
WCET Overapproximation for Software in the
Context of a Cyber-Physical System

Niklas Krafczyk∗ Heinz Riener∗ Goerschwin Fey∗†
∗German Aerospace Center †University of Bremen

Germany, Bremen Germany, Bremen
{firstname.lastname@dlr.de} fey@informatik.uni-bremen.de

Abstract—We propose an approach for overapproximating
the worst-case execution time (WCET) of embedded control
software using formal methods. Model checking is iteratively
applied to compute the WCET from the machine code of the
software considering a platform and an environment model. We
implemented the approach and present first experiments for a
thermal controller application executed on a LEON3 processor
under different environment constraints.

I. INTRODUCTION

The concept of a cyber-physical system (CPS) has recently
emerged as a model that tightly integrates digital computation
with its physical environment. A discrete system continuously
interacts with its physical environment via senors and actuators
such that CPS describe closed-feedback loop systems.

From the application perspective, this reflects the view
of traditional feedback or closed-loop control systems. For
instance, consider a software controller for a real-time appli-
cation executed on a hardware platform that interacts with
its physical environment via sensors and actuators. The con-
troller has to react on certain input values within a specified
amount of time or otherwise safe operation of the overall
system cannot be guaranteed. Thus, determining the worst-
case timing behavior of the program, i.e., the path which takes
the most time when executed on the hardware platform, is
an important problem. Due to non-terminating algorithms, it
is not always possible to determine the WCET of arbitrary
software. However, in real-time systems, termination is usually
a requirement, ensured by specific coding styles, which allows
WCET analysis to succeed and compute reasonable upper
bounds.

Calculating the WCET of a control algorithm without con-
sidering the environment leads to overapproximations which
are often too coarse, e.g., when sensor data is assumed from
the environment which is in practice impossible.

In this paper, we describe an approach for overapproximat-
ing the WCET of an embedded software program considering
a platform and an environment model, which describes the
observable behavior of the system’s environment. The machine
code of the program, the platform and the environment model
are combined into a timed CPS model that is then analyzed
utilizing software model checking techniques. We evaluate the
approach in a case study for a thermal controller application
executed on a LEON3 SPARC processor and present first
experimental results under different environment constraints.

The remainder of the paper is structured as follows: in Sec-
tion II, we describe the basics of WCET analysis. Section III
describes our approach to WCET overapproximation using
model checking. In Section IV, a case study is given. Section
V presents experimental results for the case study. Section VI
concludes.

II. BACKGROUND

Many approaches for WCET analysis have been proposed,
see e.g. [10] for an overview of existing techniques. They can
be roughly classified into two categories: dynamic and static
timing analysis.

In dynamic timing analysis, the execution time of a task
is measured for a set of selected test cases executed on the
processor, e.g. [9]. The test cases are typically not exhaustive.
Therefore, in general, this approach is too optimistic and
unsafe as there is no guarantee, that the path exhibiting the
WCET is in the set of test cases. Our approach includes finding
the worst case inputs which would require an approach based
on dynamic timing analysis to search the entire state space of
the environment, which is usually not feasible.

In static timing analysis, a model of the timing behavior of
the processor is constructed and all possible execution paths
of the model are examined by means of formal methods. By
taking all possible execution paths into account, the result of
the analysis will always be safe, i.e., the calculated WCET
will always be at least as high as the actual WCET. Without
restrictions on the possible inputs, the calculated WCET might
be higher than the actual possible WCET, due to the fact
that the inputs leading to the calculated WCET might not
occur in the real application scenario. This can be mitigated
by constraining the possible tasks by means of user supplied
annotations. In our approach we annotate the code with a
model of the environment behavior, thus enabling tighter
bounds on the WCET compared to the unconstrained case.

The authors of [3] reconstruct the control flow graph of
the program under analysis, compute possible processor states
by means of abstract interpretation and determine the WCET
of the basic blocks. The WCET calculation for the whole
program is then formulated as an integer linear programming
(ILP) problem. In comparison to our approach, this does not
take the environment into account, allowing for infeasible
paths to increase the WCET overapproximation. Furthermore,
we do not calculate the WCET on independent basic blocks but



on the whole program, allowing the WCETs of basic blocks
to depend on the execution of other basic blocks.

In [5], the authors propose an approach, where they deter-
mine the WCET of the basic blocks of a program, annotate
these WCETs in the source code and employ a bounded
model checker to determine the WCET iteratively. Compared
to our approach, this requires the source code of the program
under analysis. Also, no environment model is used to exclude
infeasible paths.

[4] formulate the WCET calculation as an optimization
problem using satisfyability modulo theory. However, no
bounds on the processor registers are taken into account,
which in our approach are supplied by the annotation of an
environment model.

III. WCET ANALYSIS USING MODEL CHECKING

In this section, we describe our approach to compute the
WCET of embedded software using model checking. Model
checking is an algorithmic approach to verify that a system
implementation adheres to its specification. In contrast to
simulation and testing techniques, model checking guarantees
correctness for all possible input scenarios when successful
and generates a counterexample, i.e., a detailed execution
of the system that exhibits a specification violation, when
failing. The counterexamples can then be examined to debug
the system implementation. This has shown to be a viable
alternative to the usually employed [1] static program analysis
and to give tighter WCET estimates [7], [8].

From a user’s perspective, the approach takes as input
the machine code P of an embedded software program that
potentially interacts via sensors and actuators with a physical
environment, a platform model T , and a model E of the
environment. The platform model describes the hardware
architecture of the target platform including the register file
and flags and how it changes when specific instructions are
executed; moreover, the timing for all instruction types is
described. The environment model describes the entities of
the physical world and how they change with actuator inputs.
Our approach works in two steps:

1) We construct, as shown in Fig. 1, a timed CPS model
M that combines P , T , and E by instrumenting P with
a global time variable tWCET that is incremented when
instructions are executed.

2) We then iteratively model checkM, as shown in Fig. 2,
with respect to a timing requirement tWCET < bi, where
bi is the bound on the WCET in the i-th iteration (b0 is
some small value) that is successively increased. In each
iteration, the model checker produces a counterexample
that corresponds to a path through the program with
WCET tWCET ≥ bi. Eventually, in the k-th itera-
tion, tWCET < bk cannot be refuted on M such that
bk−1 ≤ tWCET < bk is known to hold for the model. In
further iterations the interval [bk−1, bk] can be narrowed
sufficiently to calculate an overapproximation of the
WCET, e.g., using a binary search.

Disassembler

Instrumentation

Instrumentation

Machine code P

Platform model T

Environment model E

Assembly

Execution model

Timed CPS model M

Fig. 1. Construction of the timed CPS model.

Model
checkingM

Timing
requirement
tWCET < bi

Optimal?

Adjust
specification

WCET time &
path

No

Yes

Fig. 2. Overall flow for worst-case execution time analysis.

A. Platform Model

For our approach, a platform model that describes the se-
mantic effects of executing instructions on the target platform
is required. This model is manually created for the target
platform. We introduce variables for the register file and flags
of the processor and describe for each instruction type how
those are changed when an instruction is executed. Moreover,
a global timing variable tWCET is introduced that keeps track
of the execution time; whenever an instruction is executed,
tWCET is incremented by the number of clock cycles required
by the hardware platform for performing the corresponding
computations in hardware. The concrete number of clock
cycles to increase tWCET per instruction type are extracted
from the processor manual. This model is flexible and can
be enriched with more complex timing models to describe
effects like caching or branch prediction that are typically
implemented in state-of-the-art processors, which is not in the
scope of this paper, however.

We model the memory to return nondeterministic values for
any memory access, which results in a safe overapproximation
and is feasible for realistic systems. Such an inconsistent mem-
ory model reduces functional consistency and can enable paths
that would not exist in the set of execution traces of the real
system. Instructions whose effects are difficult to model were
overapproximated by determining the registers or memory
locations they modify and setting them to nondeterministic
values.

B. Environment Model

Including the environment in the model is achieved by
instructing the model checker to assume a memory location



s0 s1 final
5

6

5

Fig. 3. Example of paths through a program. All paths begin at s0 and end in
final. Nodes in between are branching points. The edges represent the basic
blocks of the code, where the numbers denote the number of instructions in
a basic block.

or register to have a certain value at a certain point in the
execution, e.g., when calling a function to obtain a sensor
value, its return value can be constrained to a specific value
given by the environment model. In the simplest case, such a
value is a constant, which means that the WCET’s overapprox-
imation is calculated for a certain environment state. However,
the WCET in this case could be measured, if the environment
state can be reproduced in the current state of development.
Generally, any environment model expressible to the model
checker can be used to constrain the inputs. In the model, time
is implicitly described by the instruction counter, depending on
the clock rate of the processor, i.e., the elapsed time between
two environment interactions is ∆t = TCLK · ∆ccc, where
TCLK is the clock period of the system and ccc is the clock
cycle or instruction counter. We use this approach to calculate
a WCET overapproximation over all feasible environment
behaviors and to obtain an environment state in which that
WCET is reached. The approach allows to take precautions
on the software or system level to avoid such an environment
state, if the WCET is too high for the application.

C. Computing WCET using Model Checking

To calculate the WCET for a part of a given binary file, a
model as described above is created and subsequently checked
using a model checker, similar to [5]. If the model checker
does not find a violated property, the execution time the
modeled code takes is less than the WCET specified in the
model. However, if the model checker finds the execution
time to be more than or equal to the WCET specified in the
model, it produces a counterexample, showing a path through
the model on which the execution time is at least equal to the
specified WCET. From this counterexample, the exact state of
the model can be derived for every step in the modeled piece
of code, including the instruction/cycle counter. Thus, to find
the WCET, Alg.1 is used.

Given a model with a corresponding specification as de-
scribed above this algorithm will modify the WCET stated in
the specification and invoke the bounded model checker on the
model and specification. If the specified WCET is exceeded by
at least one execution path, the bounded model checker will
find such an execution path contradicting the specification, a
so called counterexample, containing the execution time this
path took. If the bounded model checker could not find a
counterexample the specified WCET exceeds the actual WCET
of the model and is an upper bound on the WCET. The
algorithm will iteratively converge on the actual WCET of
the model by saving the execution time found in the last
counterexample, which is the lower bound found so far, setting

Algorithm 1 WCET
Input: spec, model, maxIterations

1: lowerBound← 0
2: next← 1
3: repeat
4: if next = lowerBound then
5: return next
6: else
7: WCET (spec)← next
8: counterex.← modelChecker (model, spec)
9: if counterex. = none then

10: next← blowerBound + next−lowerBound
2 c

11: else
12: lowerBound← counter (counterex.)
13: next← increment(lowerBound)
14: end if
15: end if
16: maxIterations← maxIterations− 1
17: until maxIterations = 0
18: return next

the specifications WCET to a higher value and invoking the
model checker again.

To terminate this algorithm even in the case of infinite loops
an upper bound on the number of model checker invocations
is defined. If the WCET cannot be found in that number of
iterations, the value returned is a lower bound of the WCET.

When the model checker encodes the problem as a satisfi-
ability problem, where the formula is satisfied when next is
lower or equal to the WCET, adjusting next by more than a
constant factor, e.g., exponentially with the difference to the
previous value, would lead to greatly increased runtime. In the
case of next being greater than the WCET, the given problem is
unsatisfiable, which has shown to be much harder to conclude
for the SAT solver on the studied models. When defining
increment(x) ≡ x + 1, this occurs in only one iteration.

Fig. 3 shows an example of a control flow graph, where
the number of instructions for a basic block is denoted on
the edges. To illustrate Alg.1, we apply it to this program
with increment(x) ≡ x + 1. In the first iteration, next = 1,
next 6= lowerBound, thus a specification WCET < 1 (line
7) is model checked on the model of the program (line
8). The model checker determines a counterexample, e.g.,
s0 ⇒ s1 ⇒ final, with an execution time of 10. Therefore,
lowerBound = 10, next = increment(10) = 11 (lines
12,13). In the next iteration, next 6= lowerBound still holds,
thus the specification is modified to WCET < 11. Again,
the model checker produces a counterexample, e.g., path
s0⇒ s1⇒ final with an execution time of 11 contradicting
WCET < 11. Thus lowerBound = 11, next = 12. In the
third iteration, there is no counterexample for WCET < 12,
therefore next = bnext−lowerBound

2 c = 11 (line 10). In the
final iteration, next = lowerBound and 11 is returned (line
5).



IV. CASE STUDY

We evaluate our approach in a case study and compute
an overapproximation of the WCET of a thermal controller
implemented as a embedded real-time software task executed
on a LEON3 processor. The software task is a discrete two-
point control application that interacts in a closed feedback-
loop via three, triple-modular redundant temperature sensors
and a heating element with its physical environment. The
objective of the thermal controller is to keep the temperature
of a battery in a certain interval such that optimal power
supply of the system can be guaranteed. We assume that the
temperature sensors and the battery are tightly coupled such
that all sensors observe the same temperature when function
correctly. A majority vote on the sensor values allows that the
system tolerates a malfunctioning sensor.

The three temperature sensors and the heating element
are connected to the LEON3 procedure in a simple network
topology via SpaceWire connections. Thus, the data exchange
follows the SpaceWire standard for data communication and
wrapped in software through a simplified version of the remote
memory access protocol (RMAP). When a value is read from
one of the sensors or an enable/disable signal is send to the
heating element, the data is written to or read from a memory
buffer via RMAP API commands. Consequently, neither the
sensor nor the heating element are modeled in detail, but
abstracted to a set of mapped memory locations.

For the case study, the software controller was implemented
in C++ with the real-time operating system RTEMS and
compiled with the RTEMS cross compilation system of the
GCC cross compiler system to machine code for the SPARC
v8 architecture.

A. Obtaining the Timed CPS Model

The assembler instructions were modeled in C. LEON3 is
an implementation of the SPARC v8 architecture, which in
turn is a reduced instruction set computer (RISC) architecture.
The instruction set is relatively small and low in complexity,
keeping the model relatively simple. On the targeted LEON3
there is no FPU or coprocessor, which reduces the necessary
instruction set. Furthermore, no cache is present, making the
results more predictable.

Modeling the arithmetic and logic instructions in C is
straightforward, as C offers operators for the exact compu-
tation of these instructions.

Due to the size of the address space of the LEON3, a
32-bit architecture, it is usually not possible to model the
whole memory as array explicitly for this. More generally,
for most other common architectures the same problem would
arise. Sacrificing functional consistency by making the model
for memory storing instructions dummy instructions which
only increase the instruction counter and the memory loading
instructions write nondeterministic values into the affected
registers provides the needed simplification to allow the model
to be checked. Furthermore, this is a safe abstraction as it does
not exclude the values evoking the actual WCET but rather
can increase the overapproximation by enabling paths which

would not be feasible if an accurate memory model would be
used.

Function calls can be described using goto-statements
that jump to the address of the function’s implementation or,
alternatively, using interrupts, or computed gotos. In contrast
to goto-statements that jump to a predetermined, constant
address, computed gotos jump to the address of a label value
that is an address stored in a variable. In our experiments, we
concluded that the first mechanism is more practical. The latter
mechanism allows to describe the control flow of a machine
code program close to the actual executable, e.g., jumps from
inside of one function to an arbitrary location inside of an
another function are allowed. However, in our experiments,
we found that state-of-the-art model checkers tend to encode
computed gotos into a sequence of nested conditional checks
(one check per label in the program). The nested checks
compare the label of the return address to each label in the
program such that this comparison becomes the bottleneck
when reasoning about the behavior of larger programs.

B. Translation

The C file is generated in two passes over the assembler
file. In the first pass, function definitions and the locations
and targets of branch instructions are extracted which are
subsequently used in the second pass to identify function calls
to functions which are not in the output of the disassembling
step, and to insert labels in the places the branch instructions
should branch to. Furthermore, to ensure standard compliant C
code, which requires all functions to be declared before being
called for the first time, all functions should be declared at the
beginning of the final C file.

In the second pass, the C file is generated. Therefore, first,
all functions found in the first pass are declared, followed by
the assembler instructions replaced by the corresponding C
macro, wrapped in function bodies. Fig. 4 gives an example
of a translated function. When a line is encountered that is
the target of a branch instruction, a goto label is generated
such that the label can be referenced by the goto statement
modeling the branch instruction.

While this will create a model that behaves just as the binary
file used as input in many basic cases, in some situations the
control flow will differ or be more complex than is the case
for a simple C model with functions returning after their last
statement. Following situations have been identified where this
is the case:

a) Tail call optimization: When the last instruction ex-
ecuted on a certain path in a function is a function call,
the compiler might optimize the resulting binary code to let
the called function, when returning, return to the function
the current function would return to, saving at least one
return instruction. Fig. 4 gives an example of such tail call
optimizations. The SPARC v8 architecture saves the return
address in the o7 register. Also, call is a delay control flow
transfer instructions, for which the control flow transfer is
not immediate. This means, the instruction following a call
instruction is executed while the control flow is transferred



40016b30 <fun1>:
40016b30: ld [%o0 + 0x34], %g1
40016b34: cmp %g1, 1
40016b38: be 40016b4c
40016b3c: clr %o2
40016b40: mov %o7, %g1
40016b44: call 40019adc
40016b48: mov %g1, %o7

40016b4c: mov %o7, %g1
40016b50: call 40016b5c
40016b54: mov %g1, %o7
40016b58: nop

40016b5c <fun3>:
40016b5c: ...

void fun1() {
Ld(rO0 + 0x34, rG1);
Cmp(rG1, 1);
Be(l40016b4c, Clr(rO2));

Mov(rO7, rG1);
Call(fun2(), Mov(rG1, rO7));
return;

l40016b4c:
Mov(rO7, rG1);
Call(fun3(), Mov(rG1, rO7));
return;
Nop();

fun3();
}

Fig. 4. Example of the assembler translation.

to the called function. In the example, the return address of
the called function is overwritten by the return address of the
calling function. By inserting simple C return statements after
identified locations of such optimizations, the control flow
is adjusted correspondingly without introducing additional
instruction cycles.

b) Shared assembler code: Some functions have multiple
entry points in the assembler representation, where one entry
point introduces a preamble to the following function by not
returning before the execution reaches the first statement of the
next function. Inserting a call to the next function as the last
statement of a function’s C representation is a simple solution
to this problem simulating the behavior of the assembler
description.

V. EXPERIMENTS

All experiments were conducted on a virtual machine run-
ning Linux 4.3.3 with 5270MiB RAM and four processor
cores of an Intel Core i5-4590 CPU @ 3.30GHz assigned.
We used CBMC 5.3 [2] as model checker.

A. Code Statistics

The analyzed code consists of 27 functions with a call
graph depth of 7. Before compilation, there were 216 lines
containing C/C++ statements, excluding function signatures.
After compilation, the controller code and all code called by
that consisted of 586 assembler instructions.

B. Experiment Execution

First, the code is compiled and linked against the required
library, which contains the SpaceWire drivers and the mem-
ory access protocol stack. Then the approach described in
Sections III and IV is applied. After decompiling the binary
and translating it to the model to be checked, a WCET
overapproximation of the entry function which is the initial-
ization code for the controller and a single control step is
determined. Then, the environment model is integrated into
the model, constraining the inputs and the WCET is again
overapproximated.

We applied the approach to every function in the resulting
system. For functions with loops depending on function pa-
rameters, safe upper bounds were determined and applied in
the process.

The controller will not change the state, i.e., write to the
system outputs to change the system and environment state if
the measured temperature t fulfills T− < t < T+. Therefore,
constraining the environment to fulfill T− < t < T+ will
make paths in the software infeasible which are taken when
the controller turns the heating element on or off, which results
in a shorter WCET.

In Tab. I, determining a WCET overapproximation for one
step of the controller exceeded a given time bound (denoted as
T/O) of 90 minutes after 45 iterations. Therefore, the problem
was reduced by assuming functions without input parameters,
i.e., independent from their input, to always reach their WCET
and return a nondeterministic value, which is a safe over-
approximation. By excluding spwl_reclaim_txbuf and
spwl_send_txbuf from the analysis in this manner, the
analysis of TemperatureController::controlStep
finished after 49 iterations in 178.52s, resulting in a WCET
of 2634 instructions. Constraining the read sensor values to
the interval (T−, T+) by changing the environment model
appropriately resulted in a WCET of 1995 instructions after
37 iterations in 57.53s which is a significant difference both
in calculated WCET and algorithm run time. The latter can be
explained by the fact that the tighter constraints provided by
the environment reduce the state space. Further experiments
extending the interval in either direction show, that the case
t > T− has a lower WCET than t < T+, which was to be
expected. The latter case includes values where the heating is
turned on, which means Heating::setOn is called which
in turn has a higher WCET than Heating::setOff.

VI. CONCLUSION

We proposed an approach for overapproximating the WCET
of embedded control software using model checking. The
approach works in two steps: first, a timed CPS model is
derived from a software program, a platform model, and an
environment model. Second, a timing requirement is model



TABLE I
TABLE SHOWING THE PERFORMANCE AND RESULTS OF THE WCET APPROACH APPLIED TO THE FUNCTIONS OF THE MODEL. D: DEPTH OF

SUBCALLGRAPH. C FUNCTIONS CALLED FROM THE FUNCTION. #INSTR: ASSEMBLER INSTRUCTIONS THE FUNCTION CONSISTS OF. TIME: ALGORITHM
RUN TIME. #ITER: NUMBER OF ALGORITHM ITERATIONS. WCET: WCET OF THE FUNCTION. †: WCET INCLUDES SOFTWARE TRAP HANDLING CODE.

Function D C #Instr. Time #Iter. WCET (#instr.)

obc::Crc8::calculate 0 0 15 16.75 51 232
obc::amap::Amap::Amap 0 0 11 0.51 3 11
obc::leon3::SpaceWireLight::flushReceiveBuffer 0 0 2 0.51 3 2
obc::leon3::SpaceWireLight::close 0 0 2 0.51 3 2
obc::leon3::SpaceWireLight::SpaceWireLight 0 0 10 0.52 3 10
obc::leon3::SpaceWireLight::˜SpaceWireLight 0 0 6 0.5 3 6
reap_tx_descriptors 0 0 39 1.11 5 39
sparc_disable_interrupts † 0 0 4 0.52 3 17
sparc_enable_interrupts † 0 0 4 0.52 3 21
TemperatureSensor::TemperatureSensor 1 2 13 0.51 3 32
TemperatureSensor::˜TemperatureSensor 1 2 8 0.51 3 14
obc::amap::Amap::writeHeader 1 1 24 2.8 11 95
Heating::Heating 1 2 15 0.52 3 36
Heating::˜Heating 1 2 8 0.51 3 14
spwl_reclaim_txbuf 1 3 54 6.7 20 169
spwl_send_txbuf 1 3 94 6.9 18 197
TemperatureController::TemperatureController 2 2 20 0.53 3 151
obc::leon3::SpaceWireLight::requestBuffer 2 1 23 6.02 17 188
obc::leon3::SpaceWireLight::send 2 1 41 6.92 12 226
obc::amap::Amap::read2 3 4 40 631.78 166 1308
obc::amap::Amap::write2 3 5 50 1044.3 190 1005
obc::amap::Amap::read1 4 1 9 1041.8 190 1005
obc::amap::Amap::write1 4 1 9 1159.8 188 1014
TemperatureSensor::readValue 5 1 11 182.17 51 656
Heating::setOn 5 1 19 88.39 35 638
Heating::setOff 5 1 17 96.04 33 636
TemperatureController::controlStep 6 3 38 T/O 45 > 2555

TemperatureController::controlStep 6 3 38 178.52 49 2634
TemperatureController::controlStep (T− < t < T+) 6 3 38 57.53 37 1995
TemperatureController::controlStep (T− < t) 6 3 38 177.76 50 2630
TemperatureController::controlStep (t < T+) 6 3 38 119.55 43 2634

checked on the timed CPS model and adjusted until the WCET
execution path is determined.

Compared to similar state-of-the-art approaches on WCET
overapproximation [5], [6], deriving the model from a bi-
nary image of the program allows the application to more
realistic scenarios where an optimizing compiler is used.
Furthermore, we contribute the addition of an environment
model, constraining the behavior of the system to actual use
cases, which to our knowledge has not been done before.
Deriving the WCET from the binary image under the en-
vironment constraints allows for tighter upper bounds, i.e.,
less overapproximation. We conducted a case study with a
thermal control application and presented first experiments
for simple environment models. We conclude that our results
are promising and using the environment models significantly
reduces the overapproximation of the WCET. As future work
we consider implementing our approach directly a satisfiability
modulo theory solver (SMT solver), e.g., similar to [4] and
conduct further case studies.

REFERENCES

[1] Adrish Banerjee, Subrata Chattopadhyay, and Abhik Roychoudhury.
Precise micro-architectural modeling for wcet analysis via ai+sat. In
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th, pages 87–96. IEEE, 2013.

[2] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004), volume 2988, pages 168–176, 2004.

[3] Christian Ferdinand and Reinhold Heckmann. ait: Worst-case execution
time prediction by static program analysis. In Building the Information
Society, pages 377–383. Springer, 2004.

[4] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maı̈za. How
to compute worst-case execution time by optimization modulo theory
and a clever encoding of program semantics. ACM SIGPLAN Notices,
49(5):43–52, 2014.

[5] Sungjun Kim, Hiren D Patel, and Stephen A Edwards. Using a model
checker to determine worst-case execution time. 2009.

[6] Matthew MY Kuo, Li Hsien Yoong, Sidharta Andalam, and Partha S
Roop. Determining the worst-case reaction time of iec 61499 function
blocks. In Industrial Informatics (INDIN), 2010 8th IEEE International
Conference on, pages 1104–1109. IEEE, 2010.

[7] Alexander Metzner. Why model checking can improve wcet analysis.
In Computer Aided Verification, pages 334–347. Springer, 2004.

[8] Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Accurate and efficient
identification of worst-case execution time for multicore processors: A
survey. In Design and Test Symposium (IDT), 2013 8th International,
pages 1–6. IEEE, 2013.

[9] Sanjit A Seshia and Alexander Rakhlin. Quantitative analysis of
systems using game-theoretic learning. ACM Transactions on Embedded
Computing Systems (TECS), 11(S2):55, 2012.

[10] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David B. Whalley, Guillem Bernat, Christian Ferdi-
nand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat, and Per Stenström. The worst-
case execution-time problem — Overview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems (TECS),
7(3), 2008.


	Introduction
	Background
	WCET Analysis using Model Checking
	Platform Model
	Environment Model
	Computing WCET using Model Checking

	Case Study
	Obtaining the Timed CPS Model
	Translation

	Experiments
	Code Statistics
	Experiment Execution

	Conclusion
	References

