Automatic Generation of Complex Properties for Hardware Designs*

Frank Rogin* Thomas Klotz*

Gorschwin Fey™*

Rolf Drechsler** Steffen Riilke*

¥ Fraunhofer Institute for Integrated Circuits, Division Design Automation, 01069 Dresden, Germany
{frank.rogin, thomas.klotz, steffen.ruelke } @eas.iis.fraunhofer.de

** University of Bremen, Institute of Computer Science, 28359 Bremen, Germany
{fey, drechsle } @informatik.uni-bremen.de

Abstract

Property checking is a promising approach to prove the
correctness of today’s complex designs. However, in prac-
tice this requires the formulation of formal properties which
is a time consuming and non-trivial task. Therefore the
acceptance and efficiency of formal verification techniques
can be raised by an automated support for formulating de-
sign properties. In this paper we propose a new method-
ology to automatically generate complex properties for a
given design. The tool, Dianosis, implements this method-
ology by analyzing a simulation trace. The extracted prop-
erties describe the abstract design behavior and are pre-
sented in a format that is easy to read and can be added
to the set of properties used for formal or assertion-based
verification. We provide experimental results on industrial
hardware designs that show the effectiveness of Dianosis
and motivate the practical use.

1. Introduction

The conventional simulation-centered verification
methodology is insufficient to meet today’s requirements,
such as an exhaustive verification of complex designs, or
the demand for first-time-right designs. As verification
has become the dominating factor in circuit and system
design, huge efforts have been made in the past to increase
the productivity and quality of the verification process.
New formal and semi-formal verification techniques were
proposed over the past few years and some of them are now
part of daily use in industrial design flows (e.g. equivalence
checking). Furthermore, verification techniques such
as property checking or assertion-based verification are
getting increased application in the current industry.

All these techniques, however, require a formal specifi-
cation of the design. For that, properties have to be defined
manually which is an error-prone and non-trivial task. They
are normally derived from a high-level specification writ-

*Partial funding provided by the URANOS project, BMBF-01M3075.

ten in natural language that may contain inconsistent, erro-
neous, or incomplete requirements. The declarative nature
of property languages often also hampers a widespread ap-
plication of formal techniques. Furthermore, complex prop-
erties expressing the inter-module interaction are hard to
write. The increasing design complexity and a distributed
development process additionally complicate this task. So,
any method to reduce the effort of writing properties and in
particular to abstract the design behavior would be benefi-
cial. Most especially, this could help to increase the accep-
tance of formal techniques.

In this paper we introduce a new approach that is in-
spired by prior work on automatic generation of properties
for software programs [4, 7] and hardware designs [2, 3, 6].
Daikon [7] and IODINE [3] report likely invariants search-
ing a limited catalog of preset properties. In contrast our
approach is not restricted to such a predefined property
set. Instead, we use already validated properties to derive
more complex ones that help the verification engineer to ob-
tain more abstract design information. The further class of
tools infer formerly unknown properties. The authors in [6]
propose a method to extract common design behavior by
means of transaction activity at any user-defined interface
of a hardware design. A disadvantage of this approach is
the limitation to control signals to gain usable information.
In contrast, our solution generates properties over all pos-
sible signals. Anomaly detection is performed by a further
tool called DIDUCE [4] that only reports violations of rela-
tively simple program invariants in Java programs. Pattern
matching is used in [2] to generate arbitrary properties over
a selected set of signals. Compared to our solution, a size-
limited time window has to be defined by the user which
prevents an efficient search for long running properties.

Unlike all stated work our approach aims at the genera-
tion of complex properties that gain a better insight into the
abstract design behavior. The properties are inferred over
a given simulation trace and all its containing signals. In
the first phase, a set of predefined properties is hypothe-
sized over the design behavior leaving only such property
candidates that are valid on the trace. During the subse-
quent second phase the found properties are combined to
new more complex candidates and are checked on the sim-

ulation trace. Surviving property candidates are recombined
until no more valid properties can be created. The extracted
functional behavior is presented to the verification engineer
for manual inspection. Our solution has a number of advan-
tages: (i) improved design understanding — properties pro-
vide an abstraction from the implementation, (ii) tool sup-
port for the formulation of properties — derived properties
are a starting point for formal verification, (iii) identification
of holes in the test suite — a derived property that cannot be
proven unveils behavior not exercised by the test suite, and
(iv) enhanced efficiency of the overall verification process —
the application of our tool Dianosis in the verification flow
speeds up the process and improves its quality.

2. Generation methodology

Figure 1 shows our property generation algorithm that is
divided into two phases. During the first phase predefined
basic properties are inferred over all signals of the given
design and their correctness is validated on the simulation
trace. To obtain high-quality properties it is necessary that
the design is extensively simulated using a testbench with
a high functional coverage. Otherwise, a large number of
properties are incorrectly inferred and does not hold on the
design. All properties that are not falsified during analysis
(cp. Phase 1 in Figure 1) are used in a subsequent second
phase that checks the temporal dependencies between them.
If such a dependency is valid on the given trace, this new
context is formulated as a complex property and is recorded
into a database. Repeating this procedure, temporal depen-
dencies between the already found and the newly generated
properties are examined. Thus, even more complex prop-
erty candidates are created and checked on the simulation
trace (cp. Phase 2 in Figure 1). The second phase ends
when no new properties are found. That means P, re-
mains empty.

Since property generation based on simulation traces
cannot be “all-embracing” by definition, incomplete or
wrong behavior could be extracted. So, the verification en-
gineer is always required to check the correctness of the
derived properties with respect to the design intent and the
specification. Hence, user interaction is required here.

3. Dianosis property generation

Based on the algorithm described in Section 2 we de-
veloped a tool called Dianosis (Dynamic Invariant Analysis
on Simulation Traces). Dianosis handles simulation traces
provided in the industry standard VCD format [5]. Thus,
properties can be generated independently of the used sim-
ulator tool or the modeled design level. Different formats
suitable for advanced verification tasks (e.g. SystemVerilog
Assertions) can be chosen to output the derived properties.

To generate valuable properties, a large basis of basic
properties that can be combined is essential. The Open Ver-
ification Library (OVL) [1] provides a set of 51 parametriz-

Create property candidates
Pcand = W Pk © Pn
Pk, Pn € P
o € temporal dependency operators

v

!
|

|

|

|

|

|

|

! \7 Pi, if pi € Peng valid on the trace
|

! Prew=Prew \ U {Pi }
|

|

|

|

|

|

|

|

|

P=P U Prew
Pnew= 2

Complex properties
Phase 2

Figure 1. Dianosis general algorithm

able assertion-based checkers that ensure typical basic be-
havior in hardware designs. Due to this generality we se-
lected a couple of OVL assertion checkers and implemented
proper search algorithms in terms of checkers in Dianosis.
Beyond this, a number of custom-made checker types are
realized (see Table 1).

Table 1. Selection of basic property checkers

| Checker | Description |
OVL_Increment | Analyze increment counters.
OVL_OneHot Identify one-hot coded busses.

OVL_Handshake | Identify signal pairs that
follow the handshake pattern.
Identify a signal changing its state

whenever a second signal is active.

Req-N-Grant

Extract basic properties. After reading the simula-
tion data and performing a parallel check for some prop-
erties such as constant signals, Dianosis initiates the pro-
cess of property generation. Initially, for the current mod-
ule all scalar and multi-bit signals are determined. Based on
this signal list property candidates for all kinds of signals
and their combinations are created over all selected checker
types. To increase the chance for inferring reasonable prop-
erties and to accelerate the search, the creation of candidates
is subject to several restrictions:

e Discard reflexive binary candidates.
e Treat only one combination of a symmetric property.
e Disallow candidates over signals in the exclusion list.

During an update phase the signal values at the current
time stamp are passed to each appropriate checker instance.
There, a checker is only invoked when the observed signal
values changed which speeds up its execution. After that,
the simulation time is shifted to the next value change. Each
checker type is individually implemented and comprises de-
pending on the complexity of the analyzed property up to
many hundreds of lines of C++ code.

(0) // initialization: mutexsar; = —1
(1) update(v,[t], vp[t]) begin
2) if (v4[t] = active and vp[t] = active)

3) return false // invalid at time t

4 if (mutexgare = —1)

Q) if (vq[t] = active or v[t] = active)

(6) mutexsar =1t

() else if (v4[t] = inactive and vp[t] = inactive)
(3 mutexsiarr = —1

©) return true // valid at time t

(10) end

Figure 2. OVL_Mutex checker

Example 1 Figure 2 exemplifies the test of the mutual ex-
clusive activation of two signals a,b in terms of their val-
ues v4[t] and vplt] at each time stamp t. If the mutex be-
havior is falsified, the update-function returns false (line
3). Thereupon, the property candidate is removed from the
candidate set. If only one of the two signals is activated,
the checker has recognized a new mutual exclusion activity
(line 5) which does not end until both signals are inactive
again (line 8).

The generation process is finished when no more candidates
are left or the end of the simulation trace is reached. A
candidate that has “survived” over the complete trace de-
scribes a valid basic property and is stored into the property
database (see Figure 3 (a)).

Transaction encoding. After the search for basic prop-
erties, the signal behavior of each binary property is com-
posed into transactions. A transaction describes the prop-
erty activity in terms of the activity of each participating
signal. Hence, transaction encoding allows interpretation of
property behavior as an elementary signal. The handshake
property is a typical representative where each request-
acknowledge pair is composed into a transaction with a de-
fined start and end time (see Figure 3 (b)). In case of proper-
ties that refer to a single signal only (e.g. multi-bit signals),
the original signal behavior is treated as transaction.

Extract complex properties. Now, the phase of combi-
nation starts. The current Dianosis implementation exam-
ines three temporal dependencies between properties:

e Mutual exclusion of two properties at the same time.
e Equal activity of two properties at the same time.
o Successive temporal order of a number of properties.

Additionally to the restrictions applied for the creation of
basic candidates property combination is limited, as well:

e Remove combinations that are not meaningful.
e Create only new candidates.
e Discard a property that is covered by another property.

Composed property candidates are analyzed over the
simulation trace in the same manner that basic properties
are processed (see Figure 3 (c)). Surviving candidates are
added to the set of complex properties to be combined again
in the next iteration. The algorithm terminates when no new
property is generated.

(a) Find handshakes

- — = A
XS oL
o e B~

rdy

(b) Transaction encoding

A V7

ack

o A

rdy

(¢) Check compased mutex property

Rt il
S R

req
ack | R N 4 4
o ; : ¥ : .

rdy

01 2 3:4 5:6 78910111213141516177

Figure 3. Property generation example

Example 2 Figure 3 depicts the property generation in
case of four signals req, ack, en, and rdy. First, two
handshake properties are found between req and ack, and
en and rdy. Second, the handshakes are composed into
transactions describing each property activity. Last, both
basic properties are checked to be mutually exclusive. As-
suming that the mutex candidate survives over the simu-
lation trace, Dianosis reports: not (req |—> ##[2:3]
ack and en |->##[2:3] rdy).

4. Experimental results

To evaluate the effectiveness and quality of our solution
we applied Dianosis to several modules of different indus-
trial hardware designs: a SIMD multiprocessor design, a
SATA FIFO interface, and a DRAM controller interface.
Table 2 gives a brief characterization of the examined de-
sign components. The table shows the number of exam-
ined modules with their lines-of-code (LOC), the signals
per module used to generate properties, and the number of
simulation cycles in the input trace for Dianosis. The trace
lengths vary up to nearly 14 million cycles (trace size ap-
prox. 1GB). Since we are interested in the external design
behavior, only the module I/O signals are inspected.

Table 2. Testbench characteristics
[Testbench | #Modules [LOC [#Signals Cycles]
SIMD MP 9 | till 498 8to 158 990,438
SATA FIFO 1 1369 109 | 13,763,441
DRAM ctrl 1 183 120 229,820

4.1. Generated properties

The results of the basic property generation phase are
shown in Table 3. Dianosis generates a relatively small but
relevant set of properties. All properties were cross checked
by designers and classified into three categories: C - correct,
I - incomplete, and W - wrong. Incomplete properties only

120

T
Iteration I ——
Iteration 2 -

100 -

80

60 -

40

Valid Combination Candidates

20

Simulation Time (us)

Figure 4. SATA FIFO combination candidates

partially characterize the expected design behavior. Usu-
ally, this indicates an insufficient simulation trace unveiling
a bad testbench coverage. This case also leads to the sole
unproved property. Hence, incomplete or wrong properties
supply valuable information to improve the test suite.

Table 3. Found basic properties
[Testbench | properties | C [I | W [gen. time

SIMD MP 4313814 1 74 sec!
SATA FIFO 2011 19| 0] 34min!
DRAM ctrl 9] 9]0 0o 150sec!

ITest system: AMD Opteron™?248 @2.2GHz, 8GB RAM

Table 4 summarizes the results we achieved from the
property combination phase. This phase requires only a
small fraction of the time needed to infer basic properties.
There, all complex properties are generated by 1-3 itera-
tions using maximally three temporal dependency opera-
tors. This demonstrates the efficiency of our pruning strate-
gies (see Section 3). Comparing the quality of inferred
versus hand-written properties is difficult. Some properties
show a kind of cause-and-effect chain describing the inter-
action between multiple components that would not be ex-
plicitly written by a designer in this way. On the other hand,
a formal specification for some blocks of the SIMD design
contains some of the generated complex properties. This
observation and the designer feedback suggest that Dianosis
partially generates complementary properties compared to a
manual writing. Furthermore, properties abstracting the de-
sign behavior are inferred (see Section 4.2).

Table 4. Found complex properties
[Testbench | properties | C [I | W [gen. time

SIMD MP 25122131 0 3.3 sec!
SATA FIFO 6] 4121 0 12 sec!
DRAM ctrl 50 5/0] 0 0.1 sec!

ITest system: AMD Opteron™?248 @2.2GHz, 8GB RAM

Figure 4 shows the number of valid candidates while
combining properties for the SATA FIFO. The combination
phase consists of two iterations where the first one confirms
six candidates. The second iteration finishes at 194.24 us
where all current candidates are falsified.

4.2. Complex property example

To briefly demonstrate the analysis capabilities of Di-
anosis we illustrate one complex property that is found in
the SIMD design. This property is composed of three ba-
sic properties and two temporal dependency operators and is
extracted from an arbiter trace where the arbiter controls the
access to the processor local cache: not (grant._1lc |—>
##[2:18] ack.lc and grant._sc |- > ##[2:18]
ack_sc) |- > ##0 phase=3. The two handshakes are
triggered in a mutually exclusive fashion. Here, the first
handshake synchronizes a load operation into the local
cache while the second handshake controls a store opera-
tion from the cache. This behavior denotes the arbitration
scheme of the arbiter and confirms its correct implementa-
tion. Additionally, the constant value of the state vector at
the same time approves the correct synchronization of both
handshakes which is a required design decision. Hence, this
complex property helps the verification engineer to under-
stand and validate the abstract system behavior.

5. Conclusion

In this paper we introduced Dianosis, a tool that auto-
matically generates complex properties. Starting from a ba-
sis of predefined properties more complex ones are itera-
tively composed and checked over a given simulation trace.
The flexible architecture of Dianosis allows to easily extend
its analysis capabilities by additional checkers generating
further complex and valuable properties. Besides provid-
ing a new approach for an improved design understanding,
automatically generated properties lower the barrier to suc-
cessfully applying formal verification techniques.

References

[1] Accellera Organization. Accellera Standard OVL V2.
www.accellera.org, 2007.

[2] R.Drechsler and G. Fey. Design Understanding by Automatic
Property Generation. In Workshop on Synthesis And Sys-
tem Integration of Mixed Information technologies (SASIMI),
pages 274-281, 2004.

[3] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty.
IODINE: A Tool to Automatically Infer Dynamic Invariants
for Hardware Designs. In Design Automation Conference,
pages 775-778, 2005.

[4] S. Hangal and M. Lam. Tracking down software bugs using
automatic anomaly detection. In International Conference on
Software Engineering, pages 291-301, 2002.

[5] IEEE Computer Society. IEEE Standard for SystemVerilog
- Unified Hardware Design, Specification, and Verification
Language. 2005.

[6] B.Isaksen and V. Bertacco. Verification through the Principle
of Least Astonishment. In IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 860-867, 2006.

[7] J. Perkins and M. Ernst. Efficient Algorithms for Dynamic
Detection of Likely Invariants. In ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 23-32,
2004.

