
Benchmarking Multiplier Architectures for MAGIC
Based In-Memory Computing

Chandan Kumar Jha⋓ Rolf Drechsler⋓,†
Department of Mathematics and Computer Science, University of Bremen, 28359 Bremen, Germany⋓

Department of Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany†

chajha@uni-bremen.de, drechsler@uni-bremen.de

Abstract—A wide variety of multiplier architectures optimized
for area, delay, and energy have been proposed in the literature.
These multipliers have been extensively studied for CMOS tech-
nology. While in-memory computing (IMC) using memristors has
garnered significant interest in recent years, multiplier designs
have received far less attention. In this work, we aim to bridge
this gap and for the first time analyze and compare diverse
multiplier architectures for IMC based on memristors. We an-
alyze 275 different signed and unsigned multiplier architectures
for the 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit multipliers. We
have used the state-of-the-art mapping tool called SIMPLER
to perform the mapping of these multiplier designs to the
memristor crossbars. We have used the memristor count and
the number of cycles as design metrics to identify the most
suitable architectures for IMC using the MAGIC design style.
We show that there is a difference of 1.2× in the design metrics
between the best and worst multiplier architectures across all
bit widths. We also show that several Array and Dadda Tree
based multipliers are best suited for 4x4 multipliers. Multipliers
having Dadda Tree based partial product accumulator and Serial
Prefix final stage adder are best suited for 8-bit or higher bit
width multipliers. We will make all the multiplier designs and
memristor crossbar mapping files generated from SIMPLER
open-source at https://github.com/agra-uni-bremen/newcas2023-
magic-multiplier-lib. We believe that our work will act as a
benchmark for future works in this direction and the designers
can use them to perform further optimizations, synthesis for
other design styles, verification, etc.

I. INTRODUCTION

In-memory computing (IMC) has attracted the interest of
both industry and academia in recent years. IMC aims to
reduce the issue of memory bottleneck in the conventional
von Neumann architectures [1]. It also improves the energy
efficiency as it reduces the to and fro data movement be-
tween memory and processing/compute unit [2]. IMC using
memristors has been extensively explored as memristors can
act both as storage and compute units [3]. A memristor is a
two-terminal device that can change its resistance depending
upon the magnitude and direction of the applied voltage across
its terminals [4]. It can be used to perform both analog and
digital computations [5], [6]. In this work, we focus on using
memristors to perform digital computations [7]. Memristors
can be configured to be in a high resistance state (HRS),
i.e., logic 0 or a low resistance state (LRS), i.e., logic 1.
These states can then be used to perform digital computations.
There are several design styles to perform logic computation
using memristors [8]–[14]. In this work, we have used one
of the most popular design styles called the MAGIC design

(a) NOR (b) NOT

Fig. 1. MAGIC NOR and NOT Gates

style [13]. The NOR and NOT operations performed using this
design style can be mapped to memristor crossbars and hence
are suitable for IMC [13].

Multiplication is one of the most common operations that
need to be performed in applications [15]. Handcrafted in-
memory multipliers designs based on memristors have re-
ceived interest in recent years and remain an active area
of research [16]–[18]. However, the analysis is limited to
a single architecture or for a subset of bit widths. Hence,
there is a need for overall analysis and comparison between
different architectures and bit widths. Multiplication can be
performed using a wide variety of architectures [19]–[21].
Each of these architectures has been studied in detail for
digital IC designs [15], however, the same is not true for
multipliers based on memristors for IMC. In this work, for
the first time, we investigate these architectures for IMC using
memristors. Since these architectures are optimized for digital
IC design, the same designs when mapped to memristors can
have different design properties. This makes it necessary to
perform analysis to identify the best multiplier architectures
when they are mapped to memristor crossbars using a design
style. Our work has the following contributions:

• In this work, we present the first in-depth analysis and
comparison of various multipliers implemented using the
MAGIC design style on memristor crossbars.

• We analyzed 55 different signed and unsigned multipliers
designs for each of the 4-bit, 8-bit, 16-bit, 32-bit, and 64-
bit multipliers, i.e., a total of 275 multiplier designs.

• We used the number of gates and the total cycles as met-
rics for the evaluation of the multiplier designs mapped
to memristor crossbars.

• We show the difference between the best and worst case
multiplier designs is 1.2× across all bit widths.

• We also show that Dadda Tree based partial product
accumulator and Serial Prefix adder are best suited for



TABLE I
VARIOUS MULTIPLIER ARCHITECTURES

Bit Width Partial Product Generator Partial Product Accumulation Final Stage Adder
4x4 Signed (S) Array (AR) Ripple Carry (RC)
8x8 Unsigned (U) Counter-Based Wallace Tree (CWT) Carry Look Ahead Adder (CLA)

16x16 Wallace Tree (WT) Lander-Fischer (LF)
32x32 Dadda Tree (DT) Kogge-Stone (KS)
64x64 Brent-Kung (BK)

Carry Skip (CS)
Serial Prefix Adder (SE)

Fig. 2. Framework used for Analysis

implementing multipliers using MAGIC design style to
perform IMC using memristors.

The rest of the paper is organized as follows. In Section II, we
discuss the necessary background. In Section III, we discuss
the framework used for performing the analysis. In Section IV,
we discuss the comparison results of various multiplier designs
and in Section V, we conclude the paper.

II. BACKGROUND

In this section, we discuss the necessary background of
the MAGIC gates [13], the mapping tool SIMPLER [22], and
multiplier architectures.

A. MAGIC Gates
In this work, we have used the MAGIC design style to

implement the logic function using memristors [13]. The NOR
and the NOT function can be mapped to the crossbar array as
shown in Fig. 1. The output memristor (Mout), is set to 1
before the evaluation of any operation. Since it is a two-input
NOR gate the total number of input combinations is 4. For
all combinations except 00, there exists a path between the
Vin and ground. Hence the current flows through the output
memristor, increasing its resistance. This changes the logic
state of the output memristor from 1 to 0. When the input is
00, the output memristor remains in the low resistance state
maintaining its logic state 1. For the NOT operation the current
flows when the input memristor is in a low resistance state, i.e.,
logic 1, changing the logic state of the output memristor to 0.
For the case when the input memristor is in a high resistance
state the output memristor maintains logic 1.

B. Multiplier Design
Several methods have been developed over the years to

design multipliers targeting area, power, and delay but the
overall architecture remains the same [23]. The first stage
consists of the partial product generator. This generates the
partial products depending upon the inputs to the multiplier.
The next stage is the partial product accumulator which adds
all the partial products to generate an intermediate output. The
intermediate output is fed to the final stage adder to finally
obtain the multiplication output. There are several ways to
implement the partial product accumulator and the final stage
adder as shown in Table I. In this work, we have used the
GENMUL tool to generate the multiplier designs [23].

III. EVALUATION FRAMEWORK

The overall evaluation framework is shown in Fig. 2. We
will now discuss the stages of the framework in detail.

A. Multiplier Design Generation (GENMUL)

In the first stage, we used GENMUL to generate the
multiplier designs as shown in Fig. 2 1 . GENMUL is an
open source multiplier generator that takes the following
parameters as input: a) bit width, b) partial product generator
type, c) partial product accumulator type, and d) final stage
adder type [23]. The values of these parameters are shown
in Table I. We have used GENMUL to generate multipliers
ranging from bit width of 4 to 64 for both signed and unsigned
multipliers as shown in Fig. 2 2 . We also generated all
possible combinations of partial product generators and partial
product accumulators1. Thus we have 28 and 27 unsigned
and signed multiplier designs respectively for each bit width.
Hence, overall we analyze 275 different multiplier designs.

B. Intermediate Synthesis (Yosys)

We have synthesized the Verilog design generated from
GENMUL using Yosys to generate the Berkeley Library
Exchange Format (.blif) as shown in Fig. 2 3 . We used the
synth and flatten commands of Yosys to generate the .blif files
of the multiplier designs as shown in Fig. 2 4 [24]. This was
done to make the designs compatible with the next stage of
mapping them to memristor crossbars.

C. Mapping to Crossbar (SIMPLER)

SIMPLER is the state-of-the-art tool used to map the design
to a memristor crossbar as shown in Fig. 2 5 . In the final
stage, we passed the .blif multiplier designs to the SIMPLER
tool. SIMPLER performs the mapping of these designs to a
memristor crossbar array using MAGIC NOR and NOT gates.
SIMPLER maps these designs to a single row and reuses
the memristors when necessary. There are various knobs for
optimization in SIMPLER. We found the minimum number of
memristors in a row that can be used to implement multiplier
designs. We started with 25 memristors and kept increasing
in steps of 25 until all the designs for a particular bit width
had a mapping using SIMPLER. The number of gates and the
total cycles were then obtained as metrics for evaluating the
design as shown in Fig. 2 6 .

IV. RESULTS AND DISCUSSION

In this section, we discuss the results obtained using our
framework. Table II to Table VI, shows the result from 4-bit
to 64-bit multipliers. The design names are abbreviated in the
tables. For example, Dadda Tree partial product accumulator
with Serial Prefix Adder as DT SE as also shown in Table I.

1GENMUL throws an exception for a signed array multiplier with carry
skip adder. Hence we have one less signed multiplier.



TABLE II
4X4 MULTIPLIER DESIGNS WITH 50 MEMRISTORS

Unsigned Signed
Designs Number of Gates Total Cycles Designs Number of Gates Total Cycles

CWT CL 154 159 CWT KS 151 156
WT LF 140 144 DT CL 142 146
WT SE 140 144 CWT RC 150 154
AR CK 130 134 WT RC 150 154
DT LF 128 132 DT CK 141 145
WT CL 154 159 WT CK 140 144
DT KS 132 136 DT LF 134 138
AR CL 128 132 WT CL 161 166
DT BK 128 132 AR KS 131 135
DT SE 128 132 AR LF 131 135
AR BK 128 132 CWT BK 151 156
DT RC 133 137 CWT SE 133 137

CWT KS 140 144 AR RC 131 135
CWT RC 143 147 DT SE 134 138
CWT CK 140 144 CWT CL 161 166
CWT SE 140 144 AR CL 131 135
WT KS 140 144 AR SE 131 135

CWT LF 140 144 WT BK 151 156
WT BK 140 144 AR BK 131 135
AR RC 130 134 DT BK 134 138
WT CK 140 144 CWT LF 151 156
DT CL 141 146 WT KS 151 156
DT CK 135 139 WT LF 151 156
AR KS 128 132 DT KS 140 144

CWT BK 140 144 DT RC 142 146
WT RC 143 147 CWT CK 140 144
AR SE 128 132 WT SE 133 137
AR LF 128 132

TABLE III
8X8 MULTIPLIER DESIGNS WITH 75 MEMRISTORS

Unsigned Signed
Designs Number of Gates Total Cycles Designs Number of Gates Total Cycles

CWT CL 774 808 CWT RC 712 738
WT SE 693 721 WT LF 745 780

CWT SE 724 751 WT SE 709 737
AR CK 665 690 WT RC 704 731

CWT RC 703 730 DT CL 714 743
DT LF 690 719 CWT LF 756 785

CWT KS 774 808 WT BK 745 780
WT RC 691 719 AR LF 677 705
DT RC 664 689 CWT CL 777 809
DT KS 709 739 DT BK 678 704
AR CL 666 691 AR CL 677 705
AR KS 665 690 CWT KS 777 809
AR LF 664 689 DT CK 653 677
WT CL 780 815 AR KS 677 705
DT CK 658 683 AR RC 677 705
DT CL 726 764 AR BK 677 705
WT CK 691 719 WT KS 781 820

CWT BK 730 758 DT KS 716 744
WT LF 725 758 AR SE 677 705
AR SE 663 688 WT CL 820 857
AR BK 663 688 DT LF 685 711
DT BK 683 711 WT CK 708 736
AR RC 672 698 CWT BK 756 785
WT BK 725 758 DT RC 666 690
WT KS 762 799 CWT SE 732 759
DT SE 648 671 DT SE 651 673

CWT LF 730 758 CWT CK 716 742
CWT CK 712 739

A. 4x4 Multipliers

The result for the 4x4 multipliers is shown in Table II.
The minimum number of memristors required for mapping
is 50. For unsigned multipliers, the number of gates and the
cycle count range from 128-154 and 132-159 respectively.
For signed multipliers, the number of gates and the cycle
count range from 131-161 and 135-166 respectively. The best
designs in terms of cycles are the ones based on Array and
Dadda Tree based partial product accumulation. The best
designs use 128 gates and the number of cycles required for
multiplication is 132 as highlighted in Table II.

B. 8x8 Multipliers

The result for the 8x8 multipliers is shown in Table III.
The minimum number of memristors required for mapping

TABLE IV
16X16 MULTIPLIER DESIGNS WITH 175 MEMRISTORS

Unsigned Signed
Designs Number of Gates Total Cycles Designs Number of Gates Total Cycles
DT CK 2848 2883 DT BK 2935 2973
WT KS 3369 3423 AR BK 3021 3065
AR SE 2983 3025 WT CL 3386 3444

CWT RC 3147 3188 WT KS 3377 3431
AR BK 2985 3027 CWT LF 3384 3430

CWT CL 3469 3518 AR LF 3021 3065
AR CK 2993 3036 CWT KS 3500 3552
AR KS 2989 3032 WT RC 3074 3113
WT SE 3069 3108 CWT SE 3243 3286
DT KS 3090 3134 WT LF 3210 3254
DT CL 3119 3163 AR RC 3021 3065
DT SE 2822 2856 DT RC 2858 2893
AR LF 2987 3029 CWT RC 3195 3237
AR RC 3002 3045 DT CK 2841 2876

CWT KS 3489 3541 AR CL 3021 3065
CWT LF 3352 3397 AR KS 3021 3065
DT BK 2931 2970 WT BK 3171 3214
DT LF 2947 2986 CWT CL 3506 3556

CWT SE 3207 3249 DT KS 3094 3137
WT RC 3064 3103 DT LF 2954 2992
WT CL 3409 3470 DT SE 2825 2859

CWT CK 3213 3255 AR SE 3021 3065
WT LF 3198 3241 DT CL 3114 3161
WT CK 3069 3108 CWT CK 3315 3359
DT RC 2857 2892 WT CK 3073 3112
AR CL 2976 3018 CWT BK 3353 3399

CWT BK 3311 3356 WT SE 3078 3117
WT BK 3160 3203

is 75. For unsigned multipliers, the number of gates and the
cycle count range from 648-780 and 671-815 respectively.
For signed multipliers, the number of gates and the cycle
count range from 651-820 and 673-857 respectively. The best
designs in terms of cycles are the ones based on Dadda Tree
based partial product accumulation and Serial Prefix adders.
The best unsigned multiplier has 648 gates and the number
of cycles required for multiplication is 671 as highlighted
in Table III. The best signed multiplier has 651 gates and
the number of cycles required for multiplication is 673 as
highlighted in Table III.

C. 16x16 Multipliers

The result for the 16x16 multipliers is shown in Table IV.
The minimum number of memristors required for mapping
is 175. For unsigned multipliers, the number of gates and the
cycle count range from 2822-3489 and 2856-3541 respectively.
For signed multipliers, the number of gates and the cycle count
range from 2825-3506 and 2859-3556 respectively. The best
designs in terms of cycles are the ones based on Dadda Tree
based partial product accumulation and Serial Prefix adders.
The best unsigned multiplier has 2822 gates and the number
of cycles required for multiplication is 2856 as highlighted
in Table IV. The best signed multiplier has 2825 gates and
the number of cycles required for multiplication is 2859 as
highlighted in Table IV.

D. 32x32 Multipliers

The result for the 32x32 multipliers is shown in Table V.
The minimum number of memristors required for mapping
is 350. For unsigned multipliers, the number of gates and
the cycle count range from 11716-14452 and 11792-14575.
For signed multipliers, the number of gates and the cycle
count range from 11729-14486 and 11804-14602 respectively.
The best designs in terms of cycles are the ones based on



TABLE V
32X32 MULTIPLIER DESIGNS WITH 350 MEMRISTORS

Unsigned Signed
Designs Number of Gates Total Cycles Designs Number of Gates Total Cycles

CWT BK 13682 13773 WT BK 12910 12999
WT BK 12909 12999 AR RC 12701 12799
DT KS 12570 12665 DT CK 11839 11915
WT RC 12596 12677 DT KS 12590 12685
DT BK 12031 12113 AR CL 12701 12799

CWT LF 13782 13874 CWT LF 13858 13950
WT KS 13624 13741 CWT CK 13545 13634
DT CK 11822 11899 AR BK 12701 12799
AR KS 12614 12710 CWT CL 14486 14602
WT LF 13100 13192 WT CK 12776 12861

CWT CK 13494 13583 WT LF 13091 13182
AR RC 12653 12749 WT KS 13613 13727

CWT SE 13336 13422 DT RC 11812 11888
DT SE 11716 11792 WT RC 12579 12661
AR CL 12695 12793 AR SE 12701 12799
DT LF 12109 12191 CWT BK 13714 13805
DT RC 11797 11874 DT SE 11729 11804
WT SE 12604 12686 AR KS 12701 12799
AR CK 12632 12728 CWT RC 13324 13410
AR SE 12615 12711 WT CL 13842 14022
AR LF 12632 12728 CWT KS 14312 14417
WT CL 13771 13935 CWT SE 13390 13476
WT CK 12780 12865 DT BK 12037 12118

CWT RC 13310 13396 DT CL 12877 12987
CWT KS 14248 14353 AR LF 12701 12799
AR BK 12625 12721 WT SE 12611 12693

CWT CL 14452 14575 DT LF 12129 12210
DT CL 12761 12867

Dadda Tree based partial product accumulation and Serial
Prefix adders. The best unsigned multiplier has 11716 gates
and the number of cycles required for multiplication is 11792
as highlighted in Table V. The best signed multiplier has 11729
gates and the number of cycles required for multiplication is
11804 as highlighted in Table V.

E. 64x64 Multipliers
The result for the 64x64 multipliers is shown in Table VI.

The minimum number of memristors required for mapping
is 700. For unsigned multipliers, the number of gates and
the cycle count range from 47892-58223 and 48047-58490
respectively. For signed multipliers, the number of gates and
the cycle count range from 47898-57975 and 48052-58232
respectively. The best designs in terms of cycles are the ones
based on Dadda Tree based partial product accumulation and
Serial Prefix adders. The best unsigned multiplier has 47892
gates and the number of cycles required for multiplication is
48047 as highlighted in Table VI. The best signed multiplier
has 47898 gates and the number of cycles required for multi-
plication is 48052 as highlighted in Table VI.
F. Overall Analysis (Inter Bit Width)

Overall we see that Dadda Tree with Serial Prefix adder
requires the least number of gates and cycles for all bit widths.
For 4x4 bit width, both Array multiplier and Dadda Tree
multipliers give the best mapping. We see that as we move
from bit width 4 to 8, 16, 32, and 64 the minimum number
of memristors required for mapping increases by 1.5×, 3.5×,
7×, and 14× as compared to 4-bit respectively. For the best
case gate count and the number of cycles as we move from bit
width 4 to 8, 16, 32, and 64 increase by around 5×, 22×, 91×,
and 374× respectively as compared to the 4-bit multiplier.

G. Overall Analysis (Intra Bit Width)
We now look at the overall variation in the metrics for

a given bit width. We see that the difference between the

TABLE VI
64X64 MULTIPLIER DESIGNS WITH 700 MEMRISTORS

Unsigned Signed
Designs Number of Gates Total Cycles Designs Number of Gates Total Cycles
WT BK 51251 51421 DT RC 48064 48219
DT BK 48808 48972 AR RC 52029 52234
DT CK 48217 48375 WT KS 53251 53469
DT KS 50565 50763 AR LF 52029 52234
DT SE 47892 48047 WT BK 51264 51433
DT CL 51645 51890 WT SE 50456 50617

CWT BK 55539 55721 AR KS 52029 52234
CWT KS 57082 57294 WT LF 51772 51944
CWT CK 54651 54828 DT KS 50338 50528
WT KS 53224 53441 CWT RC 54276 54450
WT SE 50444 50605 DT CL 51728 51990

CWT RC 54207 54380 AR SE 52029 52234
DT RC 48067 48222 DT SE 47898 48052
AR CL 52632 52842 AR CL 52029 52234

CWT SE 54271 54444 DT CK 48216 48373
AR RC 51921 52124 CWT CK 54727 54905
AR LF 51814 52016 AR BK 52029 52234
WT CK 50930 51095 CWT CL 57975 58232

CWT LF 56126 56310 WT RC 50399 50560
DT LF 49173 49339 CWT KS 57272 57485
AR KS 51866 52069 CWT SE 54336 54510
WT RC 50393 50554 CWT LF 56081 56266

CWT CL 58223 58490 DT BK 48793 48956
AR BK 51873 52076 CWT BK 55612 55795
WT CL 54166 54506 WT CK 50951 51117
AR SE 51847 52050 DT LF 49132 49296
WT LF 51811 51984 WT CL 54110 54457
AR CK 51969 52173

worst case and the best case multiplier designs is around 1.2×
for both gate count and the number of cycles for all the bit
widths. Hence, by performing the design space exploration
and comparisons across different multiplier architectures we
can gain benefits of 1.2×, as compared to arbitrarily choosing
any multiplier architecture. The best multiplier architecture can
then be further optimized to gain more benefits. Since there
are several design styles using memristors, we believe that
this sort of analysis is necessary and useful as it helps us to
identify the best multiplier architecture for a given memristor
based design style. Since the designs and the mapping output
of the SIMPLER tool will be made open-source, these designs
can not only be used as benchmarks but can also be further
optimized, mapped to other design styles, and used as inputs
for verification methodologies tailored for memristors.

V. CONCLUSION

In this work, we present an in-depth analysis of 275 different
signed and unsigned multiplier architectures for bit width
ranging from 4 to 64 for IMC. We used the state-of-the-
art mapping tool and performed a thorough comparison to
obtain the number of gates and the total cycles across different
architectures. We observed that across different multiplier
architectures, there is a 1.2× difference in these design metrics
making this sort of study very important. We also identified
that the design that uses Dadda Tree based partial product
accumulator and Serial Prefix adder is the best suited for
MAGIC-based IMC. Array based partial product accumulation
also gives the best designs for a bit width of 4. We will make
the multiplier designs and mapping obtained using SIMPLER
open-source to facilitate further research in this direction.

ACKNOWLEDGEMENTS

This work was supported in part by the German Research
Foundation (DFG) within the Project PLiM (DR 287/35-1, DR
287/35-2).



REFERENCES

[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” in Emerging Computing:
From Devices to Systems. Springer, 2023, pp. 171–243.

[2] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[3] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Circuit elements with
memory: memristors, memcapacitors, and meminductors,” Proceedings
of the IEEE, vol. 97, no. 10, pp. 1717–1724, 2009.

[4] D. Strukov, G.S.Snider, D. Stewart, and R. Williams, “The missing
memristor found,” Nature, vol. 453, pp. 80–83, 2008.

[5] Y. Yang, J. Joshua, D. B. Strukov, and D. R. Stewart, “Memristive
devices for computing,” Nature Nanotechnology, vol. 8, no. 1, pp. 13–
24, 2013.

[6] N. Xu, T. Park, K. J. Yoon, and C. S. Hwang, “In-memory stateful
logic computing using memristors: Gate, calculation, and application,”
physica status solidi (RRL)–Rapid Research Letters, vol. 15, no. 9, p.
2100208, 2021.

[7] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon,
and S. Kvatinsky, “Memristive logic: A framework for evaluation and
comparison,” in 27th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS). IEEE, 2017, pp.
1–8.

[8] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G.
Friedman, “Mrl—memristor ratioed logic,” in 2012 13th International
Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[9] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “An energy-efficient
memristive threshold logic circuit,” IEEE Transactions on Computers,
vol. 61, no. 4, pp. 474–487, 2012.

[10] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, no. 6, pp. 1165–1172, 2005.

[11] L. Guckert and E. E. Swartzlander, “Mad gates—memristor logic design
using driver circuitry,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 64, no. 2, pp. 171–175, 2016.

[12] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD). IEEE, 2015,
pp. 335–342.

[13] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “(MAGIC) - Memristor-Aided Logic,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61,
no. 11, pp. 895–899, Nov 2014.

[14] J. Borghetti, G. Snider, P. Kuekes, J. Yang, D. Stewart, and R. Williams,
“’Memristive’ switches enable ’stateful’ logic operations via material
implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[15] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated
circuits. Prentice hall Englewood Cliffs, 2002, vol. 2.

[16] S. Muthulakshmi, C. S. Dash, and S. Prabaharan, “Memristor augmented
approximate adders and subtractors for image processing applications:
An approach,” AEU-International Journal of Electronics and Commu-
nications, vol. 91, pp. 91–102, 2018.

[17] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, “Memristor-
based approximated computation,” in International Symposium on Low
Power Electronics and Design (ISLPED). IEEE, 2013, pp. 242–247.

[18] V. Lakshmi, J. Reuben, and V. Pudi, “A novel in-memory wallace
tree multiplier architecture using majority logic,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 69, no. 3, pp. 1148–1158,
2021.

[19] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Transactions on computers, vol. 100,
no. 12, pp. 1045–1047, 1973.

[20] L. Dadda, “Some schemes for parallel multipliers,” Alta frequenza,
vol. 34, pp. 349–356, 1965.

[21] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on electronic Computers, no. 1, pp. 14–17, 1964.

[22] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “Simpler magic: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2434–2447, 2019.

[23] A. Mahzoon, D. Große, and R. Drechsler, “Genmul: Generating archi-
tecturally complex multipliers to challenge formal verification tools,” in
Recent Findings in Boolean Techniques. Springer, 2021, pp. 177–191.

[24] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.


