
Next-Generation Automatic Human-Readable Proofs Enabling
Polynomial Formal Verification

Rolf Drechsler
University of Bremen

Cyber-Physical Systems, DFKI GmbH
Bremen, Germany

drechsler@uni-bremen.de

Martha Schnieber
University of Bremen
Bremen, Germany

schnieber@uni-bremen.de

ABSTRACT
Within the past years, the complexity of digital circuits has grown
significantly, resulting in an increased difficulty of their verification.
Only based on formal verification techniques, the correctness of a
circuit can be fully guaranteed. However, the verification of circuits
using formal verification techniques generally requires exponential
time and space in the worst case. During the verification process,
the formal representations of functions, e.g. BDDs, can have an
exponential size, resulting in an exponential verification complexity.

Thus, recently the concept of Polynomial Formal Verification (PFV)
has been introduced, where polynomial upper bounds are proven
for the verification complexity. This has been done successfully
e.g. for adders and multipliers. Polynomial upper bounds have been
proven manually, but it has not been researched yet, how they can
be proven automatically. Here, we propose a tool that automatically
proves polynomial upper bounds, providing human-readable proofs
by induction. In this paper, the concept of automatic proofs for PFV
is shown using BDDs as an example.

CCS CONCEPTS
• Hardware→ Functional verification.

KEYWORDS
polynomial formal verification, complexity, automatic proof, binary
decision diagrams

ACM Reference Format:
Rolf Drechsler and Martha Schnieber. 2023. Next-Generation Automatic
Human-Readable Proofs Enabling Polynomial Formal Verification. In 21st
ACM-IEEE International Conference on Formal Methods andModels for System
Design (MEMOCODE ’23), September 21–22, 2023, Hamburg, Germany. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3610579.3612941

1 INTRODUCTION
With the rising complexity of digital circuits, their verification poses
an increasingly difficult challenge. While simulation techniques
fail to fully guarantee the correctness of a circuit, formal verifica-
tion methods, such as techniques based on Binary Decision Dia-
grams (BDDs) [5, 10] or Boolean Satisfiability (SAT) [16], can prove

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 21st ACM-IEEE
International Conference on Formal Methods and Models for System Design (MEMOCODE
’23), September 21–22, 2023, Hamburg, Germany, https://doi.org/10.1145/3610579.3612
941.

the correctness of a circuit. Other formal verification techniques in-
clude Kronecker Functional Decision Diagrams (KFDDs) [11], Multi-
plicative Binary Moment Diagrams (*BMDs) [7], Symbolic Computer
Algebra (SCA) [2], or Answer Set Programming (ASP) [4]. However,
formal verification generally may require exponential time and
space in the worst case, as the formal representations, such as deci-
sion diagrams, can have an exponential size during the verification
process [6]. Due to the unpredictability of the size and therefore
the entire verification complexity, recent research has introduced
the concept of PFV [8, 13], where polynomial upper bounds are
formally proven for the verification time and space complexity.

Several classes of circuits have already been proven to be ver-
ifiable in polynomial time and space, e.g. several adder architec-
tures, including the Ripple Carry Adder (RCA), Conditional Sum
Adder (CSA) and Carry Look Ahead Adder (CLA) [8, 18], as well as
several Prefix Adders (PAs) [20]. Additionally, it was proven that
BDD circuits, as well as tree-like circuits [9], a simple ALU [14]
and symmetric functions [12] can be verified in polynomial time
and space using BDDs. Furthermore, PFV using BDDs has been
researched for some approximate functions [25] and approximate
adders [24]. Other DD types such as KFDDs or *BMDs have also
been used for the polynomial formal verification of circuits, e.g.
KFDD circuits [23], general tree-like circuits [19] and Wallace-tree
like multipliers [15]. Furthermore, SCA [21, 2] and ASP [22] have
been applied for PFV as well. However, all previously proven poly-
nomial upper bounds had to be shown manually. This manual task
is very time consuming and due to the lack of automation also
error-prone.

In this paper, we propose to automate proofs for polynomial up-
per bounds for the verification process. Automatic proofs have been
researched in several fields, e.g. automated theorem proving [17],
where logic theorems are automatically proven, or for mathematical
problems, such as the four color problem [1], which is solved by au-
tomatically checking a finite number of cases. However, automatic
proofs checking a finite number of cases are difficult to verify, as
no human-readable proof is generated. Thus, our approach yields
an automatically generated, but human-readable proof, facilitat-
ing the verification of the generated proof. We show the proposed
methodology using BDDs. Here, the proofs are conducted with
induction.

The paper is structured as follows: In Section 2, the automatic
proof engine for BDDs is proposed. In Section 3 based on the pre-
sented approach, current limitations and possible extensions are
discussed. Finally, the paper is summarized in Section 4.

https://doi.org/10.1145/3610579.3612941
https://doi.org/10.1145/3610579.3612941
https://doi.org/10.1145/3610579.3612941


MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Rolf Drechsler and Martha Schnieber

Input function

Find Pattern

Perform induction

Success?

Generate proof

Proof

yes

no

Figure 1: Automatic proof engine flow

2 AUTOMATIC PROOFS
The flow of the proposed tool is shown in Figure 1, where BDDs
are used as the underlying formal engine. Firstly, a generalized
pattern for the BDD of the input function is guessed by an analysis
of the BDD structure, providing the number of added nodes per
iteration. Then, a proof by induction is conducted, proving that
the generalized pattern fits the input function. If the induction
is successful, a human-readable proof is generated. Otherwise, a
different pattern is found and the induction proof is repeated.

The tool currently already supports all functions 𝑓 : 𝐵𝑛 → 𝐵

that can be defined as

𝑓 (𝑥1, ..., 𝑥𝑛) = 𝑓 (𝑥1, 𝑥𝑛−𝑖 ) ◦ 𝑔(𝑥𝑛−𝑖+1, ..., 𝑥𝑛),
where ◦ ∈ {+, ·} and 𝑔(𝑥𝑛−𝑖+1, ..., 𝑥𝑛) is a function on the input
variables 𝑥𝑛−𝑖+1, ..., 𝑥𝑛 with a constant BDD size and 𝑓 (𝑥1, 𝑥𝑛−𝑖 ) is
not dependent on 𝑥𝑛−𝑖+1, ..., 𝑥𝑛 . We denote the iteration 𝑘 as the
number of applications of ◦ performed on a function.

2.1 Generalized Pattern
To prove an upper bound for the BDD size, the general structure of
the BDD has to be determined. Here, the pattern specifies the nodes
that are added by the 𝑘-th iteration. Thus, the generalized pattern

𝑣1

𝑣2

0 1

Figure 2: BDD for 𝑓 (𝑥1, ...𝑥𝑛) with 𝑘 = 2

stores the number of nodes added in each iteration, as well as the
necessary information for each new node, meaning the nodes to
which the new nodes are connected. Furthermore, the BDD for the
base case has to be stored in the pattern.

We exemplarily demonstrate the methodology for the function
that Bryant introduced in [5]:

𝑓 (𝑥1, ...𝑥𝑛) =
𝑛
2+

𝑖=1
𝑥2𝑖−1𝑥2𝑖 (1)

Firstly, the BDD for the base case 𝑥1𝑥2 is stored in the pattern.
Then, the nodes added by the 𝑘-th iteration are determined. For
the second iteration 𝑘 = 2, the function is 𝑥1𝑥2 + 𝑥3𝑥4 + 𝑥5𝑥6, of
which Figure 2 shows the BDD, marking the nodes that are added
in the second iteration. Two nodes 𝑣1 and 𝑣2 have to be stored in
the pattern, along with the following information:

𝑙𝑜𝑤 (𝑣1) = 𝑟 (𝑘 − 1)
ℎ𝑖𝑔ℎ(𝑣1) = 𝑣2

𝑙𝑜𝑤 (𝑣2) = 𝑟 (𝑘 − 1)
ℎ𝑖𝑔ℎ(𝑣2) = 1

Here, 𝑟 (𝑘−1) is the root node of the BDD for the (𝑘−1)-th iteration.
Thus, the first node is the root node, where the low-edge leads to
the root node of the BDD for 𝑘 − 1, whereas the high-edge leads to
the second new node. The low- and high-edge of the second node
lead to the root node of the previous iteration and the terminal
node 1, respectively. Using the information about the added nodes
per iteration, the tool provides a polynomial upper bound for the
BDD size. For the 𝑘-th iteration of 𝑓 , this upper bound evaluates
to 2𝑘 + 4, as two nodes are added per iteration, whereas the base
case consists of 4 nodes.

The proposed tool automatically determines the generalized
pattern by an analysis of the BDDs of the function for several values
for 𝑘 . Here, the BDD for 𝑘 and the BDD for 𝑘 − 1 are compared to
determine the new nodes in the BDD for 𝑘 and their connection to
the BDD for 𝑘 − 1.



Next-Generation Automatic Human-Readable Proofs Enabling Polynomial Formal Verification MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

𝑤1

𝑤2

𝑘 1

Figure 3: ITE after propagation of ITE operator

2.2 Proof by Induction
If a fitting pattern is found, its correctness is then formally proven
by induction on the number of iterations 𝑘 . For the base case, the
BDD is checked and compared to the base case defined by the
pattern.

In the induction step, it is proven that the pattern is correct
for 𝑘 + 1, if it is correct for 𝑘 . Firstly, the ITE operator [3] is prop-
agated through the function for 𝑘 + 1 according to the function
description, until all edges lead to nodes from the BDD for 𝑘 , in-
serting the induction hypothesis and yielding the BDD for 𝑘 + 1,
based on the BDD for 𝑘 . Figure 3 shows the propagation of the ITE
operator for 𝑓 (𝑥1, ...𝑥2𝑘+2), where

𝑓 (𝑥1, ...𝑥2𝑘+2) = 𝑓 (𝑥1, ...𝑥2𝑘 ) + 𝑥2𝑘+1𝑥2𝑘+2
= 𝐼𝑇𝐸 (𝑓 (𝑥1, ...𝑥2𝑘 ), 1, 𝐼𝑇𝐸 (𝑥2𝑘+1, 𝑥2𝑘+2)) .

Here, two new nodes𝑤1 and𝑤2 are added through the propagation.
Afterwards, this BDD is automatically compared to the pattern,

proving the correctness or incorrectness of the generalized pattern.
Thus, it has to be checked whether each node in the BDD resulting
from the propagated ITE operator fits a node from the generalized
pattern. For 𝑓 ,𝑤1 fits 𝑣2, whereas𝑤2 fits 𝑣2. If the computed BDD
matches the generalized pattern, the upper bound given by the
pattern is proven.

2.3 Tool Output
After the induction proof, a human-readable proof is generated.
As the generalized pattern is intuitive, it is printed in the proof,
including the base case and all new nodes per iteration and their
respective high-edges and low-edges. Furthermore, it is displayed
as a BDD for the human-readable proof, as shown in Figure 2.

Similarly, the BDD for the base case of the induction proof is
displayed. For the induction step, the propagated ITE operator is
displayed as a BDD, as shown in Figure 3, followed by a mapping
of nodes, where each node from the propagated ITE operator is
mapped to a node from the generalized pattern.

3 LIMITATIONS AND CHALLENGES
Currently, the tool implementation covers a limited amount of func-
tions. The implementation of the pattern can only store a constant
amount of nodes and therefore, only a constant number of nodes
can be added per iteration, leading to BDDs of linear size. Fur-
thermore, the BDD for 𝑘 + 1 has to fully include the BDD for 𝑘 ,
further limiting the classes of functions for which upper bounds
can currently be proven.

The proposed tool can be further expanded to include more
functionality, posing numerous challenges and directions for future
work.

• The implementation can be expanded to provide automatic
proofs for a wider range of more complex functions. The in-
clusion of more complex functions requires a more complex
representation of the generalized pattern.

• The current implementation requires a single output func-
tion, for which a proof is conducted. However, the tool could
be modified to also provide automatic proofs for a whole
class of functions, instead of a single function.

• For BDDs and other DD types, such as KFDDs and BMDs,
the variable ordering can significantly influence the DD size,
posing a crucial challenge. Currently, the tool operates on a
given variable ordering. However, automatically finding a
good variable ordering could lower the upper bounds proven
by the tool.

• For some functions, e.g. multipliers, BDDs always have an ex-
ponential size [6]. Therefore, in future work, the concept can
be extended to also include other verification methods. For
some circuits, a different verification technique may be more
efficient, such as SAT, KFDDs, *BMDs, SCA or ASP. Thus, a
future tool could automatically provide an automatic proof
for polynomial upper bounds for the verification process of
a circuit, automatically finding the best formal verification
method for the specific circuit.

• A database of functions for which a proof using any formal
verification method could be generated can be established,
where the tool guesses a multitude of functions and attempts
to provide an automatic proof. If successful with any formal
verification method, the function is added to a database.

• If a polynomial upper bound cannot be automatically proven,
results from the polynomial formal verification of approxi-
mate functions can be applied. If a polynomial upper bound
of a different function has been proven and stored in the
database, an upper bound of the desired function can be
computed according to the number of input assignments for
which both functions differ, as has been outlined for BDDs
in [25].

• Currently, the presented concept focuses on proving polyno-
mial upper bounds to enable polynomial formal verification.
However, for some functions, specific formal verification
methods such as BDDs always have an exponential size,
e.g. for multipliers [6]. In future work, the tool could also be
expanded to be able to prove an exponential lower bound,
therefore automatically providing a human-readable proof
that PFV using a specificmethod such as BDDs is not possible
for the considered function.

4 CONCLUSION
While all previous results in the topic of Polynomial Formal Verifi-
cation have to be proven manually, in this paper, we have proposed
automatically generated human-readable proofs for polynomial
upper bounds for PFV. We have shown the concept of automatic
proofs on BDDs, where a tool automatically provides a proof for a



MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Rolf Drechsler and Martha Schnieber

polynomial upper bound of the BDD size for a function. Further-
more, we have presented the limitations of the current approach,
as well as challenges and directions for the future enhancement,
e.g. to include a wider class of functions and expand the approach
for other formal verification techniques.

ACKNOWLEDGMENTS
Parts of this work have been supported by DFG within the Reinhart
Koselleck Project PolyVer: Polynomial Verification of Electronic
Circuits (DR 287/36-1).

REFERENCES
[1] Kenneth Appel and Wolfgang Haken. 1976. Every planar map is four colorable.

Bulletin of the American Mathematical Society, 82, 5.
[2] Mohammed Barhoush, Alireza Mahzoon, and Rolf Drechsler. 2021. Polyno-

mial word-level verification of arithmetic circuits. In 2021 19th ACM-IEEE
International Conference on Formal Methods and Models for System Design
(MEMOCODE), 1–9.

[3] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. 1990. Efficient imple-
mentation of a BDD package. In 27th ACM/IEEE Design Automation Conference,
40–45.

[4] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. 2011. Answer set
programming at a glance. Commun. ACM, 54, 12, 92–103.

[5] Randal E. Bryant. 1986. Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computers, 35, 8, 677–691.

[6] Randal E. Bryant. 1991. On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multiplication.
IEEE Transactions on Computers, 40, 2, 205–213.

[7] Randal E. Bryant and Yirng-An Chen. 1995. Verification of arithmetic circuits
with binary moment diagrams. In Proceedings of the 32nd Annual ACM/IEEE
Design Automation Conference (DAC), 535–541.

[8] Rolf Drechsler. 2021. PolyAdd: polynomial formal verification of adder circuits.
In 2021 24th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 99–104.

[9] Rolf Drechsler. 2021. Polynomial circuit verification using BDDs. In 2021 5th
International Conference on Electrical, Electronics, Communication, Computer
Technologies and Optimization Techniques (ICEECCOT), 49–52.

[10] Rolf Drechsler and Bernd Becker. 2013. Binary Decision Diagrams: Theory and
Implementation. Springer US.

[11] Rolf Drechsler and Bernd Becker. 1998. Ordered Kronecker functional decision
diagrams-a data structure for representation and manipulation of Boolean
functions. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17, 10, 965–973.

[12] Rolf Drechsler and Caroline Dominik. 2021. Edge verification: ensuring cor-
rectness under resource constraints. In 2021 34th SBC/SBMicro/IEEE/ACM Sym-
posium on Integrated Circuits and Systems Design (SBCCI), 1–6.

[13] Rolf Drechsler and Alireza Mahzoon. 2022. Polynomial formal verification:
ensuring correctness under resource constraints : (invited paper). In 2022
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 1–9.

[14] Rolf Drechsler, Alireza Mahzoon, and Lennart Weingarten. 2022. Polynomial
formal verification of arithmetic circuits. In Proceedings of International Con-
ference on Computational Intelligence and Data Engineering, 457–470.

[15] Martin Keim, Rolf Drechsler, Bernd Becker, Michael Martin, and Paul Molitor.
2003. Polynomial formal verification of multipliers. Formal Methods in Systen
Design, 22, 1, 39–58.

[16] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K. Ganai. 2002.
Robust Boolean reasoning for equivalence checking and functional property
verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 21, 12, 1377–1394.

[17] Donald W Loveland. 1978. Automated Theorem Proving: A Logical Basis (Funda-
mental Studies in Computer Science). Elsevier North-Holland, Inc.

[18] Alireza Mahzoon and Rolf Drechsler. 2021. Late breaking results: polynomial
formal verification of fast adders. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), 1376–1377.

[19] Alireza Mahzoon and Rolf Drechsler. 2022. Polynomial formal verification of
general tree-like circuits. In 2022 China Semiconductor Technology International
Conference (CSTIC), 1–4.

[20] Alireza Mahzoon and Rolf Drechsler. 2021. Polynomial formal verification of
prefix adders. In 2021 IEEE 30th Asian Test Symposium (ATS), 85–90.

[21] Alireza Mahzoon, Daniel Große, Christoph Scholl, and Rolf Drechsler. 2020.
Towards formal verification of optimized and industrial multipliers. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE), 544–549.

[22] Mohamed Nadeem, Jan Kleinekathöfer, and Rolf Drechsler. 2023. Polynomial
formal verification of adder circuits using answer set programming. In 2023
Reed-Muller Workshop (RM2023).

[23] Martha Schnieber and Rolf Drechsler. 2023. Polynomial formal verification
of KFDD circuits. In 2023 21th ACM-IEEE International Conference on Formal
Methods and Models for System Design (MEMOCODE).

[24] Martha Schnieber, Saman Froehlich, and Rolf Drechsler. 2022. Polynomial
formal verification of approximate adders. In 2022 25th Euromicro Conference
on Digital System Design (DSD), 761–768.

[25] Martha Schnieber, Saman Froehlich, and Rolf Drechsler. 2022. Polynomial
formal verification of approximate functions. In 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 92–97.


	Abstract
	1 Introduction
	2 Automatic Proofs
	2.1 Generalized Pattern
	2.2 Proof by Induction
	2.3 Tool Output

	3 Limitations and Challenges
	4 Conclusion
	Acknowledgments

