
Polynomial Formal Verification of Multi-Valued
Logic Circuits within Constant Cutwidth

Architectures
Mohamed Nadeem
University of Bremen
Bremen, Germany

mnadeem@uni-bremen.de

Rolf Drechsler
University of Bremen/DFKI

Bremen, Germany
drechsler@uni-bremen.de

Abstract—Formal verification is essential for circuit cor-
rectness. Extending binary logic verification to Multi-Valued
Logic (MVL) presents challenges due to encoding challenges.
Answer Set Programming (ASP) enables compact MVL circuit
encoding. In this paper, we propose a Polynomial Formal Verifica-
tion (PFV) approach for MVL circuits with a constant cutwidth.
It employs a divide-and-conquer algorithm to decompose circuits
into subcircuits, each representing an output, where ASP is
used to encode and verify the subcircuits. The approach reduces
verification complexity to the circuit’s cutwidth, independent of
input bitwidth, ensuring linear time verification for circuits with
constant cutwidth. We validate our approach using adder archi-
tectures, as many adder architectures have a constant cutwidth.
Empirical experiments involve various adder architectures and
different logic levels.

Index Terms—Polynomial Formal Verification, Logic Synthesis,
Multi-Valued Logic, Answer Set Programming, Cutwidth.

I. INTRODUCTION

In the realm of computer system design, ensuring the
correctness of circuit behavior is a challenging problem. This
problem arises from the increasing complexity of circuit de-
signs. Consequently, various formal verification techniques [1],
[2] have been introduced to validate the functional behavior
of circuits.

These techniques include efficient logic function represen-
tations like Binary Decision Diagrams (BDDs) [3], [4] or
Multi-valued Decision Diagrams (MDDs) [5], or encoding
of the verification problem as an SAT instance using miter
circuits [6]. However, these techniques challenge a computa-
tional complexity problem [7]. Therefore, Polynomial Formal
Verification (PFV) [8] has been introduced to provide an upper
bound of the time complexity. It has shown earlier in [9]–[11]
for the binary logic that several types of circuits can be verified
in polynomial time.

In this paper, we focus on the circuits that exhibit a specific
structural property. More precisely, we consider the circuits of
a limited Cutwidth [12], [13]. In the area of formal verification,
cutwidth corresponds to the minimum number of edge-cuts
required to split the circuit into subcircuits.

This work was supported by the German Research Foundation (DFG) within
the Reinhart Koselleck Project PolyVer (DR 287/36-1).

The paper introduces a novel PFV approach to verify the
specific circuits within constant cutwidth architectures. The
approach includes dividing the circuit into subcircuits and stor-
ing the interleaving information. This enables the independent
verification of each subcircuit. Moreover, these subcircuits are
modeled and verified into ASP [14], [15]. Unlike SAT, ASP
allows to provide a compact representation of MVL functions.
Specifically, ASP allows for the direct encoding of non-binary
values of gates directly within the modeling language.

In prior work [16], it has been proven that the verification of
circuits with a constant cutwidth in binary logic can be done
in linear time. We show that these results can be generalized
to the MVL domain.

Due to the fact that several adder architectures exhibit a
constant cutwidth, we conduct experimental work for adders
to demonstrate our theoretical findings. It has been proven
earlier in [17] that the verification process of adder circuits in
MVL using MDDs is possible in polynomial time, but linear
time could not be proven. However, this work lacked empirical
validation. Our approach for adder circuits represents both a
theoretical improvement for the state-of-the-art and empirical
validation. While our approach contributes to the theoretical
aspect, we also conduct experiments to confirm our theoretical
findings. Our experiments demonstrate the performance for
various types of adder architectures, involving up to 10k input
bits and different logic levels up to four-valued logic.

The paper is structured as follows: In Section II we in-
troduce MVL operators, cutwidth as a structural property
of the And-Inverter Graph (AIG) [18] representation of a
circuit, MVL addition w.r.t. MVL operators and AIG, and the
basic concepts of ASP. Subsequently, the modeling of circuits
in ASP is described in Section III. Section IV extends the
approach [16] to the multi-valued domain. Section V describes
the complexity properties of our approach. This is followed by
an experimental evaluation in Section VI.

II. PRELIMINARIES

A. Multi-Valued Operators

In this section, we define the basic multi-valued operators
for representing and manipulating MVL functions.

Definition 1 (MVL Operators): Let a, b, x ∈ {0, 1, ..., p−1}
be integers, where p is the logic level. Then, the operators
·,+,¬,⊕ are defined as follows [19]:

• a · b = min(a, b).
• a+ b = max(a, b).
• ¬x = (p− 1)− x.
• a⊕ b = (a · ¬b) + (¬a · b).

It is worth noting that these operators can be used for the
binary case (i.e., p = 2), where operators ·,+,¬, and ⊕
correspond to the logical AND, OR, Inverter (denoted by Inv),
and XOR, respectively.

B. Cutwidth of AIG

A circuit C can be seen as a directed acyclic graph AIG G,
consisting of the sets of inputs PI , outputs PO, AND gates,
and Inv gates. This is defined as follows:

Definition 2 (AIG Graph): Let G = (V,E) be a AIG of a
circuit C such that:

• V := {v | v is a gate}.
• E := {(v, v′) | v, v′ ∈ V, v is connected to v′}.
A cutwidth of a graph G of a linear ordering v1, ..., vn is

the smallest integer k such that for every i = 1, ..., n − 1,
there exists at most k edges with one endpoint v1, ..., vi and
the other in vi+1, ..., vn. The set of nodes induced by the Cut
is referred as Cone Nodes (also called Out-going Nodes). This
leads to a characterization of K-bounded Graph that is defined
in [20] as follows:

Definition 3 (K-bounded Graph): Let K be a positive
number. Then, a graph G is said to be K-bounded if there
exists a partition σ = {G1, ..., Gn} of G such that for every
Gi, we have the number of inputs of Gi is at most K.

C. Multi-Valued Addition

In this section, MVL operators and the previously defined
AIG graph of the adder circuit are used to define the MVL
addition function.

Let a, b, c−1 ∈ {0, 1, ..., p−1} such that a, b are two inputs
with size n bits, and c−1 is the incoming carry bit. The addition
function Addi adds two inputs ai and bi together with the
incoming carry bit ci−1, and outputs the sum si and the carry
ci, for all 0 ≤ i ≤ n. The sum and carry functions can be
characterized as follows:

si = ai ⊕ bi ⊕ ci−1 (1)
ci = (ai · bi) + (ci−1 · (ai ⊕ bi)) (2)

As the addition function adds two n-bit numbers with the
carry c−1, it results n bits that represent the sum sn and one
carry bit cn. Therefore, the addition function has 2n+1 input
bits and n+ 1 output bits.

D. Answer Set Programming

ASP is a well-known declarative programming framework
from the area of knowledge representation and non-monotonic
reasoning [21]. It is mainly used to solve NP-hard search
problems while allowing a compact modeling [22], and the

a b

⊕ ·

s c

a b s c
0 0 0 0
0 1 1 0
0 2 2 0
...

...
...

...
2 2 0 2

Fig. 1. Half adder logic diagram and its truth table, where p = 3.

search problems are reduced for computing Answer Sets. We
follow the standard definitions of propositional ASP [23].

We consider a set U of propositional Atoms. A Literal is an
atom a ∈ U or its negation ¬a. A (logic) program is defined
in terms of rules over the set U as follows:

Definition 4 (Logic program): Let U be the set of atoms,
and l,m, n be non-negative integers such that l ≤ m ≤ n. A
Logic Program Π is a set of Rules of the form a1 ∨ ...∨ al ←
al+1, ..., am,¬am+1, ...,¬an , where a1, ..., an ∈ U .

We refer by Hr := {a1, ..., al}, B+
r = {al+1, ..., am}, and

B−
r = {am+1, ..., an} to the head of r, the positive body of r,

and the negative body of r, respectively. Also, we denote the
sets of atoms occurring in a rule r by at(r) := Hr ∪ B+

r ∪
B−

r , while the set of atoms occurring in Π is denoted by
at(Π) := ∪r∈Π at(r). A rule r is said to be a Fact (Negation-
free) if B−

r = ∅. A set A of atoms satisfies a rule r, if (Hr ∪
B−

r) ∩ A ̸= ∅ or B+
r \ A ̸= ∅. Consequently, the set A is

a Model of Π, if A satisfies all rules r ∈ Π. The Gelfond-
Lifschitz (GL) Reduct [24] of a program Π under a set A
of atoms (denoted by ΠA) is obtained by first removing all
rules r with B−

r ∩A ̸= ∅, and then removing all ¬a from the
remaining rules r, where ¬a ∈ r. The answer set of a program
Π is defined as follows:

Definition 5 (Answer Set): Given a set A of atoms, and a
program Π, then A is an answer set of Π iff A is a minimal
model ΠA.
We refer by AS(Π) to the set of all answer sets of Π. To
illustrate this, consider the example of a half adder in Fig. 1.
For simplicity, the program Π is constructed for the binary
values of the truth table follows.

Example 1: Consider the program Π:

Π := {s← a,¬b; s← ¬a, b; a← ¬b; b← ¬a;
c← a, b; a ∨ ¬a←; b ∨ ¬b←; }

The set AS(Π) := {{a, s}, {b, s}, {a, b, c}} w.r.t. Π, where
the answer sets correspond to the 1 values of the truth table.

In the following section, we illustrate the modeling of the
circuit into ASP, as well as the MVL values of gates. More
precisely, we focus on modeling the AIG representation of
the circuit, where the MVL operators introduced earlier (re-
call Definition 1) are used to enable manipulating the non-
binary values over gates.

III. CIRCUIT MODELING USING ASP
The general idea is to encode the behavior of the MVL

gates and addition function into ASP rules, while the con-
nections and the MVL values of the inputs as facts. Then,

the ASP solver is used to reason about the values of output
gates and verify the graph by checking whether each output
gate matches its corresponding MVL addition function. We
follow the standard modeling language of a well-known ASP
solver Clingo [25] for modeling and verification of the AIG
graph. We strict our focus on the AIG of 2-bit Ripple Carry
Adder (RCA) that can be seen in Fig. 2(b).

The AIG graph is modeled such that a gate behavior is
defined based on the values of their ports. These ports allow
for handling the passing of the values between gates. Thus,
let P (G) be a unary function symbol representing a port of
the gate G, and val(P (G), v) be a binary predicate symbol
stating a value v of port P (G). Also, let conn(P (G), P (G′))
be a binary predicate symbol defining the connection between
P (G) and P (G′).

As the AIG has several types of gates (i.e., AND, Inv, PI, and
PO), therefore type(G, t) is used to assign a gate G with a type
t. As Clingo allows for encoding a constant, the logic level p
is defined as constant into the program (i.e., #const p = v,
where v is a positive integer representing the logic level value).
Moreover, Clingo provides an interface to represent minimum
and maximum functions. Hence, the MVL AND, and OR are
represented by #min, and #max, respectively.

For modeling the AIG graph, it is essential to define the
rules for AND, Inv gates, and the connection between the ports
of gates. These can be characterized as follows:

val(out(G), Z):- type(G, and),

Z = #min{X:val(in1(G), X), Y :val(in2(G), Y)}. (3)
val(out(G), (p-1)-X):- type(G, inv), val(in(G), X). (4)

val(P2, V):- conn(P1, P2), val(P1, V). (5)

Eq. (3) captures the behavior of AND gate such that X
and Y indicate the values on the ports in1(G) and in2(G),
respectively. Also, Z corresponds to the resulting value ob-
tained from performing minimum function on the inputs X and
Y , where Z are passed to the output port out(G). Similarly,
Inverter gate is captured in Eq. (4) such that gate G takes an
input value X on port in(G), and outputs the resulting value
on the port out(G). Finally, in order to allow passing values
over ports, Eq. (5) is used to define the connection between
ports P1 and P2. It takes a value V on a port P1 and passes
it to port P2.

To complete our encoding, ASP facts are used for rep-
resenting the connections based on the structure of AIG,
the values of input gates, and the type of gates. E.g.,
conn(out(and10), in2(and16)) represents the connection be-
tween the output port of gate “and10” and the second input
port of gate “and16”, val(a0, 2) indicates passing the value
“2” on the input gate a0, and type(and12, and) identifies the
gate “and12” as an AND gate. It is worth noting that the rules
are graph-independent and can work with any AIG to model
the MVL gates, while the facts depend on the structure of the
AIG.

Finally, to enable verification of the circuit, it is essential
to encode the sum and carry functions into ASP rules. For

simplicity, we show the encoding of the MVL OR that is used
for the MVL XOR. The MVL OR can be characterized as
follows:

or(or, Z):- Z = #max{X:val(P1, X), Y :val(P2, Y)}.
(6)

The XOR can be defined from the AND, Inverter, and OR rules,
by defining several rules, such that each rule corresponds to a
basic operation. E.g., ¬b is defined as a rule r and (a · ¬b) is
defined as a rule r′ from the result of r together with the value
a. The sum and carry functions are defined, analogously.

Also, it is essential to relate the output gate with its expected
logic function. This can be modeled as follows:

verify(oi):- s(si, X), val(oi, X). (7)
verify(on+1):- c(cn, X), val(on+1, X). (8)

As the graph has two n bit numbers and n + 1 outputs, it
is required to relate all the sum functions si to the output
oi, where 0 ≤ i ≤ n, while the last bit has to match the
carry cn+1. The sum and carry rules are depicted in Eq. (7)
and Eq. (8), respectively.

We denote by Π(G) to the program Π constructed w.r.t.
the graph G. The idea behind the previous two rules is that
for a given set of facts representing an input sequence of the
primary inputs, the input sequence s is said to be a Valid Input
if all outputs verify(oi) appear in the answer set of Π(G);
meaning that s satisfies all the logic functions. This leads to
a characterization for the verification of the graph.

Definition 6 (Valid Graph): Let Π(G) be a program of
the graph G of size n, and F be a set of the sets of facts
representing all possible input sequences s. Then, G is a
Valid Graph, if for every s ∈ F , we have s is a valid input.
Otherwise, G is an Invalid Graph.

It is worth noting that the overall search space is pn. Hence,
the overall number of input sequences is |F| = pn.

In the following section, we propose a PFV approach for
defining an upper bound of the search space.

IV. POLYNOMIAL FORMAL VERIFICATION OF MVL
ADDITION

In this section, we generalize the PFV approach introduced
in [16] to the MVL domain. The approach divides the graph
into subgraphs and stores the interleaving nodes. Thus, each
subgraph is verified independently. We follow the same graph-
splitting technique while generalizing the mapping functions
of the information passing, and subgraph verification to the
MVL domain.

A. Graph Reduction

The AIG graph can be split into subgraphs each representing
an output node and its reachable nodes. I.e., the AIG G
in Fig. 2(b) can be split into three subgraphs. This can be
defined as follows:

Definition 7 (Subgraph): Let G = (V,E) be a graph, and
v ∈ V be an output node. Then, a subgraph (G, v) = (Vv, Ev)
of G is obtained such that:

FA2 FA1

A1 B1 A0 B0

O2 C1 C0

O1 O0

(a) 2-bit RCA block diagram

O118

14

4

B0

16

10

8

B1

6

A1

O220

O012

2

A0

(b) AIG G

O012

4

B0

2

A0

(c) (G,O0).

O118

14

4

B0 A0

16

10

8

B1

6

A1

(d) (G,O1).

O220

16

4

B0 A0

10

6

A1

8

B1

(e) (G,O2).

Fig. 2. The AIG G of 2-bit RCA block diagram in Fig. 2(a) and the resulting (reduced) subgraphs (G,O0), (G,O1) and (G,O2) that can be obtained from
the AIG graph in Fig. 2(b). The nodes highlighted in red correspond to input nodes, and those highlighted in blue correspond to output nodes. Dotted nodes
and edges are removed when the subgraph is reduced.

• Vv := {v} ∪ {v′ ∈ V | v′ is reachable from v} ∪ {v′ ∈
V | ∃x, y ∈ V : x, y are reachable from v′, v}.

• Ev := {(u′, v′) ∈ E | u′, v′ ∈ Vv}.
As we can see in Fig. 2, there exist some nodes that

appear in several graphs. I.e., node “20” appear in (G,O1)
and (G,O2). We denote by Gi to the reduced subgraph of
(G,Oi) that is obtained from removing all nodes and edges
that appear in any subgraph (G,Oj), where j < i. The set
of Out-going Nodes COi is defined w.r.t. Gi as follows:

Definition 8 (Out-going Nodes): Let G = (V,E) be AIG
graph, and Gi = (Vi, Ei) be the subgraph of (G,Oi), where
0 ≤ i ≤ n. The set COi of Out-going Nodes is defined w.r.t.
Gi such that COi := {a ∈ Vi | (b, a) ∈ E, b ̸∈ Vi}.

Similarly, we refer by CIi to the set of In-going Nodes
containing all nodes that have a predecessor node that appears
in any other graphs Gj , where j < i. For the graph G1

in Fig. 2(d), we have that CO1 = {20}, and CI1 = {4}. As
node “4” is evaluated in G0 (CO0 = {4}), while node “20” is
evaluated in G1 and passed to G2 (CI2 = {20}). Notably,
CI0 = ∅ as the reduced graph G0 is always equivalent to
(G,O0). Similarly, COn = ∅.

As the reduced subgraph Gi may contain primary inputs
PIi, and non-primary inputs (in-going nodes) CIi, we denote
by INi to the set of all inputs of the reduced subgraph Gi.

B. Information Passing

In this section, we propose a method that allows for storing
the set COi, thus it can be used in other reduced subgraphs.
In simpler terms, the values of COi of a reduced subgraph Gi

need to be stored, so that these values can be used in other
subgraphs Gk, where k > i. These values cannot be stored as
a function of the primary inputs, as this would require passing
the primary inputs to other subgraphs Gk, and consequently,
the last reduced subgraph would still depend on all primary
inputs. Rather than storing COi w.r.t. the primary inputs, we
store COi based on the computed carry function. By this
means, the carry function ci is used in the specification of
the output for the subgraph.

A hash table Xi is used to relate the values of the out-
going nodes COi w.r.t. the value of carry ci. To construct the

hash table Xi, we define two mapping functions. We define a
function f that maps each input sequence s ∈ INi of Gi to a
set of values COUTi of out-going nodes COi.

f : INi 7→ COUTi. (9)

Also, we define a function g that maps each s′ ∈ COUTi to
the value of carry ci.

g : COUTi 7→ [0, ..., p− 1]. (10)

Finally, the hash table Xi is constructed as follows:

Xi = {(f(s), g(f(s))) | s ∈ INi}. (11)

To illustrate this, let us consider Fig. 2(c), and assume
p = 3. The out-going nodes CO0 = {4}. There are three
possible values for f for input sequences s ∈ IN0. I.e.,
f(0, 1) = {0}, f(1, 1) = {1}, and f(2, 2) = {2}. The other
input sequences are not considered as all possible values for
COUT0 are already covered. For function g, we have that
g(0) = 0, g(1) = 1, and g(2) = 2. For the general case, the
carry function can be replaced with one or more functions to
describe the information passing over subgraphs. It should be
emphasized that the number of entries of the hash table would
still be bounded by the size of out-going nodes.

C. Subgraph Verification

For each subgraph Gi, we have two main tasks. The first
is to check whether Gi is a valid graph (recall Definition 6),
while the second involves the construction of Xi. The inputs
INi of Gi may contain primary inputs PIi and in-going nodes
CIi. As CIi might be stored in any hash table Xj , where
j < i, it is essential to go over all tables Xj to obtain all
values of CIi. Hence, a relation ⋊⋉ is used to define the relation
between two table Xj and Xj′ such that Xj ⋊⋉ Xj′ := {r∪r′ |
r ∈ Xj , r

′ ∈ Xj′ , Cj ∩ Cj′ ⊆ CIi}. Thus, the resulting table
Xi(CIi) is defined as follows:

Xi(CIi) := Xi−1 ⋊⋉ ... ⋊⋉ X0. (12)

Finally, the resulting table Xi(CIi) is populated with the
values of PIi. In the next section, we analyze the overall time
complexity of the approach.

V. TIME COMPLEXITY

Let Π(Gi) be the logic program constructed w.r.t. the
reduced subgraph Gi. Then, checking the graph validity of
Π(Gi) depends on the number of inputs INi. This is charac-
terized in the following theorem.

Theorem 5.1: Let Gi be the reduced subgraph, and p be a
logic level. Then, Π(Gi) is verified in time O(p|INi|), where
INi is the set of all inputs of Gi.

Proof: Given a reduced subgraph Gi, and a logic level p.
Then, Gi is valid, iff for every s ∈ F , we have that s is a valid
sequence (recall Definition 6). The set of all input sequences F
depends on the number of inputs INi, where INi = PIi∪CIi.
Also, as each input v ∈ INi may contain any value a ∈
[0, ..., p − 1]. Hence, |F| = p|INi|, and consequently, Π(Gi)
has the search space of |F|. Therefore, Π(Gi) can be verified
in O(p|INi|).

Since Gi may contain out-going nodes COi (COi ̸= ∅), the
hash table Xi has to be constructed. Thus, operations of the
hash table take a linear time in the worst case. Hence, we
assume Xi is constructed in a constant time. Also, as Gi may
contain in-going nodes CIi, the values of CIi are obtained
from Xi(CIi). Similarly, we assume that the computation of
Xi(CIi) takes a constant time. This leads to a characterization
of the overall time complexity of the graph G.

Theorem 5.2: Let G be a graph of a circuit of size n. Then,
Π(G) can be verified in O(n · pK), where n is the number of
reduced subgraphs, K is the maximum size of inputs INi of
all reduced subgraphs Gi, and p is the logic level.

Proof: Let G be the graph of a circuit with n input size.
Then, the subgraphs (G,Oi) are constructed where 0 ≤ i ≤ n.
Also, the reduced subgraphs Gi are constructed w.r.t. (G,Oi).
Due to the fact that Gi may contain in-going nodes CIi, it
is essential to compute Xi(CIi) by going over all tables Xj

that contain any node v ∈ CIi where j < i. We denote by
Comp(Xi) to the constant time for a single access of Xi.
Therefore, the time complexity Comp(Xi(CIi)) is calculated
as follows:

Comp(Xi(CIi)) :=

i−1∑
j=0

Comp(Xj) (13)

By Theorem 5.1, the program Π(Gi) can be verified in
O(p|INi|). Consequently, the overall time complexity of Π(G)
is computed as follows:

Comp(Π(G)) :=

n∑
i=0

O(p|INi|) (14)

Let K be the maximum size of INi of all graphs Gi.
Hence, by Eq. (14), Π(G) can be verified in time O(n · pK).
Consequently, if K is constant, then G can be verified in linear
time.

VI. EXPERIMENTAL WORK

In this section, we evaluate the scalability of adder cir-
cuits with constant cutwidth. We have implemented the ASP
framework in Python. Notably, it can work with any circuit

TABLE I
THE MAXIMUM NUMBER OF input (K), AND THE CUTWIDTH (cw) AMONG

ALL REDUCED SUBGRAPHS FOR ADDER CIRCUITS WITH CONSTANT
CUTWIDTH.

Adder #input (K) cw
RCA 3 1

CSKA 8 3
CLA 11 7

architecture and any logic level p. We follow the standard
AIGER format [26] for the input circuit.

A. Experimental Setup

Our evaluation includes the wall clock time and the number
of timeouts in our approach (CutWidth). We use different types
of bug-free adder circuits (Ripple Carry Adder (RCA), Carry
Skip Adder (CSKA), and Carry Look-ahead Adder (CLA))
with a constant cutwidth of different sizes up to 10k input
bits, and logic level p up to four-valued logic. The circuits
are generated using the ArithsGen tool [27], and synthesized
using Yosys [28]. The reason to choose these circuits is that
it is known from [16] that these circuits exhibit a constant
cutwidth.

It is worth noting that our approach verifies each reduced
subgraph independently. This allows us to detect bugs in the
circuit without verifying the entire circuit.

All instances are performed on Intel(R) Core(TM) i7-11370
with 3.30 GHz. We set a timeout of 1800 seconds and a limited
available RAM to 16 GB per instance.

B. Experimental Results

The results displayed in Table I include the upper bound (K)
of inputs (second column) and the cutwidth cw observed
over all reduced subgraphs (third column), per each adder
architecture (first column). The values K and cw depend on
the circuit architecture (each subgraph Gi of RCA consists
of two primary inputs with an in-going node representing the
previous carry). The value cw represents the maximum number
of out-going nodes obtained over all reduced subgraphs. In
RCA, we have that cw = 1, as there is only one node in each
reduced subgraph Gi representing the previous carry, which is
then passed to the next subgraph Gi+1.

Moreover, Table II shows the run time of each adder
architecture under different logic levels. The first column
indicates the size of input bits, while the other columns capture
the run time of the adder architectures per a logic level p. The
run time of an instance is set to T.O. if the approach is not
able to verify the circuit within the timeout limit.

Finally, Fig. 3 shows the run time under different logic levels
for each adder architecture per input size, where the values
are obtained from Table II. The dotted lines represent the run
time of the adder architecture with p = 3, while the solid
lines correspond to the adder architecture with p = 4. Due
to the fact that these adder circuits have a constant cutwidth
K, therefore, the curve of each adder circuit of different
logic levels has a linear behavior. It confirms the results, we

TABLE II
RUN TIME OF VERIFYING ADDER CIRCUIT (SECONDS).

#Adder
Benchmarks

RCA CSKA CLA
p = 3 p = 4 p = 3 p = 4 p = 3 p = 4

64 0.6 1.0 9.8 87.2 68.7 1186.4
128 1.1 1.6 20.0 185.7 144.0 2475.6
256 2.4 3.6 45.9 405.8 297.7 T.O.
512 5.1 7.7 94.4 837.1 605.1 T.O.

1024 10.5 15.4 188.0 1727.6 1228.2 T.O.
2048 21.3 32.0 379.9 T.O. T.O. T.O.
3072 31.9 47.6 567.8 T.O. T.O. T.O.
4096 38.0 57.7 763.8 T.O. T.O. T.O.
5120 54.0 80.4 974.6 T.O. T.O. T.O.
6144 66.5 97.7 1142.9 T.O. T.O. T.O.
7168 77.1 113.9 1337.1 T.O. T.O. T.O.
8192 87.6 131.8 1543.2 T.O. T.O. T.O.
9216 99.9 145.7 1725.0 T.O. T.O. T.O.
10240 110.9 163.6 1963.0 T.O. T.O. T.O.

0 2000 4000 6000 8000 10000
Input Bit-width [n]

0

500

1000

1500

2000

2500

Ti
m

e
[s

]

CLA with p=3
CLA with p=4
CSKA with p=3
CSKA with p=4
RCA with p=3
RCA with p=4

Fig. 3. Runtime graphs per adder circuit. The x-axis refers to the input bit-
width, and the y-axis depicts the runtime sorted in ascending order for each
circuit type individually. The dotted lines indicate the runtime obtained w.r.t.
p = 3, while the solid lines indicate the one obtained w.r.t. p = 4.

obtained earlier in Theorem 5.2 that if K is constant, then the
verification process is possible in linear time, irrespective of
the input bitwidth n and the logic level p.

VII. CONCLUSION

In this paper, we have proposed a PFV approach based on
cutwidth as a structural property of circuits to divide the circuit
into subcircuits. Concurrently, the ASP solver is used for
verifying each subcircuit and reasoning about the interleaved
nodes. These interleaved nodes are stored to be used in other
subcircuits. We have shown that the complexity drops to the
cutwidth of the circuit and is independent of the input bitwidth.
Moreover, we have shown that for a constant cutwidth, the
verification process can be carried out in linear time.

As future work, we aim to examine which types of combi-
national MVL circuits have constant cutwidth, where the main
challenge would be to adapt the hash table X to these circuits.

REFERENCES

[1] R. Drechsler, Ed., Advanced Formal Verification. Kluwer Academic
Publishers, 2004.

[2] R. Drechsler, Formal System Verification: State-of the-Art and Future
Trends, 1st ed. Springer Publishing Company, Incorporated, 2017.

[3] R. E. Bryant, “Binary Decision Diagrams and Beyond: Enabling tech-
niques for formal verification,” in ICCAD, 1995, pp. 236–243.

[4] ——, “Graph-based algorithms for Boolean function manipulation,” TC,
vol. 35, no. 8, pp. 677–691, 1986.

[5] M. Gao, J.-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S. Sinha, T. Villa,
and R. Brayton, “Optimization of multi-valued multi-level networks,” in
ISMVL, 2002, pp. 168–177.

[6] A. Gupta, M. K. Ganai, and C. Wang, “SAT-Based verification methods
and applications in hardware verification,” in Formal Methods for
Hardware Verification, 2006, pp. 108–143.

[7] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing.
ACM, 1971, pp. 151–158.

[8] R. Drechsler and A. Mahzoon, “Polynomial formal verification: Ensur-
ing correctness under resource constraints,” in ICCAD, 2022, pp. 70:1–
70:9.

[9] A. Mahzoon and R. Drechsler, “Polynomial formal verification of prefix
adders,” in ATS, 2021, pp. 85–90.

[10] ——, “Late breaking results: Polynomial formal verification of fast
adders,” in DAC, 2021, pp. 1376–1377.

[11] R. Drechsler, A. Mahzoon, and L. Weingarten, “Polynomial formal
verification of arithmetic circuits,” in Proceedings of International
Conference on Computational Intelligence and Data Engineering, 2022.

[12] F. R. K. Chung, “On the cutwidth and the topological bandwidth of a
tree,” SIDMA, vol. 6, no. 2, pp. 268–277, 1985.

[13] D. M. Thilikos, M. Serna, and H. L. Bodlaender, “Cutwidth i: A linear
time fixed parameter algorithm,” Journal of Algorithms, vol. 56, no. 1,
pp. 1–24, 2005.

[14] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming at
a glance,” ACM, vol. 54, no. 12, p. 92–103, 2011.

[15] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, ser. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 2012.

[16] M. Nadeem, J. Kleinekathöfer, and R. Drechsler, “Polynomial formal
verification exploiting constant cutwidth,” in Proceedings of the 34th
International Workshop on Rapid System Prototyping. IEEE, 2023.

[17] P. Niemann and R. Drechsler, “Polynomial-time formal verification of
adder circuits for multiple-valued logic,” in 2022 IEEE 52nd Interna-
tional Symposium on Multiple-Valued Logic (ISMVL), 2022, pp. 9–14.

[18] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in DAC, 2006,
pp. 532–535.

[19] E. V. Dubrova, D. B. Gurov, and J. C. Muzio, “Full sensitivity and
test generation for multiple-valued logic circuits,” in ISMVL, 1994, pp.
284–288.

[20] H. Fujiwara, “Computational complexity of controllability/observability
problems for combinational circuits,” IEEE Trans. Computers, vol. 39,
no. 6, pp. 762–767, 1990.

[21] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[22] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artificial Intelligence, 2012.

[23] I. Niemelä, “Logic programs with stable model semantics as a constraint
programming paradigm,” Annals of Mathematics and Artificial Intelli-
gence, vol. 25, no. 3, pp. 241–273, 1999.

[24] M. Gelfond and V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New Generation Computing, pp. 365–385, 1991.

[25] M. Gebser, R. Kaminski, A. König, and T. Schaub, “Advances in gringo
series 3,” in LPNMR, 2011, pp. 345–351.

[26] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep.
07/1, 2007.

[27] J. Klhufek and V. Mrazek, “Arithsgen: Arithmetic circuit generator for
hardware accelerators,” in DDECS, 2022, pp. 44–47.

[28] C. Wolf, “Yosys open synthesis suit,” available at
https://github.com/YosysHQ/yosys, 2022.

