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Abstract—We propose EASY, an algorithm for functional
equivalence checking of ESL descriptions written in a high-level
programming language like C++. Given two ESL descriptions,
in a PDR-like fashion EASY systematically refines a candidate
invariant to characterize the reachable states of a miter of the
descriptions until either the invariant becomes inductive or a
counterexample has been found. The algorithm is flexible and
allows to incorporate a priori knowledge about the design to
speed up the verification process. We provide an implementation
of EASY on top of a standard model checker and show in two case
studies that EASY outperforms other state-of-the-art equivalence
checking tools.

I. INTRODUCTION

Electronic system level (ESL) design methodologies focus
on the description of the functionality of an entire system on
a high level of abstraction. In contrast to traditional register-
transfer level (RTL) descriptions, an ESL description captures
the behavior of a system while neglecting low-level details like
hardware/software partitioning, timing, or power consumption.
This allows designers to focus on behavioral characteristics of
the system and enables functional verification and validation
in early design phases. ESL descriptions are often formulated
in general-purpose programming languages like Java or C++.

In this paper, we introduce, EASY', an algorithm for
functional equivalence checking on ESL. EASY takes as input
two ESL descriptions to be checked for functional equiva-
lence, corresponding mappings between the initial states and
operations of the two descriptions, and optionally a candidate
invariant. In essence, the algorithm uses a property-directed
reachability (PDR) [5] approach to systematically learn and
improve an invariant that characterizes the reachable states of
a miter of the two ESL descriptions, until either an inductive
correctness proof succeeds or a counterexample has been
found that disproves functional equivalence. On termination,
the learned invariant serves as a certificate for functional
equivalence, whereas a counterexample can be used for de-
bugging the ESL descriptions. The correspondence mappings
are necessary to match the two ESL descriptions when they
are structurally different. Optionally, a candidate invariant can
be provided to approximate the reachable states of the miter
of the two ESL descriptions; underapproximation as well as
overapproximations are supported. The candidate invariant is

Ipronounced as the two letters E.C.

a simple way to incorporate knowledge a priori known by the
designer into the verification process to speed up reasoning.
If the provided candidate invariant indeed is inductive, the
algorithm terminates quickly as equivalence can be shown
easily. Otherwise, in an attempt to prove functional equiva-
lence, EASY iteratively refines the candidate invariant utilizing
counterexamples when functional equivalence checking fails.
A counterexample is either spurious, i.e., unreachable from
the initial states, then those states can safely be excluded from
the candidate invariant, or a counterexample is real, such that
a mismatch of the behavior of the two ESL descriptions has
been revealed.

This paper makes the following contributions:

1)  We describe a light-weight design and verification
methodology for embedded systems on the ESL.
The behavior of the system is described on a high
abstraction level utilizing C++ as flexible modeling
language. A system is described as a C++ class —
the member variables describe the system’s state,
whereas the methods describe operations that manip-
ulate the state. The C++ code serves as an executable,
functional specification of an embedded system ne-
glecting low-level design details.

2)  We present, EASY, a state-of-the-art algorithm to
prove or disprove functional equivalence of ESL de-
scriptions that follows the described design method-
ology and especially allows to incorporate designer
knowledge to speed up the reasoning process. On
termination, the algorithm produces a certificate in
terms of an inductive invariant if the two ESL descrip-
tions are functionally equivalent or a counterexample
if functional equivalence was disproved.

3)  We provide an implementation of EASY that instru-
ments the given C++ classes with a simple assertion
checking scheme and uses CBMC [4] as model
checker.

4) In two case studies, we evaluate the practical ap-
plicability of EASY and show that our equivalence
checking algorithm outperforms our previous version
NSMC [11].

The remainder of the paper is structured as follows: first,
we present related work in Section II and preliminaries in
Section III as well as the data structures used for our algorithm



in Section IV. Then, the core algorithm of EASY is proposed
in Section V. Lastly, we present two case studies in Section VI.
Section VII concludes.

II. RELATED WORK

ESL [2] design and verification was introduced as an
emerging design methodology with the intend to allow for
fast development, verification, and validation. The heart of
ESL is a flexible modeling language. For this purpose often
SystemC, HandleC, C++, or Java are used. In this work,
we propose a light-weight modeling framework for hardware
designs on the ESL. Instead of introducing a new language,
the ESL descriptions are implemented in C++ assuming that
syntax and semantics of C++ is familiar to many hardware
and software engineers and, thus, serves as a suitable ESL
modeling language. A hardware design is modeled as a C++
class, where methods correspond to operations and member
variables define the system state. A mapping that defines cor-
responding operations of two ESL descriptions, respectively,
has to be provided by a user to deal with structurally different
designs.

Functional equivalence checking plays an important role
in EDA. Its immediate application is verifying two hardware
designs before and after changes, e.g., when optimizations
or logic synthesis were applied. Today, RTL-to-RTL equiv-
alence checking is typically available in commercial EDA
tools. For ESL-to-RTL equivalence checking, several solutions,
e.g., [3], [8], [10], were suggested in academia. Bounded
model checking [3] was used to show equivalence of a C
program and a Verilog design without focusing on timing. A
cycle-accurate data-flow graph [8] that combines an RTL and
an ESL description into a miter was suggested for equivalence
checking. Functional equivalence checking can be used on the
miter utilizing reachability analysis or induction. Moreover,
Leung et al. [9] propose a translation validation technique for C
to Verilog. As an optimization, equivalence-point detection [6],
[1], [7] has been proposed.

PDR [5] (also known as IC3) has recently been proposed
as an effective unbounded model checking technique for reac-
tive hardware designs. The algorithm systematically generates
counterexamples to strengthen an abstraction of the reachable
states, while in contrast to abstraction techniques the transition
relation of the system is kept precise. EASY exploits this idea
to generate an invariant; however, our algorithm is tailored to
functional equivalence checking of ESL descriptions.

III. PRELIMINARIES

In this section, we introduce a variant of Mealy trans-
ducers [12] to model hardware modules and characterize the
functional equivalence of two Mealy transducers based on their
input/output behavior.

Definition 1. A Mealy transducer M = (S, Sy, X, Y, ¢, ) is
a tuple, where S is a finite non-empty set of states, Sop C S is
the finite subset of initial states, X is the input alphabet, Y is
the output alphabet, ¢ : S x X — S is the transition function,
and ¢ : S x X — Y is the output function. |

For an input z = xpx1...2, € X*, we say that y =
Yoy1.--Yn € Y™ is an output of M if there exists a state

sequence $gsi-..Spt1 € S, such that Vi € Ng,i < n :
(i, 5) = i1 NY(si,5) = y5 , e,

50 %0 /Yo 51 =YL T /Yn Snid

where sg € Sy and s; € S for 0 < i < n + 1. We write
y = M (x), where M (z) is the output of M for the input x.

In contrast to the standard definition of [12], our definition
of Mealy transducers does not define any accepting or final
states, but assumes that all states are accepting.

IV. DATA STRUCTURES

In this section, we will describe how the hardware modules
on ESL are modeled and what data structures we use to support
the equivalence check. In Section IV-A, we will show how the
hardware modules given as C++ classes are described as Mealy
Transducers. Section IV-B will introduce lockstep machines,
which are used to combine two Mealy transducers into a single
new Mealy transducer, and in Section IV-C we will show how
logical formulas are used to reason over subsets of states.

A. Modeling Hardware Modules

We model hardware modules on system level as C++
classes. The member variables of a class define the state of
the hardware module, whereas the public methods of the class
with its arguments define terminating operations that can be
executed to change the state and describe the inputs of the
according Mealy transducer.

Example 1. For this example, consider two different imple-
mentations of a modulo-4 counter. Both use a member variable
counter which stores the current state and is initialized to
0 as well as a method countUp to increase counter. The
first counter, the modulo-counter, uses a modulo operator to
stay within the counting range when counting up, whereas the
latter, the if-counter, uses a conditional statement to reset the
counter to 0 when the value 3 is increased.

Suppose that Int, = {0,1,...,k — 1}. The Mealy trans-
ducer Mmod = (Int256; {0}, {CountUP}’7 Int4» ¢moda "/Jmod)
and M = (Intasg, {0}, {countUp}, Intass \ {4}, i, ¥ir)
model the input/output behavior of the modulo- and the if-
counter, respectively, where for ¢ € Intosg

Ymod (countUp, i) = (i + 1)%4 and

. 0, =3
Vir(countUp, i) = {z +1, else.

Finally, the next-state function and the output function are
equal, i.e., Ymod = Pmod and Wis = ojs. |

The state spaces and transition functions of the two counter
implementations are visualized in Fig. 1 (M4 on the top and
Mis on the bottom). Each node in the figure corresponds to a
possible state and each edge from u to v indicates that state v is
reached when the method countUp is executed in state u. The
initial nodes are marked with an additional incoming edge. The
output produced in each state is identical with the counter value
in the reached state. Both implementations behave equivalently
within the states reachable from their initial states.
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Fig. 1: Visualized state spaces and transition functions of
Minod (top) and Mis (bottom).

B. Lockstep Machine

We use a lockstep machine to describe the parallel execu-
tion of methods on the two considered hardware modules as
we want to check if both modules behave in the same way
when methods that should be equivalent are called.

Definition 2. Suppose that M; = (Sl,Sol,Xl,Yl,(bl,wl)
and My = (52, S0,, Xo, Yo, ¢2,19) are Mealy transducers. A
lockstep machine M, = (S, = S1xSa, Sy, = So, XSo,, Xx =
X1 X X5,Y, =Y] X Ya,0,,1,) is a tuple, where

. AN
Pu S X Xy = S, (<s”)’ (m”>) ~ <¢2(s”,x”)) and
. s’ x! (s, )
a2 Su X Xu 2 ¥, (<s”)’ (:r:”>) ~ <¢2(8”7JC’/)>-
]

Definition 3. Suppose that M, = (S, So,, X, Yi, 0, 1s) is
a lockstep machine and (§ C Sy, , A C X,) is a pair called a
correspondence mapping.

A state s = (¢/,s”) € S, is called safe under A iff
P1(s’,2") = o(s”, 2") for all (z/,2") € A.

Moreover, M, is called equivalent under (5, A) iff for all
finite sequences © = 123 ...x, € A" of methods and all
initial states sg € 6, M, reaches a safe state s,,, where s; =
qb*(si_l,xi) for 1 < ) <n. |

C. The Candidate Invariant and Learned Clauses

We use sets of clauses to describe sets of states. In a
vector similar to PDR, sets of clauses overapproximate states
reachable within a certain number of steps.

For better readability, we sometimes use a set of clauses
to describe a formula. In this case, the described formula is a
conjunction of all clauses within the set. In addition, sets of
states and formulas are sometimes used interchangeably. When
a formula is used in place of a set of states, the set contains
exactly all states that fulfill the formula. When a set of states
is used to describe a formula, the resulting formula is fulfilled
for a state iff that state is within the set.

Definition 4. A clause vector ? = FyF} ... Fy with highest
index N is a vector, where each F; is a set of clauses, i.e.,
logic formulas.

A set F; is called the ¢-th frame and is meant to over-
approximate all states that are reachable within ¢ steps, i.e.,
by executing ¢ methods m € A starting from an initial state
sp € 0.

We define a formula F;1 as a conjunction over all clauses
of FZ', FZ'+1, ey FN, 1.€., FzT = /\je{i,i+1,...,N} /\CGFJ C.

A clause vector is used to formulate a candidate in-
variant to prove the equivalence of the lockstep machine
M, = (5S4, 50,, X«, Yi, ds, 1) under a correspondence map-
ping (4,A). The set Fp is a special case that describes the
initial states and thus, only contains § as a clause. While
advancing F', the clause vector always needs to fulfill two
properties:

Vie {0,1,...,N —1}Vs € {s € S.|F1 (s)} : s is safe (1)
Vi€ NoVf € AVs € S, : Fif (s) = Firt (0u(s, f))  (2)

Property 2 describes, that for all 7 € Ny, when any method
f € A is called in a state that fulfills F;1, the state that is
reached after the execution of f must fulfill F;,; 1. States
describe complete assignments of all member variables and a
state fulfills a formula if that formula evaluates to true under
that assignment. |

Lemma 1. When a clause vector contains an empty set at
position 4, i.e., F; = (), the according lockstep machine M, is
equivalent.

Proof: Since F; = 0, F;T= F;;11. As all states within
F;t can only reach states in F;4 1= F;1 by property 2, F;T is
an invariant. By property 1, all states within F;1 are safe and
thus all reachable states are safe and M, is equivalent. [ |

We use a model checker for individual steps during our
equivalence check. A call to the model checker uses a pre- and
a post-hypothesis. These hypotheses are formulas over the vari-
ables of the checked models. A modelcheck with such a pair of
hypotheses checks if all states that fulfill the pre-hypothesis are
safe and reach a state that fulfills the post-hypothesis after the
execution of any method f € A. When doing a modelcheck,
we verify the existence of a counterexample for each method
separately but consider all possible arguments of that method
nondeterministically. A call to the model checker is given as
Check(hypre, Rpost, M1, Ma, A).

The call creates a miter for our underlying model checker
and returns a counterexample. If no counterexample exists, the
checker returns L. As we usually cannot know if a counterex-
ample describes a non-safe state or a reachable state that does
not fulfill the post-hypothesis, we can use the post-hypothesis
true to specifically check for non-safe states without utilizing
another interface.

V. EQUIVALENCE CHECKING ON ESL

The algorithm decides for two models, their correspon-
dence mapping, and a candidate invariant. The candidate
invariant can be true which would provide the algorithm no
additional knowledge about the models. It can be given man-
ually by the developer, who should have detailed knowledge,
or can be generated by third-party tools.
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Fig. 2: Checking equivalence between M; and Mo under
(6,4)

The basic algorithm is sketched in Fig. 2. We start by
checking if the initial states § of the lockstep machine are
safe. If they are not safe, the models are not equivalent.

If they are safe, we check if the candidate invariant H
overapproximates all states that are reachable in one step by
executing methods from A. If this is not the case, we adjust H
and remove clauses that are not fulfilled by all states that are
reachable in one step. This a%ustment is important to ensure,

that the initial clause vector F' = [§, H] fulfills property 2.

After initializing N to 1, we check if all states in Fiy are
safe. If there are states in F'y that are not safe, there exists
a counterexample ce that describes an unsafe state. We try to
block ce and similar assignments by adding according clauses
to without breaking property 2. If this is not successful,
the detected unsafe state is reachable and the models are not
equivalent. Otherwise, we repeat the process with the modi-
fied F N-

If all states in Fy are safe, we increase the length of ?
by 1 and try to propagate the clauses as far towards Fly as
possible. If there exists an F; within the clause vector that is
empty afterwards, we have proven equivalence according to
Lemma 1. Otherwise, we check F'y for safe states again.

Example 2. Consider the counters from Example 1. Both
counters are initialized with 0, ie., 6 = {(0,0)}, an
both counters use the function countUp, ie., A =
{countUp, countUp}. We want to provide a candidate invari-
ant to speed up the process. We try to provide an upper limit

for the counter, but chose faulty values. In addition, we do
not add equality to the candidate invariant. This results in the
bad candidate invariant ¢ = mod < 2 A if < 2, where mod
and if denote the member variables count of two counter
implementations, respectively. This results in two clauses for
the set H: mod < 2 and if < 2.

When we start the algorithm, we check if all initial states in
0 are safe. As both counters return 1 when countUp is called
in the initial state, they are safe.

Next, we check if all states that are reachable within one
step fulfill the candidate invariant. As the counter can only
count up to 1 within one step, the candidate invariant holds
in these states and we do not modify H. Then, F' and N are
initialized and we check if all states in Iy are safe. This is not
the case and we find a counterexample ce = (mod = 1 A if =
2). As ce is not reachable from the initial state, we can add
—ce to I or generalize ce and add (if = mod) such that

Fy = {mod < 2,if <2,-(mod =1 Nif =2),if = mod}

When checking again, we realize that Fy is safe now and
increase [N by 1. We then try to propagate clauses. Executing
countUp in a state that fulfills F} 1 leads to a state where
both counters are equal and the detected counterexample is
not fulfilled. Thus, we can move (mod = if) and —(mod =
1 Aif = 2) to F». However, we cannot move mod < 2 and
if <2 as we can reach counter values above 2.

When we check if the states within F)y = F5 are safe, we
find a counterexample ce = (mod = 6 A if = 6). Since we
already know that the values are equal, we can safely remove
one assignment from the counterexample, resulting in ce =
(mod = 6). We cannot reach a state that fulfills ce from a state
that fulfills F11. Thus, we can add —ce to F5. In addition, we
generalize ce and can even add mod < 3 to Fb, resulting in

Fy = {=(mod =1 Aif = 2),mod = if, ~(mod = 6),mod < 3}

Now, Fy, describes exactly all reachable states of the
lockstep machine. We find out that all states within Fly are
safe and try to propagate clauses. Since for each clause ¢ in
F5, that clause is fulfilled after calling any function from a
state that fulfills F5T, we can move ¢ from F5 to F3. Since we
can move all clauses, 5 = () afterwards and we return that
the models are equivalent under the invariant F5t. |

In the following Sections V-A to V-D, we will describe the
algorithm, starting at the top level and decreasing the level of
abstraction with each section. In the final Section V-E, we will
discuss features of the algorithm.

A. Top Level Algorithm

The top level algorithm of EASY is shown in Algorithm 1.
It decides if two C++ classes given as Mealy transducers M
and M, are equivalent under a correspondence mapping (6, A).
To speed up the algorithm, a candidate invariant is given as
input as well. If the models are equivalent, an invariant is
returned. Otherwise, the algorithm returns L. In this case, Fiy
contains a reachable counterexample and describes a way
to reach that counterexample.



Algorithm 1: EASY-PDR

Algorithm 2: BLOCK

input : two Mealy transducers M; and M, of C++
classes, a correspondence mapping (4, A), and
a set of expressions H that describes the
candidate invariant
output: an invariant if M; and M, are equivalent under
(6,A) or L otherwise
/ICheck if initial states are safe
if Check(d, true, My, My, A) # L then
| return L
end
//Check candidate invariant for first step
ce := Check(6, H, My, My, A)
while ce # 1 do
//Weaken candidate invariant if needed
H:=H\{ce€ H | c¢blocks ce}
ce .= Check(&, H, Ml, ]\427 A)
end
//Fy are the initial states
F . push(6)
//F} is the candidate invariant
F. push(H)
N:=1
while true do

o NN AR W N -

et
| ST

-
s W

—
N W

18 /ICheck for unsafe states

19 ce := Check(Fy, true, M1, Ma, A)

20 if ce # L then

21 //Recursively block the counterexample
2 if - BLOCK(TClause(—ce, N), ?) then
23 | return L

24 end

25 else

26 /IA new frame and propagating clauses
27 F. push(0)

28 N:=N+1

2 F := PROPAGATE(F, N)

30 if 3i < N : F; = () then

31 | return Fif

32 end

33 end

34 end

In the beginning of the algorithm, we check if the initial
states 0 given by the correspondence mapping are safe. This is
done in line 2 by using Check from Section IV-C. If a non-safe
initial state exists in &, the models cannot be equivalent and
L is returned in line 3.

In lines 5 — 11, it is checked if the candidate invariant
overapproximates all states that are reachable from an initial
state within a single step and weaken the candidate invariant
if needed.

After these initial checks, we initialize the vector ? as
[0, H] and N as 1. N describes the last index of F'.

The following loop in lines 17 — 33 will refine the candidate
invariant until equivalence is proven or a real counterexample
to equivalence is found.

: a TClause c0 that contains a clause c0.clause
and a number c0.frame where c0.clause needs
to be fulfilled in c0.frame and a clause vector

input

output: a Boolean value that is true iff the
counterexample was blocked

PrioQ<TClause>Q

@ . add(c0)

while @ .size > 0 do

¢:= @ .popMin()

f = c.frame,cl := c.clause

//Detected a real counterexample?

if f = 0 then return false

if — follows(c, F¢1) then

C := GENERALIZE(cl, F¢t, Fr117)

/Ns C following from the previous frame?

ce := Check(Fy_11,C, My, M2, A)

o N AN R W N =

—
L —]

12 if ce = | then

13 | Fp:=F;uC

14 else

15 /lce and C need to be checked
16 Q . add(TClause(—ce, f — 1))
17 foreach ¢’ € C do

18 | Q.add(TClause(c’, f))
19 end

20 end

21 end

22 end

23 return true

First, we check if the current approximation Fx1 contains
only safe states in lines 19 and 20. If an unsafe counterexample
ce exists, we try to recursively block the detected assignment
by calling the algorithm BLOCK which is described in Section
V-B. The input of BLOCK is a timed clause TClause. In this
case, the clause is the negated counterexample and the frame
is N since we detected the unsafe state in F. If BLOCK
does not succeed in blocking, ce describes a reachable non-
safe state and M; and M> are not equivalent. This is returned
in line 23. Otherwise, ce and similar assignments are blocked
in F N-

If no unsafe states exist in Fjy, we have proven, that no
safe state is reachable in N steps. We add another frame to
consider states that are reachable in NV + 1 steps. Next, the
algorithm PROPAGATE described in Section V-C is used to

move clauses within F' as close to Fy as possible.

If an empty set F; with ¢ < N exists after the propagation,
the models are equivalent according to Lemma 1 and F;7 is
returned as invariant in line 31.

B. Blocking Unsafe States Recursively

The algorithm BLOCK is used to block a detected coun-
terexample in F'. The counterexample is given as a TClause
c0, that contains a clause cO.clause and a frame number
c0.frame. The clause cO.clause describes the negated assign-
ment of the counterexample and the number c0.frame describes



Algorithm 3: PROPAGATE

Algorithm 4: GENERALIZE

input : a clause vector ? and a number N that
describes the size, of
output: a clause vector % with propagated clauses
foreach i :=1,....N — 1 do
foreach c € F; do
if Check(Fit, ¢, M1, M3, A) = L then
Fi+1 = F1'+1 U {C}
Fi = FZ \ {C}

end
end
end

return ?

o X TN R W N -

the element of ? where cO.clause needs to be blocked. The
algorithm returns true iff the counterexample was successfully

blocked and all states that are reachable within c0.frame steps
fulfill cO.clause.

The algorithm uses a priority queue () that initially only
contains c0. While () is not empty, we pop one element ¢ of ()
with the lowest frame number c.frame in line 4 and initialize
f and cl as c.frame and c.clause, respectively in line 5. If
c.frame is 0, we have detected a reachable counterexample, as
the generated clauses describe a path that leads from an initial
state to a state that does not fulfill c0.clause and we return
false in line 7.

Otherwise, we check if ¢ follows from the clauses of its
current frame f. If ¢ follows, we do not need to analyze it
further as we know that states that are reachable in f steps
fulfill c.clause. If ¢ does not follow, we generalize ¢ to also
consider similar assignments in line 9 and get a set C' of
clauses.

If all executions of methods in states that fulfill Fy_; 1
lead to states that fulfill C, all states that are reachable within
f steps must fulfill C'. Otherwise, we need to check if the
detected counterexample is blocked in the previous frame f—1
and add the according TClause to @ in line 16. As we did not
show that states that are reachable in f steps fulfill C, we need
to put the according TClauses back on () in lines 17 — 19.

When @ is empty, the loop terminates. The vector ? has
been modified to ensure that all states that are reachable within
c0.frame steps fulfill cO.clause and the algorithm returns true.

C. Propagating Clauses

The algorithm PROPAGATE modifies F by moving
clauses within the sets as far towards Fy as possible while
keeping property 2. The algorithm is shown in Algorithm 3.

The outer loop is executed for each F; except for Fj
because this is the special case of initial states and the last
set F)y as a clause cannot be moved further than Fy. Starting
with ¢ = 1, we check for each clause ¢ € F;, if we can move
c to F;y1 in line 3. The clause ¢ can be moved, if all states
that are reachable in a single step under the pre-hypothesis
Fit fulfill c. Since c has been moved to Fj 1, it is possible to
move c even further as F;; is checked in the next iteration of

input : a clause c that is a negation of an assignment to
all variables and two hypothesis hpe and hpos
output: a set of clauses C that describes the
generalized clause ¢
1 ¢’ := REMOVE-NO-CARE(c, hpre; hpost)
2 C:= {c'} UCHECK-EQUALS(c', hpre; hpost)
3 C:= CUCHECK-INTERVALS(¢, hpre, Ppost)
4 return C

the loop. As an optimization, in our implementation we check
if we can move all clauses from F; before checking for each
clause individually. This speeds up the algorithm significantly,
especially if a good initial candidate invariant was chosen.

Finally, the modified vector I’ is returned in line 9.

D. Generalizing Counterexamples

Algorithm 4 is used to generalize a counterexample, so
similar assignments can be considered at the same time. The
algorithm receives a clause c¢ as input. The clause c is a
negated assignment of values to all variables of the two models.
Furthermore, the pre- and post-hypothesis hpe and hpog that
were used to generate the assignment are given as well. The
return value is a set of clauses C' that describes the generalized
clauses based on c.

Similarly to NSMC, the algorithm checks for irrelevant
assignments, equal variables, and tries to limit variables to
an interval instead of specific values. Unlike NSMC, a set of
learned clauses is returned instead of a single logical formula.

The specific operations used in GENERALIZE are similar
to those used in NSMC. Different from NSMC, we use binary
search to check for intervals which results in a slightly better
runtime in our experiments.

E. Discussion

The described algorithm can easily learn new clauses by
using the provided heuristics in the algorithm GENERALIZE.
In the current implementation, equality of variables or certain
intervals can easily be detected and speed up the decision if
these kind of clauses can describe an optimal invariant, i.e.,
an invariant that suffices to show equivalence inductively.

Furthermore, if there are faulty clauses in the initial can-
didate invariant, these are left within the sets with lower
index during propagation and are easily dropped from the final
invariant.

Compared to NSMC, we do not consider a single logical
formula, but handle a set of clauses. This allows a finer control
over the current candidate invariant and enables actions like
dropping problematic clauses, which is not possible in NSMC,
where the algorithm would need to learn all problematic states
instead, which causes a significant overhead up to non-feasible
runtimes. To handle the clauses, the algorithm is structured like
PDR.

Like PDR, we create an empty set in F; when we have
successfully detected an inductive invariant as PROPAGATE
and BLOCK are similar to PDR with some adjustments



to C++ setting and the initial candidate invariant. However,
the algorithm GENERALIZE is different from PDR as we
use different heuristics to generate insight into the modules
while PDR generates cubes that describe partial assignment
to the boolean variables. On the other hand, EASY considers
different types of variables and considers relations that are
specific to those types, e.g., upper and lower bounds of integer
variables.

As further optimization, PROPAGATE, BLOCK, and
GENERALIZE could easily be parallelized similar to PDR.

VI. CASE STUDIES

In this section, we present two case studies and compare
EASY’s performance to the algorithm NSMC [11]. The first
casy study attempts to check functional equivalence of two
counter designs similar to Example 1. The second case study
is dedicated to equivalence checking of an arithmetic unit (with
and without pipelining) of a simple processor design.

All experiments were conducted on a Lenovo T43 with an
Intel Core i5-3320M CPU with 2.6GHz and 8GB of RAM
running Windows 7 Professional 32bit. As model checker, we
use CBMC v4.9 [4]. We consider a time limit of 6 hours
for finding an inductive invariant and report T/O if no such
invariant is found within this time limit.

A. Counter

Unlike the counters from Example 1, we use integer
variables and increase the maximum value of the counter
to 9,999,999 instead of 3. In addition, we also consider up
to 10 parallel counters in each model that can be accessed
individually.

For these experiments, we consider different candidate in-
variants. The first candidate invariant optimal describes exactly
all reachable states with

optimal = /\

1<i<#counters

(mod; = if;) N0 < mod; < 9,999,999

where mod, and if; describe the i-th counter of the modulo-
and if-counter, respectively.

The second candidate invariant is true which is the weakest
possible overapproximation. This candidate is fulfilled for all
possible states. Since the counters behave differently outside of
the reachable range and cause faulty output if the counters store
different values, the algorithms need to adjust this invariant to
be true only for reachable states.

The final candidate invariant lowBound is similar to optimal
but contains the faulty maximum value of 300 and thus
underapproximates the reachable states:

lowBound = /\ (mod; = if;) N0 < mod,; < 300

i€{1,...,#£counters }

While this candidate invariant is false for all non-reachable
states, it is also false for most reachable states. As such, the

— EASY

100 - N

Runtime in sec

Number of parallel counters

Fig. 3: Runtimes of NSMC and EASY on the counter models

[Load inputs]—»[Compute result)—»

(a) Detailed implementation

(b) Abstract implementation

Fig. 4: Sketch of implemented processors

algorithms need to weaken the candidate invariant to include
all reachable states.

The experiments in Fig. 3 show, that equivalence can be
shown within less than a second when the candidate invariant
optimal is used and also show that the unneeded overhead
that results from the PDR-like implementation from EASY is
marginal.

In the next experiment, the candidate invariant is true. In
these experiments an invariant needs to be learned. In these
experiments, we can see that intervals are detected faster when
using binary search. For one parallel counter, EASY needs 134
of its 162 calls to CBMC to find the optimal interval while
NSMC requires 253 of its 260 calls.

The final experiment shows a case where EASY is signifi-
cantly better than NSMC. The candidate invariant lowBound is
an underapproximation of the reachable states. Both algorithms
handle this problem quite differently and NSMC times out in
all cases while EASY learns a correct invariant quickly by
dropping the problematic clauses.

B. Processor

For the processor models, we described a very basic
processor with a pipeline of length 3. The processor has
4 registers that can store 3-bit values. It can handle three
operations: ADD, SUB and NOP. The implementations provide
getter-methods for all registers and a nextStep-method to load
a new operation that is given as input and execute one step of
the pipeline.



TABLE I
Runtimes and CBMC calls on the processor models
Candidate Invariant NSMC EASY
Time  #Calls Time  #Calls
[s] [-] [s] [-]
proc-optimal 0.4 3 1.1 4
1-regNotEqual 10.0 62 11.6 50
2-regNotEqual 16.0 101 19.8 96
3-regNotEqual 31.0 175 28.2 142
4-regNotEqual 35.0 201 353 188
noResult T/O - T/O -
wrongPipeEqual T/O - 21.1 104

The models are sketched in Fig. 4. While the detailed
model loads the input values, computes the result, and finally
writes the result back in three steps, the abstract model just
computes everything within the last step.

To ensure that these models behave equivalently, we block
new operations that could lead to conflicts, i.e., use input or
output registers that are currently used by other operations
on the pipeline. When such an operation is used as input for
nextStep, we put the operation NOP in the pipeline instead.

An optimal candidate invariant for this example contains
the information that corresponding variables in the two models
are equal, all values need to be within their valid ranges, there
are no conflicts in the pipeline, and the additional variables in
the detailed model contain correct values.

Splitting the described candidate invariant into clauses
leads to 95 clauses. For the experiments, we modify the
optimal candidate invariant proc-optimal by

1) Removing the equality of 1 < ¢ < 4 registers: i-
regNotEqual

2)  Removing the correctness of the result in the detailed
model: noResult

3) Adding a faulty equality of an input of the sec-
ond operation and the output of the third operation:
wrongPipeEqual

The candidate invariant proc-optimal describes exactly all
reachable states and therefore should support the equivalence
check significantly. For the candidates i-regNotEqual, the
algorithms need to detect the equality of the corresponding
registers.

Removing the correctness of the result from the candidate
invariant is a lot harder than removing equality of registers as
the correctness of the result is complex to describe and depends
on multiple factors.

Table I shows the runtime and the number of CBMC calls
of NSMC and EASY for the different candidate invariants.

Proving correctness for optimal and the candidate invariants
i-regNotEqual shows again, that EASY has a small overhead
compared to NSMC but due to low level optimizations like
the binary search becomes faster with more difficult candidate
invariants.

Both equivalence checkers cannot decide equivalence for
the hypothesis noResult as the used heuristics of the general-

ization are not applicable in this case and states are excluded
from the candidate invariant one by one.

Finally, the underapproximation wrongPipeEqual timed out
when run by NSMC but is decided within 21.1 seconds by
EASY as EASY can easily detect the wrong clause and will
not propagate it.

In summary, EASY has a little overhead that is not needed
in some cases but only increases the runtime slightly compared
to NSMC. However, EASY can decide equivalence in cases
that NSMC cannot decide within the time limit.

VII. CONCLUSION

In this paper, we presented EASY, an algorithm for function
equivalence checking of ESL description written in C++. The
algorithm generates an inductive invariant in a style similar to
PDR when two ESL descriptions are functionality equivalent
or produces a counterexamples that can be used as a starting
point for debugging. We proposed an implementation of EASY
on top of the standard bounded model checker CBMC and
presented two case studies to show the applicability of the
approach.
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