handler is called.
This handler will then try to remove the cause of the fail-
ure. Multiple failure handling macros can be used inside
each other, creating a hierarchy of failure handlers. When
a handler is unable to properly handle a failure, it may
choose to ignore the failure, rethrow it to the higher level
or throw a new failure of a different type.

2.2. Symbolic verification for CRAM
Formal verification for plan-based robotics is still an

emerging field. One approach specifically tailored to
CRAM is the symbolic execution engine SEECER. Sym-
bolic execution executes a program while replacing con-
crete variable values with symbolic variables. During
execution symbolic constraints are collected. At certain
points in the execution these symbolic constraints are
checked for satisfiability by an SMT solver. On branches
in the control flow such as an if statement, the execution
state is duplicated. One execution state continues in the

then branch and the other in the else branch. Due to this
duplication and the often complex SMT formulas, sym-
bolic execution has very high runtime and storage space
requirements.

SEECER implements symbolic execution for Common
Lisp and several CRAM functions and macros. In addition
it supports several types of models for the robot’s environ-
ment. SEECER first compiles the CRAM plan to CLisp
bytecode. The symbolic execution of the resulting byte-
code is based on a stack machine. Each symbolic state is
composed of a function stack, a value stack, an additional
mapping of variable names to values and a symbolic path
condition, i. e. the condition that needs to be met to reach
the current execution path.

For more details on symbolic execution for CPL and
the SEECER implementation please refer to [5].

3. RELATED WORK

Fault injection has a long tradition in several different
application areas to perform robustness evaluations. As
such it has been leveraged at the hardware level to induce
faults into netlists [6], RTL descriptions [7] or even system-
level models [8] as well as at the software level [9].

Symbolic fault injection [10] extends upon the idea
of traditional fault injection by using non-deterministic
locations for the injection and hence enables to produce
complete coverage of the system under verification with
guarantees regarding its robustness. As such symbolic
fault injection is a very powerful technique for finding
gaps in the failure handling of complex systems. Sym-
bolic fault injection has been mostly applied to embedded
systems [10, 11]. To the best of our knowledge this paper
is the first to use symbolic fault injection for plan-based
robotics.

Other approaches to formal verification of robotic plans
usually require a complex specification of the robots en-
vironment, either explicitly or through safety properties
that describe the robots desired behavior. In [12] an en-
vironment model is constructed using the Discrete Event
Calculus. This allows for the verification of general prop-
erties, but the environment modeling requires a lot of
manual work and is error-prone.

Often the robotic plan is formulated in a logical formal-
ism as well, e. g. in temporal logics [13–15], petri nets
[14] or Golog [16]. These allow to use existing reason-
ing techniques, but they also limit the expressiveness and
practicability of the robotic plan.

This paper uses the robotic planning language CPL
instead, which does not suffer from the strict framework
and reduced expressiveness of these formalisms. Instead,
CPL is Turing-complete and can be directly executed.

4. SYMBOLIC FAULT INJECTION FOR
CRAM

This section describes our approach on fault injection
for CPL plans. We start with an overview of our approach
in the following section.

1 (with− fa i lure−handl ing
2 ((f a i l u r e− t y p e (e)
3 h a n d l e r))
4 body)
5
6
7

(a) Original code

1 (defun (e) h a n d l e r 1
2 (i f (typep (type−of e) f a i l u r e− t y p e)
3 h a n d l e r
4 (r e t h r o w− f a i l u r e e)))
5 (s t a r t− f a i l u r e−h a n d l i n g "HANDLER1")
6 body
7 (end− fai lure−handl ing)

(b) Rewritten code

Fig. 3.: Rewriting scheme for failure handlers

4.1. Overview
Our approach takes a CPL plan and tries to find top-

level failures that can occur in it. Most failures are thrown
inside very low-level modules that are responsible for the
execution of mechanical actions such as grasping. We
want to abstract from the internals of these modules, since
they often depend on the current state of the environment.
Instead, we consider all types of failures that may be
thrown by the module and replace the concrete implemen-
tation of the module with the worst-case assumption that
any of those failure types may occur whenever the module
is called.

We call the actions for which we apply this assumption
atomic actions. Please note that the notion of atomic
actions is flexible, i. e. depending on the desired accuracy
and runtime, a user could choose higher or lower cut-off
points.

The core of our approach is the symbolic execution
engine SEECER. We extended SEECER to support the
extensive failure handling capabilities that are present in
the CPL. The details of this extension are described in
Section 4.2.

Our fault injection approach is based on the general
worst-case assumption that any action may fail at any
time with any of its possible failure types. To reflect
this behavior, we built a general environment model that
implements this assumption for all atomic actions of the
CPL. In addition we implemented a similar worst-case
assumption for all reasoning subroutines. The details of
this environment model and the reasoning subroutines are
presented in Section 4.3.

Finally, we propose an additional optimization tech-
nique to reduce the runtime of our approach in Section 4.4.

4.2. Extending SEECER with failure handling
Prior to this work, SEECER supported the core of the

CPL as well as a multitude of Common Lisp functions. To
enable symbolic fault injection, the failure handling func-
tionalities of the CPL were implemented into SEECER.

The nested Common Lisp code is generally problem-
atic for a symbolic execution engine. Therefore, as a first
step, the nested failure handling macro is rewritten into a
more sequential control flow. The applied rewriting is il-
lustrated in Figure 3. Figure 3a shows the code before and
Figure 3b after our rewriting scheme is applied. As shown,
the failure handler is placed inside a new function and
guarded by the condition that the type of the active fail-
ure is equal to or inherited from the failure-type (Line 2).
Otherwise the handler is not executed, but instead the fail-
ure is re-thrown to be handled by a higher-level handler
(Line 4). We call this new function the handler function to

differentiate the whole function from the original handler
that is now part of it.

The body is encapsulated inside two new functions
start-failure-handling (Line 5) and end-failure-handling
(Line 7). SEECER uses these functions to manage failures
and handler functions internally. Information about han-
dler functions are organized as a stack, with start-failure-
handling pushing a new handler function onto the stack
and end-failure-handling removing the top function. When
a failure occurs, the execution jumps to the newest handler
function on the stack. This is done by pushing a new ele-
ment onto the function stack similar to a normal function
call. The handler function is then executed. If the same or
a new failure is thrown inside the handler function itself,
the next handler from the stack is executed. If no failure is
thrown inside the handler, the failure has been successfully
handled and execution jumps back to the return address,
i. e. the line after which the failure was initially thrown.
If a failure is thrown with an empty handler stack, the
failure reaches the top level of execution. We call these
failures top-level failures. In a normal execution they lead
to a crash of the plan. SEECER can be configured to
either terminate the whole execution or just the current
context in this situation. In the first case only the first
top-level failure would be reported and in the second case
all top-level failures would be collected before SEECER
terminates. The user can decide between the two modes
depending on their needs. If no top-level failure occurs at
all, the plan’s failure handling is proven to be complete.

4.3. Symbolic Substitution of Atomic Actions
In this paper we want to use the failure handling de-

scribed in the previous section to find all possible top-level
failures. This is based on the worst case assumption that
any atomic action may fail at any time with any of its
possible failures.

The worst-case assumption is completely implemented
into Common Lisp as follows. For each execution of an
action, a new symbolic integer is created. Each of the n
possible failures is then assigned a unique integer between
1 and n. A chain of if statements now ensures that each
failure is thrown iff the symbolic integer has that failure’s
respective value. For all other values no failure is thrown.

Example 2. Consider an action of type Grasping, that
tries to grasp an object. There are two possible types
of failure that may occur. If the robot’s motion plan-
ning module does not find a sequence of motions to
reach the object – usually because it is too far away
– a failure of type gripper-goal-not-reached
is thrown. If the robot instead tries to grasp the ob-
ject, but detects that its grippers have fully closed (and

1 (l e t * ((sym−ctr (sym−int symbolic−name)))
2 (i f (= 1 sym−ctr)
3 (c r a m− f a i l u r e (make− ins tance
4 ’ gr ipper−goa l−no t− r eached))
5 (when (= 2 sym−ctr)
6 (c r a m− f a i l u r e (make− ins tance
7 ’ g r i p p e r−c l o s e d−c o m p l e t e l y)))))

Fig. 4.: Implementation of the worst case assumption for
the Grasping action

1 (defun h a n d l e r 1 (f a i l u r e)
2 (i f (typep (type−of f a i l u r e)
3 ’ g r ipper−goa l−no t− r eached)
4 (p r i n t "WARNING: G r a s p i n g f a i l e d ")
5 (r e t h r o w− f a i l u r e f a i l u r e)))
6 (s t a r t− f a i l u r e− h a n d l i n g "HANDLER1")
7 (perform
8 (an a c t i o n
9 (t y p e g r a s p i n g)

10 (o b j e c t o b j)))
11 (e n d− f a i l u r e−h a n d l i n g)

Fig. 5.: A failure handler without side effects

therefore failed to grasp the object), a failure of type
gripper-closed-completely is thrown. Figure 4
shows the implementation for the Grasping action. In
Line 1 a new symbolic integer is created. The vari-
able symbolic-name contains a string for the internal
naming of the variable in the SMT solver. sym-ctr
now contains the variable itself. If the variable is equal
to 1, a gripper-goal-not-reached failure is cre-
ated and thrown in Line 4. Similarly, if it is equal to
2, Line 7 throws a gripper-closed-completely
failure. For all other values, no failure is thrown.

Please note that the assignment of integer values to fail-
ures is arbitrary. A different assignment will still produce
the same outcome as long as all failures are assigned at
least one unique value.

In addition to atomic actions, the environment model
also needs to deal with complex reasoning subroutines
that are part of many high-level planning frameworks like
CRAM. These routines are often complex and take into
account the current environment, the robots belief state
and dynamically changing knowledge bases. Following
our worst-case assumption, we have to reason about all
possible results from the reasoning subroutines. Similarly
to the atomic actions this is realized through a pure Com-
mon Lisp implementation. For each call of a reasoning
subroutine, a symbolic variable of the respective type is
created. The value may be restricted through assume
statements (e. g. to a certain numerical range) and is then
returned.

Such a general methodology as presented here will
often create a large number of symbolic values and result
in a large number of symbolic paths. Therefore, the next
section will discuss a technique to reduce the search space
through means of state caching.

4.4. State Caching
In many cases a failure handler will have little to no

side effects, i. e. the state after the handler has finished is
identical to the state in which no failure occurred in the
first place.

Example 3. Consider the plan excerpt in Figure 5. As
shown in the previous example, there are three possible
outcomes of the grasping action performed in Line 7: The
action may throw a gripper-goal-not-reached
failure, a gripper-closed-completely failure or
no failure at all. In the first case, the handler would print
a warning and then jump back to Line 11 and in the third
case the handler would not be called at all and instead the
execution would continue as normal, also with Line 11.
Since the handler has no side effects at all, both execution
states would be identical.

Since both states are identical, they will lead to the
same execution traces upon further symbolic execution.
Because of this it is safely possible to only continue execu-
tion on one of the states without affecting the final result.
This is an instance of state merging [17], an established
optimization technique in symbolic execution. Usually
state merging will compare symbolic states and if two
states are similar by some metric, their path conditions
and variable assignments will be combined. This combi-
nation results in less, but more complex symbolic states,
shifting complexity from the search algorithm to the SMT
solver. For an effective use of state merging, a large num-
ber of symbolic states must be active at the same time. As
demonstrated above, states during fault injection for typi-
cal CRAM plans are not only similar, but identical. This
enables us to use a simpler version of state merging with
less overhead which we call state caching. State caching
only acts on identical states at certain manually chosen
checkpoints in the plan. At the checkpoints the states are
stored inside a cache. Whenever a state s is identical to a
previously stored state s′, the current execution trace can
be terminated, since all results after state s have already
been produced after s′. This way identical states are only
processed once.

The comparison between states is based on the states’
function stack, value stack, variable assignments and path
condition. These also include values that have been used
prior to the current point in the execution, but are not
relevant to any decisions after that point. This is especially
true for the symbolic values introduced in the last section
as they are used only once immediately after being created.
These values can therefore be ignored when it comes to
comparing two states.

Example 4. Consider again the previous two examples.
Since the symbolic variable sym-ctr is used to dif-
ferentiate between the type of failure that is thrown,
the two states from the previous example will have
differing path conditions. The state which throws
the gripper-goal-not-reached failure, will have
symctr = 1 in its path condition. The state which did
not throw a failure will instead have a path condition of
sym-ctr 6= 1 ∧ sym-ctr 6= 2. Since sym-ctr is not
used in any future paths of the program, this difference
may however be ignored, making the two states identical
again.

Currently the values to ignore are determined manually,
but for future work we plan to do this automatically based
on the plan’s control flow.

We implemented the state cache in an efficient structure
using hash values for fast comparisons. These hash values

are constructed by first hashing the individual entries in
the function stack, value stack, variable assignment and
path condition and then combining all entries via the XOR
function.

5. EXPERIMENTAL EVALUATION

This section presents our experimental evaluation. Our
main research questions are whether symbolic fault in-
jection is suited for plan-based robotics and how fast our
approach is for typical CRAM plans. We investigate a
system of CRAM plans for generalized fetch and deliver
actions. These plans are described in more detail in Sec-
tion 5.1. The final results and their interpretation with
regard to our research questions are presented in Sec-
tion 5.2.

5.1. Robotic Plans and Actions
We evaluate our approach on a system of generalized

fetch and deliver plans. The plans implement different sub-
routines that are used to transport objects from one place to
another, including searching for objects and opening and
closing containers. The plans are very general, i. e. they
are independent of concrete objects or locations. They
can be roughly grouped into three classes: atomic actions
(e. g. Setting-gripper), low-level plans (e. g. Picking-up)
and high-level plans (e. g. Fetching). Here the low-level
plans use atomic actions internally and high-level plans
use atomic actions and low-level plans. One high-level
plan, Transporting also uses several other high-level plans,
making it the most complex plan of the system.

Both the low-level and high-level plans are equipped
with several failure handlers. These are often organized
hierarchically, i. e. when one handler is unable to deal with
the underlying problem, it throws a new failure which is
handled by a higher-level handler. The deepest handler
hierarchies are found in the Searching and Fetching plan
with 5 nested failure handlers each.

There are a total of 17 atomic actions, 4 low-level and
8 high-level plans. Each atomic action has between 1 and
3 possible failures with some overlap between actions,
for a total number of 13 distinct failure types. The high-
level plans have a differing number of arguments, ranging
from 1 to 6. There are also 7 reasoning subroutines which
decide on certain arguments for some of the plans. All
plans combined amount to 2284 lines of bytecode.

5.2. Experimental Results
We substituted all low-level actions and reasoning sub-

routines according to our approach in Section 4.3. We
then executed our extended version of SEECER on the
resulting code. SEECER was configured to report all top-
level failures and not terminate after the first find. We
evaluated each high-level plan on its own, implicitly also
covering all low-level plans and atomic actions. In ad-
dition, the arguments for each high-level plan were kept
fully symbolically, considerably adding to the complexity.
All experiments were conducted on a Linux machine run-
ning an Intel Core i5-7200U CPU with 2.50 GHz clock
rate.

We found unhandled top-level failures in all eight plans.
Some of these would have been easy to find without formal

Table 1.: Experimental results on the high-level plans

Plan With state caching Without state caching
#paths time #paths time

Navigating 7 11s 7 11s
Turning 17 12s 24 12s
Searching 55 12s 877 12s
Delivering 373 14s 47185 126s
Accessing 1841 18s 7121 22s
Sealing 1841 18s 7121 22s
Fetching 4105 37s timeout
Transporting 59161 568s timeout

methods as well, e. g. when handlers for certain failures
were simply missing. Other failures would be lot harder
to spot manually or via simulation-based testing. For
instance, some top-level failures only occurred when an
action inside a failure handler itself also failed. There
were also cases where several handlers were unable to
properly handle a failure until it reached the top level.
Our first research question has therefore been answered
positively. Our evaluation strongly suggests that symbolic
fault injection is a well-suited tool for plan-based robotics.
This leaves only the runtime question to be answered.

Table 1 summarizes the runtime results of our evalua-
tion. We report the number of symbolic paths and the total
runtime for all eight high-level plans. To show the effect
of our proposed state caching technique, we report the
results both with and without state caching enabled. The
columns of Table 1 report (from left to right) the plan un-
der verification, the number of symbolic paths with state
caching enabled, the runtime with state caching enabled
and then both metrics when state caching was disabled.

As expected, the runtime for each plan correlates with
the number of symbolic paths that are explored. Both
metrics depend on the underlying complexity of the plans.
Simpler plans such as Navigating lead to only few paths.
The majority of its 11s runtime are not even used for
symbolic execution, but rather for the initial setup and
compilation of the plan into bytecode. The Transporting
plan on the other hand uses all other high- and low-level
plans. Therefore it is the most complex out of all eval-
uated plans by far. This becomes apparent in the large
number of symbolic paths even with state caching enabled.
Nonetheless, its runtime is still below 10 minutes, which
is perfectly acceptable for a complete analysis with all pos-
sible arguments and a complete list of top-level failures.
The analysis for all other plans was finished in under a
minute. The two rightmost columns of the table show the
effect of disabling our state caching technique. The influ-
ence of state caching is clearly visible when looking at the
Delivering, Fetching and Transporting plan. Without the
optimization, the number of paths of the Delivering plan
increased by a factor of over 100 which lead to a runtime
increase of 900%. The Fetching and Transporting plans
did not finish within the 1 hour time limit, which means a
runtime increase of at least 9729% for the Fetching plan.
For the other plans, the effects of state caching were less
apparent, but nonetheless always positive or at least neu-

tral. We did not observe a case were the slight overhead
of state caching actually impacted the runtime negatively.

Overall, our proposed approach was able to completely
analyze typical CRAM plans within a short time, for most
plans within less than a minute. For the more complex
plans this is primarily thanks to our proposed state caching
technique.

6. CONCLUSION

Many plan-based robotic systems use failure handling
to deal with low-level failures caused by the dynamic
and uncertain environment. With the increasing complex-
ity of robotic plans, a plans failure handling will often
be incomplete or contain errors. In this paper we pro-
posed a methodology to automatically find failures that
reach the top-level without being handled or prove their
absence. We presented an extension to the symbolic execu-
tion engine SEECER to incorporate failure handling. Our
approach is based on the worst-case assumption that any
action may fail at any time with any of its possible failure
types. We implemented this assumption in Common Lisp
for a straightforward integration with SEECER. Finally
we presented state caching as an optimization technique to
deal with the large amount of symbolic states. Our exper-
iments show that symbolic fault injection is an effective
technique for plan-based robotics. We were able to find
unhandled failures in several CRAM plans. Thanks to our
proposed state caching technique, the runtime was below
one minute for all but one plan.

Our current implementation is mostly automatic, but
requires some manual preparation of the CPL plan under
verification. Especially our state caching technique re-
quires the developer to chose effective checkpoints and
variables that can be safely ignored. For future work, we
plan to fully automate this preparation through analysis of
the underlying control flow graph.

REFERENCES

[1] R. R. Murphy and D. Hershberger, “Handling sens-
ing failures in autonomous mobile robots,” The In-
ternational Journal of Robotics Research, 1999.

[2] T. Lienert, L. Stigler, and J. Fottner, “Failure-
handling strategies for mobile robots in automated
warehouses,” in 33rd INTERNATIONAL ECMS Con-
ference on Modelling and Simulation, 2019.

[3] G. Kazhoyan, S. Stelter, F. K. Kenfack, S. Ko-
ralewski, and M. Beetz, “The robot household
marathon experiment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA),
2021.

[4] M. Beetz, L. Mösenlechner, and M. Tenorth,
“Cram—a cognitive robot abstract machine for ev-
eryday manipulation in human environments,” in
Intelligent Robots and Systems, 2010.

[5] T. Meywerk, M. Walter, V. Herdt, D. Große, and
R. Drechsler, “Towards Formal Verification of Plans

for Cognition-enabled Autonomous Robotic Agents,”
in Euromicro Conference on Digital System Design
(DSD), 2019.

[6] S. Aftabjahani and Z. Navabi, “Functional fault sim-
ulation of vhdl gate level models,” in Proceedings
VHDL International Users’ Forum. Fall Conference,
1997.

[7] P. Thaker, V. Agrawal, and M. Zaghloul, “Register-
transfer level fault modeling and test evaluation tech-
niques for vlsi circuits,” in Proceedings International
Test Conference 2000 (IEEE Cat. No.00CH37159),
2000.

[8] B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse,
and C. Novello, “Fault-effect analysis on system-
level hardware modeling using virtual prototypes,”
in 2016 Forum on Specification and Design Lan-
guages (FDL), 2016.

[9] M. Kooli, A. Bosio, P. Benoit, and L. Torres, “Soft-
ware testing and software fault injection,” in 2015
10th International Conference on Design Technol-
ogy of Integrated Systems in Nanoscale Era (DTIS),
2015.

[10] D. Larsson and R. Hähnle, “Symbolic fault injection,”
in International Verification Workshop (VERIFY),
2007.

[11] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and
R. Iyer, “Symplfied: Symbolic program-level fault
injection and error detection framework,” in 2008
IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN),
2008.

[12] T. Meywerk, M. Walter, V. Herdt, J. Kleinekathöfer,
D. Große, and R. Drechsler, “Verifying safety prop-
erties of robotic plans operating in real-world envi-
ronments via logic-based environment modeling,” in
Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA), ser. Lecture Notes in
Computer Science, 2020.

[13] F. Bacchus and F. Kabanza, “Using temporal logics
to express search control knowledge for planning,”
Artif. Intell., 2000.

[14] B. Lacerda, “Supervision of discrete event systems
based on temporal logic specifications,” Ph.D. dis-
sertation, 2013.

[15] L. Lindemann, G. J. Pappas, and D. V. Dimarogonas,
“Reactive and risk-aware control for signal temporal
logic,” 2021.

[16] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. B. Scherl, “Golog: A logic programming lan-
guage for dynamic domains,” The Journal of Logic
Programming, 1997.

[17] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea,
“Efficient state merging in symbolic execution,” in
Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, 2012.

	Introduction
	Preliminaries
	CRAM Planning Language
	Symbolic verification for CRAM

	Related Work
	Symbolic Fault Injection for CRAM
	Overview
	Extending SEECER with failure handling
	Symbolic Substitution of Atomic Actions
	State Caching

	Experimental Evaluation
	Robotic Plans and Actions
	Experimental Results

	Conclusion

