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Abstract—We propose an exact algorithm to model-free diag-
nosis with an application to fault localization in digital circuits.
We assume that a faulty circuit and a correctness specification,
e.g., in terms of an un-optimized reference circuit, are available.
Our algorithm computes the exact set of all minimal diagnoses
up to cardinality £ considering all possible assignments to the
primary inputs of the circuit. This exact diagnosis problem
can be naturally formulated and solved using an oracle for
Quantified Boolean Satisfiability (QSAT). Our algorithm uses
Boolean satisfiability (SAT) instead to compute the exact result
more efficiently,. We implemented the approach and present
experimental results for determining fault candidates of digital
circuits with seeded faults on the gate level. The experiments
show that the presented SAT-based approach outperforms state-
of-the-art techniques from solving instances of the QSAT problem
by several orders of magnitude while having the same accuracy.
Moreover, in contrast to QSAT, the SAT-based algorithm has
any-time behavior, i.e., at any-time of the computation, an
approximation of the exact result is available that can be used as
a starting point for debugging. The result improves while time
progresses until eventually the exact result is obtained.

I. INTRODUCTION

Motivation. Growing design complexity and shrinking
time-to-market make verification and debugging for hardware
designs crucial. Respins at 45nm technologies cost millions
per mask set. Functional errors, e.g., due to bugs in electronic
design automation tools or implementations of erroneous en-
gineering change orders, are hard to catch, and when caught
during functional verification, designers are left with the
problem of identifying their root causes and fixing the design,
which is an even more challenging and time-consuming task.

Formal tools that assist in automatically finding and fixing
design bugs are desirable. Given a specification, e.g., in form
of an un-optimized reference circuit, functional equivalence
checking allows to check whether a design produces the same
outputs as its specification for all possible input assignments.
The benefits over simulation-based methods lies in the fact that
the whole input space is taken into account, avoiding that sub-
tle corner cases slip through the analysis. Especially algorithms
that leverage reductions to the Boolean Satisfiabiilty (SAT)
problem have been successfully used for solving a wide range
of formal verification and debugging problems. The digital
design and its specification are conjointly expressed as a
Boolean formula interwoven with additional debugging logic
such that potential errors (or corrections) can be extracted from
satisfying assignments or proofs of the unsatisfiability of the
formula.
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Problem. Fault localization based on SAT 1] was intro-
duced as an algorithmic approach to identify potentially faulty
gates in a circuit described as a net-list on the gate level using
a SAT oracle. No specification is required, but a list of input
assignments for which the circuit behaves incorrectly and the
corresponding correct, expected outputs have to be provided.
The fault candidates computed are all gates at which the circuit
can be rectified with respect to the provided input-output
assignments. Since the list of assignments is a priori fixed,
typically only an overapproximation of the fault candidates is
obtained without any indication of the precision or quality of
the result. If a specification of the correct, intended behavior
of the circuit is available, e.g., in terms of an un-optimized
reference implementation, the exact set of all fault candidates
can be computed by quantifying over all input assignments
for which the faulty circuit and the reference circuit produce
different outputs. Due to the quantifier alternation in the exact
formulation, i.e., does a diagnosis (subset of components) exist
such that the circuit can be rectified at those components
for all possible assignments to the primary inputs, SAT-based
techniques are not directly applicable. Oracles that decide the
Quantified Boolean Satisfiability (QSAT) problem exist. Our
experiments with QSAT-based formulation, however, indicate
that QSAT oracles do not scale well on our problem instances
and time out in almost any case.

Solution. In this paper, we propose the first exact approach
to diagnosis using a SAT oracle. The approach first generates
a coarse overapproximation of the set of diagnoses and then
iteratively refines the approximation by generating counterex-
amples that are particularly generated to refute spurious diag-
noses and remove them from the set, until the exact set is ob-
tained. This approach is essentially a CounterExample-Guided
Abstraction Refinement (CEGAR) directed search technique
that lazily instantiates quantifiers to precisely solve the QSAT
problem. The formulation of the problem can deal with
multiple faults and works with or without a fault model. We
implemented the approach and compute the exact set of fault
candidates for digital circuits with seeded faults assuming that
no fault model is available. The experimental results indicate
that the proposed approach is several orders of magnitude
faster than implementations based on state-of-the-art oracles
for the QSAT problem. The speed-up stems from the fact that
our approach to exact diagnosis takes advantage of several
properties of the problem which are not recognized by general-
purpose approaches to QSAT and thus outperforms them on



our problem instances. Moreover, the proposed approach in
contrast to QSAT, has any-time behavior such that at any-time
an (over-)approximation of the exact result is available that can
be used for debugging and improves when time progresses.

Contribution. This paper makes the following contribu-
tions.

« An exact approach to model-free diagnosis using a SAT
oracle with any-time behavior. The approach computes
a coarse overapproximation of the set of diagnoses and
systematically removes spurious diagnoses until the exact
set is obtained.

« An approach to solve a special case of 3V3-queries, which
enumerates all minimal elements of the outermost exist
quantifier, and is applicable for other problems with the
same structure, e.g., non-Boolean domains or modulo
background theories.

« An implementation of the exact diagnosis approach and
experimental evaluation in the context of exact fault
localization for gate level circuits with seeded faults.
The experiments indicate that the presented approach
outperforms QSAT by several orders of magnitude.

Structure. The remainder of the paper is structured as fol-
lows: in the next section, Section [[I} related work is discussed.
Section [[II]is dedicated to exact diagnosis. The k-all diagnosis
problem is introduced and an approximate algorithm as well as
two exact algorithms are described. In Section we present
experimental results. Section [V| concludes.

II. RELATED WORK

In this section, we shortly survey approaches to diagnosis
and fault localization. This paper presents the first exact
approach to enumerate all minimal diagnoses for a faulty
circuit when a correctness specification is available.

Diagnostic reasoning. Early attempts to fault localization
stem from diagnostic reasoning developed in the field of
artificial intelligence. These approaches are inspired by ideas
and notions from philosophy. Two central principles are com-
mon: i) identifying a fault corresponds to finding the root
cause of the observed specification violation and ii) according
to Occam’s razor, simpler causes are always preferred. The
notion of cause hereby depends on a causal theory and was
for many years researched in philosophy.

Diagnosis from first principles [2], [3] rests on the ob-
servation that when a change applied to a system results in
a system that no longer exhibits the specification violation,
the changed components can be used as a characterization of
the fault. From this perspective, the changed components are
one potential cause for the observed specification violation.
Assuming that changes that involve fewer parts of the system,
are easier to understand, diagnostic reasoning strives for com-
puting small changes. Finding changes of minimal size, called
minimal diagnoses, is NP-complete [3]]. All minimal diagnoses
can be efficiently enumerated using a hitting set algorithm [3]].
The general theoretical framework of diagnosis from first
principles is flexible and requires only that the system has
to be formalized in a suitable logic. A component may be a

gate of a digital circuit or an expression in a program. The
theory is fault model-free and allows for considering single
as well as multiple faulty components [2]. Diagnosis from
first principles developed into consistency-based diagnosis.
Alternatively, abductive diagnosis [4] arose which focused on
incorporating knowledge about the causal relationship between
faults and systems. The framework of abductive diagnosis
captures common reasoning in medical diagnosis to explain a
symptom by finding a set of causes that imply the symptom.
In contrast to consistency-based diagnosis, abductive diagnosis
is not fault model-free, but requires a description of the
possible failure modes of a component. An explanation of
an observed error is then an assignment of failure modes to
the system’s components. In the 90ies, both approaches to
diagnosis eventually converged and are today known as model-
based diagnosis.

Fault localization. In the hardware community, different
approaches to localize faults in combinational and sequential
circuits have been developed. For combinational circuits, early
approaches to fault localization (and rectification) are either
based on Boolean equation solving [3]], [6] (predating most
work on SAT), BDDs [7], [8]], or multi-valued simulation [9],
[10]. The problem of diagnosing sequential circuits was re-
duced to combinational diagnosis by constructing an iterative
logic array (ILA) (also called time-frame expansion) from the
circuit [I11]. The considered fault models are mostly limited
to stuck-at faults and inversion of gate outputs and thus
not applicable for the general case of diagnosis. With the
widespread usage of SAT-based techniques, fault diagnosis
using SAT [12], [1] was developed. The approach is applicable
to combinational and sequential circuits using an a priori fixed
set of counterexamples. Moreover, fault diagnosis using SAT
could be used with and without additional fault models. QBF-
based formalizations [13] were proposed as alternative and
more succinct encodings for diagnosing sequential circuits
which avoid the blow-up of the problem size due to the
time-frame expansion. Automatic fault localization [14] was
also addressed in the context of LTL model checking for
sequential circuits at the gate level and the register-transfer
level. Maximum satisfiability-based techniques [15] as well
as techniques based on the extraction of UNSAT cores [16]]
further improved the performance of SAT-based debugging
techniques.

Solving 3V-queries and beyond. At the hearth of the k-
all diagnosis problem, a restricted QSAT formula has to be
solved with exactly two quantifier alternations. Due to the fact
that many problems can be expressed as QSAT problems with
only a few quantifier alternations, algorithms for solving these
queries received recently more attention. CounterExample-
Guided Inductive Synthesis (CEGIS) [17] was introduced as a
technique for solving 3V-queries with an application to para-
meter synthesis in sketches of programs. For Boolean domains,
the QBF solver RaReQS [18]] generalized this approach to an
arbitrary number of quantifiers. EFSMT [19] was proposed
to solve 3V-queries modulo theories with several applications
in control theory, e.g., finding Lynjapunov functions [19] or



parameter synthesis for cyber-physical systems [20].

III. EXACT DIAGNOSIS

This section is dedicated to the major contributions of
the paper. In Section the k-all diagnosis problem is
introduced that can be exactly solved using a QSAT oracle.
The exact computation based on QSAT, however, is typically
too costly in practice. As an alternative, in Section [[II-B} an
approximate algorithm is presented that leverages — instead
of QSAT — a SAT oracle with the drawback that no indication
of the quality of the computed diagnoses is possible. In Sec-
tion an exact algorithm to k-all diagnosis is given that
outperforms the QSAT-based algorithm by several orders of
magnitude but has the same accuracy, i.e., the k-all diagnosis
problem is solved exactly.

A. The (k-All) Diagnosis Problem

Let B := {0,1}. Suppose that C is a circuit and S its
correctness specification. Let &' be the input domain and )Y
the output domain. We use the predicate correct : X — B to
denote if circuit C is correct with respect to specification S for
input z € X and call z € X a counterexample if —correct(x)
holds.

Further suppose that G := {g1, ..., g,} is the totally ordered
set of gates of C. We describe sets of gates as bit-strings of
length p and define a function

bs : 29 — BP,
A s 1xal91) . xalep)

that maps from a set of gates to the corresponding bit-string,
where x A is the characteristic function of A € G. The function
bs is bijective such that the inverse bs~! that maps a bit-string
back to its representation as set of gates is uniquely defined.

The diagnosis problem is, given a faulty circuit C' with spec-
ification S, i.e., for some inputs x € X' : —correct(z) holds,
to determine where C' potentially can be rectified. We use the
modified correctness predicate diag : X x B9l x BI9l — B to
denote if circuit C' becomes correct with respect to specifica-
tion S for input z € X when the values v € BI9! are injected
at the outputs of the gates A < G described by the bit-string
bs(A) = d e BI9l. Consequently, A is a diagnosis (or fault
candidate) if

Vo e X : v e B9 : diag(z, bs(A), v), (1)

holds.

The k-all diagnosis problem is, given a faulty circuit C' and
a specification .S, to determine the set D of all minimal subsets
A < G with |A] < k such that A is a diagnosis for C.

An exact algorithm to diagnosis determines D exactly such
that every element A € D is a minimal diagnosis (soundness)
and no element not in D is also a minimal diagnosis (complete-
ness). The exact k-all diagnosis problem can be formalized as
an incremental QSAT query

JdeB9 :vrex:weBl9: )
diag(z,d,v) A |d| <k,

where each assignment to d is systematically extracted and
blocked. This formulation of diagnosis is fault model-free and
consequently all kinds of design faults can be considered. The
user, however, has to provide a maximal bound on the fault
cardinality k. If knowledge about the nature of the faults to
be diagnosed is available, this information can be incorporated
into the QSAT instances in form of additional constraints to
reduce the number of computed diagnoses.

A straight-forward implementation of an exact algorithm
that computes the set of all minimal diagnoses exactly is
presented in Fig. Initially, the set D is empty and the
cardinality bound ¢ = 1. In each iteration, a QSAT query of the
form of Eq. [2]is checked for satisfiability. If satisfiable, a new
diagnosis bit-string d is extracted and added to D. If unsat-
isfiable, the cardinality bound is increased. Since all domains
are finite, eventually the algorithm terminates when ¢ > k and
returns the set D of all diagnosis bit-strings with cardinality
at most k. Each bit-string in d € D corresponds to a diagnosis
A = bs™!(d) such that the set D of all minimal diagnoses is
obtained as

D :={bs '(d) | d e D}.

B. Approximate k-All Diagnosis using SAT

Fault localization using SAT [1] computes an over-
approximation of the exact k-all diagnosis problem by invok-
ing a SAT oracle multiple times. The V-quantifier in Eq.
is approximated using a fixed list of counterexamples. These
counterexamples are, e.g., pre-computed using model checking
or obtained while testing the circuit. Suppose that 21, ..., 2,
are counterexamples and a diagnosis is only computed with
respect to these counterexamples, then Eq. [2| reduces to

/\ diag(@:,d,v;) A |d] <k, 3)
i=1

with free variables d € B9/ and v; € B9l for 1 <i < n.

Eq. 3] can be used to check if a given set A < G is
a diagnosis considering counterexamples Z1,...,%, using
a SAT oracle. In order to obtain the modified correctness
predicate diag, the circuit C is instrumented with debugging
logic and then translated into conjunctive normal form (CNF)
— the preferred input form of state-of-the-art SAT oracles.
The instrumentation used is sketched in Fig. [2| (on the top):
for each component, e.g., gate to be diagnosed, a multiplexer
is added at the output. The multiplexer is used to inject values
when enabled. If the select signal sel = 1, the output y of
the component is assigned to a fresh input variable v and if
sel = 0 the output y = f(uq,...,u;) is not affected, where
f is a function that computes the component’s output from
some internal signals uq,...,u;. The fresh input variable v
has a non-deterministic (or existentially quantified) value. In
practice, instead of encoding the multiplexer and the non-
deterministic v variables into the SAT instance, only a variable
sel for each select signal is added, which is then used as shown
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Fig. 2. Debugging logic and CNF encoding for SAT-based diagnosis.
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Fig. 3. SAT-based diagnosis for a circuit C' and counterexamples 1, . . .
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in Fig. [2| (on the bottom) to disable clauses when assigned
true

Given the counterexamples 1, . . ., Z,. For each counterex-
ample Z;, a copy of the circuit C; instrumented with debugging
logic is constructed, where the primary inputs are assigned to
Z; and the primary outputs are assigned to the corresponding
correct values ¢; (obtained from the specification). The select
signals sel are shared over all copies such that the same
multiplexers are selected from all copies. The construction is
sketched in Fig. [3] By incrementally checking for satisfying
assignments to sel and blocking them, all solutions to the k-all
diagnosis problem are obtained.

Example 1: Consider the gate level circuit c17 in Fig.[d] (on
the top) as a simple example of a faulty circuit. The circuit is
taken from the ISCAS’85 benchmarks and consists of 6 gates
with 5 PIs and 2 POs. The circuit is faulty, i.e., a stuck-at one
fault materializes at the input side of g» denoted as S-a-1 in
the figure. Suppose that the counterexample z; - - - x5 = 01101

'If v is not added to the CNF instance, still the component’s output variables
have to be quantified such that the number of quantifier alternations is not
reduced.

y2 = 0/gz = 1

y2 = 0/ga = 1

Fig. 4. A faulty circuit realization (c17) with an injected stuck-at one fault
with two different counterexamples (on top 01101-00 and on bottom 00101-
00).

with corresponding correct outputs y1y2 = 00 is known and
is used for diagnosis. The counterexample is annotated to
the circuit in form of blue and red values. The blue values
are actually not known, but only implicitly available through
the specification. However, we use them to illustrate how
diagnosis operates. If a blue and red value at the output of
a gate differ, we say the gate is conflicting. The conflicting
gates, here go2, g3, g4, g5, g6, qualify as potential candidates
for rectifying the circuit. In the figure, additionally, the input
cones of gs and gg, respectively, are shown with dashed and
dotted borders. Since the stuck-at fault affects both outputs,
only gates in the intersection of the two input cones of g5 and
ge are potential causes for the fault, which further excludes g,
gs, and gg. Under these considerations g, and g3 are potential
causes for the faulty circuit and reported as diagnosis to the
user. In fault localization using SAT, the structure of the circuit
is encoded by logical constraints that are solved to compute
the two singletons {go} or {g3} as an approximate solution to
the 1-all diagnosis problem for the given counterexample.
Example 2: Now, consider the same gate level circuit with
the same fault again but assume the counterexample shown
in Fig. 4] (on the bottom) is provided. The counterexample
z1---x5 = 01101 with the corresponding correct outputs



y1y2 = 00 when used for diagnosis reveals the conflicting
gates go, g4, g¢. Due to the same structural arguments as
discussed before go can be excluded such that fault localization
reports the two singletons {go2}, {g4} as diagnosis to the user. If
the counterexample from the previous example is added, fault
localization computes the intersection of the two solutions,
which exactly pinpoints the fault at {go}.

The two previous examples, Ex. 1| and Ex. |2] illustrate that
the result of fault localization using SAT strongly depends on
providing the right counterexamples to the algorithm as input.
Moreover, the approximate solution of the 1-all diagnosis
problem eventually converges to the exact solution if the right
counterexamples are added. In the next section, we introduce
an approach to systematically construct counterexamples for
this purpose.

C. Exact k-All Diagnosis using SAT

In this section, we introduce an exact approach to k-all di-
agnosis based on SAT. The approach computes the exact set D
of all minimal diagnoses (as in the Fig. [I)) but avoids the costly
calls to the QSAT oracle and uses a SAT oracle instead. Addi-
tional tweaks in the encoding improve the performance, such
that the described approach significantly outperforms QSAT-
based formulations of the problem. The overall approach is
shown in Fig. 5] As input a faulty circuit C, its correctness
specification S and an initial set X of counterexamples is
required. The initial counterexamples X may be generated by
model checking C with respect to S. As output, the set D of all
diagnosis bit-strings is computed, which directly corresponds
to the set D of all minimal diagnoses.

The construction of the diagnosis predicate diag depends on
how the correctness specification S is provided. For instance, if
S is a reference circuit, techniques from functional equivalence
checking are applicable and diag corresponds to a miter
constructed from the circuit C and the reference circuit S,
where C' is instrumented with additional debugging logic. If
S is a set of properties, techniques from property checking
are applicable and diag corresponds to a checker circuit that
is constructed from C' and the properties of S, where C
is again instrumented with additional debugging logic. In
the following, we will assume that diag can be effectively
constructed from C' and S as a CNF formula.

The exact approach to k-all diagnosis based on a SAT oracle
repeats two steps to compute the exact set of diagnoses:

1) Overapproximate diagnoses: A coarse overapproxi-
mation D; (initialized with Dy := () of the potential
causes of the fault in C' is computed in terms of
components that can be rectified to correct the circuit’s
input-output relation. The approximation algorithm from
Eq. [3| is used with a fixed list X; of counterexamples
(initialized with X).

2) Generate counterexample: The overapproximation is
strengthened by constructing new counterexamples that
refute spurious causes. Whenever a new counterexample
was constructed, the counterexample % is added to
Xj41 = X; u {Z} and the computation of step 1

is repeated to compute a new D;; in the next step.
Eventually the exact set of causes is obtained.

The mutual interplay of step 1 and step 2 leverages the
fact that the computation of the overapproximation in step 1
is monotonic such that whenever a counterexample is added
to X, the number of diagnoses in the next step either stays
the same or decreases (but never increases). However, in the
sets D; only minimal diagnoses are collected, i.e., for no two
elements d,d’' € D; : d < d’ﬂ Consequently, D; 1 © D; if
k = 1. Otherwise, if £ > 1, when a counterexample is added,
either |D;y1| < |Dj| or |Dji1| = |Dj|. In the first case,
the counterexample refutes one (or more) of the diagnoses.
In the latter case, the counterexample refutes a diagnosis d
and collects one (or more) new diagnoses d/,...,d;, which
were previously not considered because d < d} for 1 <14 <.
Since the domain of X is finite, the termination of the loop
is guaranteed. In the worst-case all counterexamples have to
be enumerated, however, in practice often a few iterations are
sufficient.

Refuting spurious diagnoses. In order to terminate fast the
right counterexamples have to be generated which are those
that refute spurious diagnoses. A diagnosis A is spurious if
a counterexample exists that produces an output that does
not agree with the specification regardless which values are
injected at the outputs of the diagnosed components. For each
counterexample % that refutes A the property

Vo e B9l : —diag(z, bv(A), v) “

has to hold.
Consequently, to classify a diagnosis A as spurious, a
counterexample x has to be found such that

3z e X : Vo e B9 : —diag(xz, bv(A), v) (5)

holds. This QSAT problem has a single quantifier alternation
and cannot be solved with a SAT oracle. Also, experiments
revealed that state-of-the-art QSAT oracles are not effective in
solving this query.

However, notice that A determines at which component’s
outputs the circuit can potentially be rectified such that all
v € BI®l are don’t care for all components in G\A and Eq.
holds if and only if

Jz e X : Vv e BIA: —diag(x, bv(A),v) (6)

holds.

Since |A| < k, the V-quantor in the formula can be avoided
by replicating the diagnosis predicate diag and instantiating v
for all possible evaluations in B4/, This results in a blow-up
of the formula that is exponential in k. Since in practice k is
typically a very small value, this blow-up is acceptable and
the resulting formule can be effectively solved with a SAT
solver. Alternatively, lazy approaches [[17], [18] to instantiate
the V-quantor are applicable, but not expected to perform better
as long as the flattened query fits into the computer’s main
memory.

2The elements of D; form an antichain.
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Fig. 5. Enumerating all diagnoses of cardinality less or equal to k using SAT.

Notice also that immediately when a new counterexample
is discovered, step 2 terminates and the set of diagnoses are
re-computed. Alternatively, step 2 could have been repeated to
generate more counterexamples to reduce the set of diagnoses
when re-computed even further. However, re-computing the
diagnoses immediately has the advantage that in the best case
not only the currently analyzed diagnosis is refuted but also
several others too, which avoids costly SAT refutation calls as
well as the construction of redundant counterexamples.

Any-time character. The diagnosis approach described
above has any-time character. Quickly a coarse overapproxi-
mation of the set of diagnoses is computed and then iteratively
strengthened until the exact set is obtained. In contrast to
a QSAT-based approach, at any-time the approach provides
a result that can be used as a starting point for debugging.
When time progresses, more spurious candidate diagnoses are
removed until eventually the exact set is obtained. Also, the
approach can be interrupted, e.g., when the SAT oracle got
stuck with a few remaining queries that cannot be solved in
the given resource limits.

IV. EXPERIMENTS

The exact algorithm to k-all diagnosis described in the
previous section as well as the QSAT-based formulation from
Fig.|l| were implemented and evaluated in the context of exact
fault localization for gate level circuits. Both algorithms are
by design exact and produce the same sets of diagnoses. The
SAT-based formulation in contrast to the general QSAT-based
formulation leverages several properties of the problem that
improves its overall performance.

Benchmarks. As benchmarks, the ISCAS’85 benchmark
suite as well as crafted adder and multiplier designs were
used. The ISCAS’85 benchmarks were selected to allow for
a comparison to other fault localization techniques from the
literature. The crafted designs were used to shed more light on
the performance characteristic of the QSAT-based approach.

To keep our implementations simple and flexible, all circuits
were first translated to And-Inverter Graphs (AlGs) utilizing
ABC [21].

SAT-based diagnosis. As SAT solver, we used
MiniSAT 2.2. via APL. The maximal timeout for refuting
a diagnosis was configured to 32 seconds. For each SAT
query, a timer thread is forked that waits on a conditional
variable and signals an interrupt to MiniSAT if the time
bound is exceeded, such that the SAT query is terminated.
The timeout is stepwisely increased (starting from 1 second),
i.e., whenever all SAT queries in a round timeout, the timeout
is doubled for the next round. With this strategy, easy to
solve SAT queries are prioritized assuming that the generated
counterexamples refute also other diagnoses when considered.

QSAT-based diagnosis. As QSAT oracles, we used
DepQBF 5.(ﬂ RAReQS 1.1E], and Quantor 3.2E] via their
QDIMACS file interfaces. To ensure that writing and reading
QDIMACS files does not have a drastic impact on the per-
formance of the QSAT oracles, we repeated the experiments
with DepQBF via API which slightly (but not significantly)
improved the performance.

Experiments. Both algorithms were used to generate the
exact sets of all minimal diagnoses for the benchmark circuits
with seeded faults. The diagnosis algorithms are fault model-
free and can be used with any fault if a specification of the
correct, intended behavior of the circuit is available. For the ex-
periments, we seeded 100 different faults into each benchmark
circuit and computed for each benchmark and seeded fault
the exact set of all minimal diagnoses. The experiments were
conducted on a quad-core Intel® Core™ i5-2520M CPU with
2.50GHz and 8GB RAM running Arch Linux kernel 4.4.5-
1. Table [I] and Table [T present the experimental results for

3MiniSAT, http://minisat.se/MiniSat.html| [22]

“DepQBF, http://lonsing.github.io/depqbf/| [23]]
SRAReQS, http://sat.inesc-id.pt/~mikolas/sw/rareqs/| [24]
5Quantor, http://fmv.jku.at/quantor/ [25]
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TABLE I
EXACT 1-ALL DIAGNOSIS FOR ISCAS’85 BENCHMARKS AND CRAFTED DESIGNS.

Name Exact Diagnosis SAT-Based QSAT-Based
c \A|t Al Xl 1X]e t to tr tQ
- - - - - [s] [s] [s] [s]
bvadd02  0.62 1.87 1.92 0.90 0.92 0.00  0.01 0.01 0.01
bvadd04  0.84 2.85 1.84 1.64 1.14 001  0.04 0.05  *0.02
bvadd0g8  0.93 2.99 1.56 1.81 1.10 002 935 4158 8.84
bvmul02  0.64 1.48 1.40 0.86 0.77 0.00  0.01 0.01 0.01
bvmul04  0.66 391 4.58 2.13 2.01 0.01  0.04 0.08 0.06
bvmul0s  0.84 6.73 9.41 3.40 2.76 1.96 T/O T/O T/O
cl7 1.00 1.50 0.58 1.43 0.50 0.00  0.01 0.02 0.01
c432 0.98 6.96 6.20 2.18 1.10 0.11 T/O T/O T/O
c499 1.00 5.88 8.76 3.36 2.22 084  T/O T/O T/O
c880 1.00 5.12 3.72 2.84 1.45 0.87 T/O T/O T/O
c1355 1.00 5.95 5.95 3.72 2.35 1.06  T/O T/O T/O
c1908 1.00 6.27 8.82 2.42 1.45 0.87 T/O T/O T/O
c2670 0.99 12.29 17.44 3.81 2.53 291 T/O T/O T/O
c3540 0.99 8.18 7.04 2.20 1.24 2574  T/O T/O T/O
c5315 1.00 6.94 5.22 2.95 2.26 11.48 T/O T/O T/O
c6288 1.00 1.82 0.90 4.26 2.17 117.09  T/O T/O T/O
c7552 1.00 10.25 12.59 3.75 2.38 2939  T/O T/O T/O
TABLE II

EXACT 2-ALL DIAGNOSIS FOR ISCAS’85 BENCHMARKS AND CRAFTED DESIGNS.

Name Exact Diagnosis SAT-Based QSAT-Based
c AL Al AR AR XL Xe t tp tR tq
- - - - - - - [s] [s] [s] [s]

bvadd02 1.44 2.04 1.66 2.26 3.28 1.67 0.96 0.00 0.01 0.01 *0.00
bvadd04 1.86 1.22 1.79 8.81 8.41 3.56 1.78 0.03 0.10 0.19 *0.04
bvadd08 1.98 0.57 1.36 9.79 6.94 3.99 1.47 0.11 3519 139.03  *34.62
bvmul02 1.48 1.81 1.34 1.00 1.19 1.48 0.78 0.00 0.00 0.00 *0.00
bvmul0o4 1.68 3.70 4.76 23.17 27.99 6.86 4.72 0.12 0.46 1.13 *0.43
bvmul08  2.00 3.05 7.03 118.21 195.32 14.41 11.03 103.09 T/O T/O T/O
cl7 1.91 0.19 0.49 3.85 2.08 2.48 0.95 0.01 0.01 0.01 *0.00
c432 1.98 0.69 2.08 40.77 47.39 5.01 2.09 0.87 T/O T/O T/O
c499 2.00 0.19 1.13 3291 57.33 741 4.60 14.31 T/O T/O T/O
c880 2.00 0.04 0.32 23.67 26.68 5.49 2.29 15.53 T/O T/O T/O
c1355 2.00 0.00 0.00 36.67 59.64 8.01 3.86 21.06 T/O T/O T/O
c1908 1.99 0.32 1.56 52.85  122.12 5.53 2.66 19.80 T/O T/O T/O
c2670 1.99 0.47 1.85 15549  390.83 11.67 7.28 93.64 T/O T/O T/O
c3540 2.00 0.15 1.13 59.49 81.35 5.30 2.33 552.08 T/O T/O T/O
c5315 2.00 0.00 0.00 47.40 52.06 6.07 3.27 385.89 T/O T/O T/O
c6288 2.00 0.00 0.00 3.58 2.59 7.86 2.94 247.27 T/O T/O T/O
c7552 2.00 0.04 032 141.03  300.09 3.83 5.11 1849.34 T/O T/O T/O

all benchmarks with single and double faults, respectively.
The tables are built similarly: the first column names the
benchmark (Name); the remaining columns of the table are
split into three parts. The first part is dedicated to the results of
exact diagnosis and lists the mean of the effective cardinality
(c) as well as the mean and the standard derivation (|Af]| "
and |Af|, with f =1 for single faults and f = 2 for double
faults) of the generated diagnoses. The second part is dedicated
to the exact algorithm to k-all diagnosis using SAT and lists the
mean and standard derivation (|X], and |X|,) of the number
of counterexamples generated and the time for computing the
exact diagnosis sets (t). The third part is dedicated to the
QSAT-based formulation and lists the time for computing the
exact diagnosis sets for different QSAT oracles (tp refers to
DepQBF, tr refers to RAReQS, and tq refers to Quantor).
For each experiment, a timeout of 3600 seconds (1 hour) was
set. A timeout is marked in the table with T/O.

Discussion. As expected, the presented exact algorithms

based on SAT and QSAT computed the same exact sets
of minimal diagnoses except for Quantor, which missed the
enumeration of several possible assignments to the outermost
existentially quantified variables. The corresponding entries
are marked with a * in the table.

For some of the benchmarks, a mean effective cardinality
less than 1.0 is reported which indicates that some of the
seeded faults did not affect the semantics of the circuits, i.e.,
the circuits are functionally equivalent to the design without
the seeded faults, such that no diagnosis can be generated.

The SAT-based exact algorithm outperformed the exact
QSAT-based formulation in all cases and for all QSAT ora-
cles considered. The QSAT oracles timed out for all ISCAS
benchmarks except for the toy example c17. In an attempt
to determine the runtime required to compute all minimal
diagnoses for c432, we applied the QSAT-based algorithm
without a timeout. DepQBF was able to solve one QSAT
query, i.e., one diagnosis was produced, within 7 hours. The



other QSAT oracles did not succeed within this time bound.

Within the considered QSAT oracles, DepQBF performed
best, but still timed out in most of the cases. In most cases,
the exact algorithm based on SAT required only a few coun-
terexamples (between 2 and 25 were typically enough) to
exactly pinpoint all minimal diagnoses. We did not implement
any optimization for generating the counterexamples, e.g.,
structural optimizations of the circuit or clause minimization
strategies, but directly encoded the circuit using Tseyting en-
coding. An improved encoding thus has the potential to speed-
up the SAT-based algorithm even more. The time required for
computing the minimal diagnoses for the larger benchmarks,
e.g., c7552, stems mostly from our timeout strategy. In the
first iteration of the algorithm several thousand diagnoses are
generated. The SAT-based algorithm then attempts to refute
each individual diagnosis with a timeout of 1 second but due
to the size of the circuit does not succeed in solving the cor-
responding SAT query within the timeout. The timeout is then
increased and the refutation step is repeated. Consequently,
many seconds are lost for finding the right timeout. We assume
that more advanced strategies for refuting diagnoses would
improve performance, e.g., using multiple threads for refuting
counterexamples with different initial timeouts or different
strategies to increase the timeouts.

V. CONCLUSION

In this paper, the first exact algorithm to model-free diag-
nosis was introduced. The algorithm computes the exact set of
minimal diagnoses with the aid of a SAT oracle by iteratively
constructing counterexamples to strengthen an overapproxi-
mation of the set of minimal diagnoses. In each iteration, a
new counterexample is generated and some spurious diagnoses
are removed from the overapproximation until the exact set is
obtained. The algorithm implicitly uses a new approach to
effectively solve the special case of 3V3-QSAT queries and
enumerates all minimal solutions of the outermost 3-quantifier.
The diagnosis algorithm was implemented and an experimental
evaluation in the context of exact fault localization for gate
level circuits with seeded faults shows that the presented al-
gorithm outperforms state-of-the-art QSAT oracles by several
orders of magnitude.
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