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Abstract— In this paper we study the testability of circuits de-
rived from Binary Decision Diagrams (BDDs) under the bridg-
ing fault model. It is shown that testability can be formulated in
terms of symbolic BDD operations. By this, test pattern genera-
tion can be carried out in polynomial time. A technique to im-
prove testability is presented. Experimental results show that a
complete classification can be carried out very efficiently.

I. INTRODUCTION

While classical approaches to logic synthesis first considered
a technology independent optimization followed by a mapping
to a target architecture, modern design flows try to combine the
different levels. As a unifying data structure Binary Decision
Diagrams (BDDs) have been proposed, since they allow ab-
stract function representation, but can also be directly mapped
to netlists using the one-to-one correspondence between the
Shannon decomposition and MUX networks [6]. This allows
to efficiently realize the resulting BDD circuits in multiplexor
based design styles like e.g. Pass Transistor Logic (PTL) [11].

On BDD circuits and BDDs, respectively, many operations
can be carried out efficiently, like power estimation or consid-
ering layout aspects. The testability of BDD circuits has inten-
sively been studied under various fault models, like stuck-at,
cellular, or gate and path delay [3, 2]. Recently, in [7] a tech-
nique has been proposed that ensures full testability under the
stuck-at fault model and path delay fault model.

Although the stuck-at fault model and path delay fault model
are the standard fault model, the frequently occurring faults in
some technologies are unintentional shorts, denoted as bridging
faults [1, 8]. So increasing attention has been given to the area
of modeling and testing of bridging faults [9].

In this paper, BDD circuits are studied and their bridging
fault testability is analyzed. For circuits derived from BDDs
the complete test pattern generation process for bridging faults
is formulated in terms of symbolic BDD manipulations. These
symbolic operations allow to consider all possible test patterns
at the same time. This can be beneficial for compaction of a
test pattern set. Test pattern generation has been proven to be
a difficult problem and tools for test pattern generation have
exponential worst-case behavior. But for BDD circuits poly-
nomial upper bounds are proven in this paper, and it is shown
by experiments that the technique from [7] also improves the
testability for bridging faults.

II. PRELIMINARIES

A. Binary Decision Diagrams and Circuits
As is well-known a Boolean function �������
	�� can be

represented by a BDD which is a directed acyclic graph. The
Shannon decomposition
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is carried out in each non-terminal node 0 with the low-edge
pointing to � � � and the high-edge pointing to � ��� . This node is
labeled with variable 1325476�1 � 0 $ �8
 � . The terminal nodes de-
note the constant Boolean functions � and - and are labeled by� and - , respectively. A BDD is called ordered if each variable
is encountered at most once on each path from the root to a ter-
minal node and if the variables are encountered in the same or-
der on all such paths. In the following the order � 
%&(',
�9:'*;+;*;�
 � $
is considered. Based on this variable order a level is assigned
to each node 0 , where

136�0<6=1 � 0 $ �
> � if 0 is a non-terminal node

and 132?4@6=1 � 0 $ ��
 �" � � if 0 is a terminal node

A node with 1A6�056=1 � 0 $ � � is on the highest level, while terminal
nodes are on the lowest level.

A BDD is called reduced if it does not contain isomorphic
subgraphs nor vertices with both edges pointing to the same
node. Reduced and ordered BDDs are a canonical represen-
tation since for each Boolean function the BDD is uniquely
specified. For functions represented by BDDs efficient manip-
ulations can be carried out [5].

B. BDD Circuits
It is well-known, that BDDs directly correspond to multi-

plexor based Boolean circuits, called BDD circuits in this pa-
per. More exactly: BDD circuits are combinational logic cir-
cuits defined over a fixed library. As proposed in [3], we con-
sider two libraries in the following (see Figure 1):

1. MUX: BDD nodes are substituted by multiplexor cells.
Internal signals of these cells are not considered.

2. STD: BDD nodes are substituted by the AND-, OR-,
NOT-realization of the Shannon decomposition.

Remark 1. For BDD circuits the library STD can be consid-
ered as a worst-case. The realization of the circuit is much
more efficient in multiplexor based design styles as e.g. Pass
Transistor Logic.

The number of multiplexors in a BDD circuit B is denoted
by C BDC and considered as the size of the circuit. A line E that
is an output of a multiplexor in the BDD circuit corresponds to
a BDD node or an edge in the BDD. For simplicity the BDD
node and the edge are also denoted by E . The function of such
a line in terms of primary inputs is denoted by � � E $ . For any
line F in the circuit G � F $ denotes the multiplexor (BDD node,
edge), where F belongs to.

C. Stuck-At Fault Model
In some situations the reduction of bridging faults to stuck-at

faults is useful. A fault in the Stuck-At Fault Model (SAFM) [4]
causes exactly one input or output pin of a node in the circuit to
have a fixed constant value (0 or 1) independently of the values
applied to the inputs of the circuit. This is denoted by s-a-0 or
s-a-1, respectively.
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Fig. 1. BDD node, over MUX and STD
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Fig. 2. Bridging Fault

D. Bridging Fault Model
Bridging Faults (BFs) [12] are caused by shorts between nor-

mally unconnected signal lines [10]. Since the lines involved in
a short become equipotential, all of them have the same logic
value. For a short line E , we distinguish between the value
one could actually observe and the value of E as determined
by its source element; the latter is called driven value. Figure
2 shows a general model of a BF between two lines E and F .� � E�' F $ is the function introduced by the BF and has the prop-
erty

� � E�'�E $ � E . The fan-out of
�

is the union of the fan-outs
of the shorted signals. Note that the values of E and F in this
model are their driven value, but these are not observable in
the circuit. When the two shorted lines have opposite driven
values, one value (the strong one) overrides the other. If 0 is
the strong value, then

� � - ' ��$ � - , and the function introduced
by the BF is AND. The fault is named AND BF. In this paper
we consider only AND BFs. The results for OR BFs can be
obtained by similar argumentation (the strong value is 1). Mul-
tiple BFs are detected by tests for single BFs [12]. Therefore
only single BFs are considered in this paper.

For convenience other functions are defined. In the follow-
ing � detect � E ' F $ denotes the conditions to set line E to the value- and F to the value � at the same time in the circuit without
fault. Note, that � detect � E�' F $��� � detect � F�'�E $ . The condition
necessary to propagate the value of a line E to a primary out-
put � is denoted by � propagate� � E $ . Under the assumption that the
fault does not create feedback loops or destroy the propagating
path, the function � detect � F%' E $ ) � propagate� � E $ represents all test
patterns to observe the AND bridging fault between E and F at
output � . The problems with feedback loops and propagation
are discussed below.

III. BRIDGING FAULTS IN BDD CIRCUITS

To detect a BF between two lines E and F opposite logic
values are assigned to E and F and the lines are observed. If E
and F have equal values a BF between them has been detected.

In the following the complete test pattern generation for BFs
of BDD circuits is shown. Polynomial upper bounds for a
complete classification are proven. Intuitively the proof relies
on the following argumentation: The size of the BDD circuit
equals the size of the BDD. Functions � detect and � propagate for
lines in a BDD circuit can be calculated by synthesis operations
on the BDD. Also additional conditions to prevent feedback
loops are determined using BDD operations. The conjunction
of all conditions returns all possible input assignments to detect
the single BF between the two lines.

paths( � , � )
(0) if ( ���	�
� ) return � ;
(1) if ( ��
���
�������������
���
�������� ) return � ;
(2) if ( cacheLookup( � , � ) ) return cacheLookup( � , � );
(3) � = ��
���
�������� ;
(4) A= paths( � , ��� � );
(5) B= paths( � , � � � );
(6) � = createNewNode(  �! , A, B);
(7) cacheInsert( � , � , � );
(8) return � ;

Fig. 3. Calculation of paths
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Fig. 4. Example for the calculations of paths

A. Fault Detection
Consider a line in a BDD circuit over STD. This line directly

corresponds to (1) the output of a multiplexor, (2) a select input
of a multiplexor, (3) or an internal line of a multiplexor. In the
first two cases the function of this line with respect to the pri-
mary inputs is directly given by the corresponding BDD node
or the projection function of the select variable, respectively. If
the line is an internal line of a multiplexor, the function can be
calculated using at most two synthesis operations on a BDD.
The functions of internal lines are annotated in Figure 1.

Lemma 1. The function � detect � E�' F $ for any two lines E andF in a BDD circuit C over MUX or STD can be calculated in
polynomial time.

So far only the circuit without a fault has been considered
to adjust the values for fault detection. This is correct as long
as the faulty value on E does not influence the value on F (or
vice versa). The value of F is only influenced by E , if the cur-
rent assignment to the primary inputs selects a path in the BDD
from E to F . If E and F are both outputs of multiplexors this
can be checked directly on the BDD by the algorithm in Figure
3. The algorithm works in the recursive manner as other algo-
rithms that calculate synthesis functions on BDDs [5]. Calling
paths( E , F ) substitutes all paths in the BDD of F that do not
lead to E by zero and replaces E by one. A function is returned
that represents all assignments that establish a path from nodeF to node E (see Figure 4). The algorithm runs in time " � C BDC $
as in the worst case the whole BDD of F is traversed.

Let � paths# � E $ be the function returned by paths( E , F ). This
will be used in Section III.C to ensure that the expected values
occur during test pattern generation.

B. Fault Propagation
Consider a line E in a BDD circuit that is an output of a

multiplexor. The conditions to propagate the value of E to a
primary output � are calculated by calling paths( E , � ).
Lemma 2. Given a circuit line E corresponding to the BDD
node E and a primary output � corresponding to the BDD node
� . Then, � propagate� � E $ � � paths� � E $ for the corresponding BDD
circuit B based on MUX.



tpg( � , � )
(0) foreach primary output � �
(1) if ( � 
���
������ ����� ������
���
 � ��� ����� � ) exchange � , � ;
(2) �����
	 detect ����� ����
�	 propagate� ����� ;
(3) if ( � ���� � ) return � � ;
(4) ��� �
	 detect ����� ����
 	����������� � �"! ��� ����� ��
�	

propagate� ����� ;
(5) if ( � � �� � ) return � � ;
(6) #
(7) return � ;

Fig. 5. Test pattern generation

To propagate a line E that is a select input of a multiplexor the
data inputs of the multiplexor have to be set to opposite values
and the output of the multiplexor G � E $ has to be propagated.

Lemma 3. Given a circuit line E corresponding to a select
input of a multiplexor G � E $ with data inputs $&% and $ & and
a primary output � corresponding to the BDD node � . Then,� propagate� � E $ � � paths� � G � E $,$ ) � � � $ %�$(' � � $?& $�$ for the corre-
sponding BDD circuit B based on MUX.

Now, consider a line E in a BDD circuit over STD. Addi-
tionally to the propagation of the value of E along lines corre-
sponding to edges in the BDD further conditions are needed to
propagate E to the output of the multiplexor. Consider the mul-
tiplexer shown in Figure 1. Similar to the propagation of ) as
considered above, the condition for all other lines can also be
expressed using synthesis operations. This is summarized by
the following lemma.

Lemma 4. The condition � propagate� � E $ to propagate the value
of line E to the primary output � in a BDD circuit over MUX or
STD can be calculated in polynomial time.

C. Test Pattern Generation

To calculate test patterns the previously calculated functions� detect, � propagate and � paths are used. Test pattern generation for
an AND BF with respect to any two lines E and F that belong
to different multiplexors in the BDD circuit is carried out by
the algorithm in Figure 5, that also ensures that no feed-back
loops with non-stable value assignments occur. This algorithm
checks each primary output for a possible test pattern (line (0)).
Then, line (1) assures that line F is at the higher or the same
level as E afterwards as shown in Figure 6(a). Now, a feedback
loop may occur due to a BF, if a path from E to F is selected.
This loop can always be reduced to the circuit shown in Figure
6(b). Line F can not influence the value of E due to the struc-
ture of the BDD circuit. The inverter always occurs, becauseE and F are set to opposite values for test pattern generation.
If the test pattern sets E to zero, F becomes also zero and is
propagated. This possibility is checked by lines (2) and (3) of
the algorithm. Otherwise E has to be set to one and F to zero
to detect the fault. In this case selecting a feedback loop would
lead to a non-stable value of F . This is avoided by the condition� paths*,+ #.- � G � E $�$ in line (4) of the algorithm. For a more detailed
discussion on so called inverting BFs see [12].

The algorithm runs in polynomial time, because all of the
intermediate steps run in polynomial time and the outer loop is
carried out at most once for each primary output.

If both lines E and F belong to the same multiplexor addi-
tional checks for feedback loops have to be carried out. Also
the test pattern generation for OR BFs is symmetric to that of
AND BFs. Due to page limitation these cases are not shown.
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Fig. 6. Propagation

Theorem 1. Test-pattern generation for a given BF between
two lines in a BDD circuit over MUX or STD can be carried
out in polynomial time.

Besides showing the polynomial upper bounds for test pat-
tern generation, the previous lemmas also provide the neces-
sary steps to calculate test patterns for a BF in a BDD circuit.

IV. TESTABILITY AND REDUNDANCIES

In the previous section test pattern generation for BDD cir-
cuits was described. Now, the different types of BDD circuits
are considered in more detail and the possibility of redundan-
cies is analyzed. The testability issues are different for BDD
circuits over MUX and STD. Additionally the testability can
be increased, if the direct mapping of BDDs to multiplexors is
enhanced by the technique MuTaTe introduced in [7].

A. BDD Circuits over MUX or STD

BDD circuits over MUX only contain lines corresponding to
nodes or to primary inputs. For two lines E and F that corre-
spond to outputs of multiplexors there is always an assignment
which sets those lines to different values. Otherwise the corre-
sponding BDD node would have been reduced. Therefore a BF
between those lines is redundant, if propagation of the stuck-at
fault on one line fails. This can only be due to the restriction of
input values for fault detection. Propagation can be blocked in
two situations:

1. 136*056=1 � E $ ? 136�0<6=1 � F $ and � detect � E ' F $ �� - .
This can not happen (see Figure 6(a)). In this case vari-
ables on a path from F to the outputs are not in the support
of � detect. Propagation is always possible.

2. 136*056=1 � E $ ? 136�0<6=1 � F $ and � detect � F%' E $ �� - .
This case may occur and leads to a redundant BF if� detect � E ' F $ ��- .

A fault between a primary input � and another line E in
a circuit over MUX may also be redundant if fault propaga-
tion is prevented by fault detection. Additionally assigning
values to two primary inputs � & ' � 9 may prevent the possibil-
ity of setting the lines to opposite values, i.e. � detect � � &(' � 9 $ �� detect � � 9:' � & $ �.- .



Remark 2. The same problems arise for circuits over STD. Ad-
ditionally due to the structure of the realization of a MUX more
feedback loops may result from BFs leading to redundancies.

B. Increased Testability
In [7] the technique MuTaTe was introduced to retrieve BDD

circuits that are 100% testable under the stuck-at fault model
and the path delay fault model. Analogously to the “standard
approach” the circuit is generated by traversing the BDD and
substituting each node with a multiplexor cell. All nodes - also
the ones pointing to terminals - are substituted by complete
multiplexor cells. The terminal node 0 is then replaced by a
new primary input � (=test). Furthermore, � is connected to the
1-terminal of the BDD by an inverter.

In case of BFs this technique can not remove all redundan-
cies when internal lines of multiplexors are considered. Cases
where a given pair of lines can not be set to opposite values
remain. But propagation becomes more easy. By switching the
test input � all lines corresponding to edges of the BDD also
switch their value. This can be used to induce the stuck-at fault
in the multiplexor at the higher level instead of the lower one.
Thus, detection can no longer block propagation.

Lemma 5. In a BDD circuit over MUX generated according
to MuTaTe all BFs between two outputs of multiplexors are
testable.

Proofs are left out due to page limitation. For details about
MuTaTe we refer the reader to [7].

V. EXPERIMENTAL RESULTS

The algorithms described above have been implemented in
C. All experiments were carried out on a SUN Fire 280R with
3 Gbyte of main memory. The benchmarks are taken from
LGSynth93. For each circuit initially the BDD is constructed
and then mapped to the libraries MUX and STD. The technique
from [7] was applied to increase the testability of the circuits.

Results are reported in Table I. The first three columns show
the name of the circuit, the number of inputs and outputs. Col-
umn cells reports the number of multiplexors needed to realize
the circuit, this is equal to the number of nodes in the BDD. The
next three columns show the testability of MUX-based circuits.
In the first two columns the number of non-testable (und.) and
testable (det.) BFs is reported, if the circuit is mapped using the
method from [3] (BDD mapping). The next column shows the
number of BFs that remain undetected, if the approach from
[7] (MuTaTe) is used. For MUX based circuits only BFs be-
tween outputs of multiplexors, but no BFs containing select
lines are considered. The additional test input allows to always
switch the output values of multiplexors, such that propagation
becomes possible. According to Lemma 5 no redundant faults
between outputs of multiplexors remain.

Next, the testability of STD-based circuits is considered,
i.e. data for signals inside the multiplexors is given. Accord-
ing to the observations in Section IV.B, the circuits derived by
MuTaTe contain significantly less redundancies.

The CPU seconds for the ATPG process for [7] for all pos-
sible bridging faults between two lines is reported in the last
column. All internal lines of multiplexors are considered. The
times are quite small. Even classifying almost 40 million test
patterns for i9 takes less than CPU 10 minutes. Often less than
one CPU second is needed to generate all test patterns.

These results show the efficiency of the technique for BDD
circuits.

TABLE I
TEST PATTERN GENERATION FOR BENCHMARK CIRCUITS

MUX-based STD-based
[3] [7] [3] [7]

circuit inout cell und. det.und. und. det. und. time
alu2 10 6 180 15 22254 0 2032 198555 0 1.34
b12 15 9 100 35 4867 0 1618 55146 176 0.31
b9 41 21 191 140 16680 0 3541 212237 1 2.02
clip 9 5 167 48 19914 0 6348 1661561983 1.30
cmb 16 4 36 100 419 0 1945 5302 46 0.07
comp 32 3 173 200 23201 0 8518 209447 173 5.13
con1 7 2 20 7 189 0 184 1898 23 0.01
count 35 16 233 16 24636 0 5160 3156203060 2.91
cu 14 11 49 2 843 0 233 12158 18 0.07
decod 5 16 38 1 344 0 320 5125 28 0.03
duke2 22 29 553 40 158422 0 13691 1829887 179 17.25
e64 65 651928 01789974 0356516229902283583762.07
f51m 8 8 66 0 2792 0 217 25043 26 0.14
frg1 28 3 531 676 152433 0 51868 16805371186 39.68
i1 25 13 57 29 1040 0 452 17331 37 0.08
i9 88 632418 3643171225 0 98203342908346415529.11
misex2 25 18 134 21 7765 0 5828 94902 584 0.71
o64 130 1 131 64 8192 0 75 109059 1 7.85
parity 16 1 17 0 420 0 211 2429 0 0.03
rd84 8 4 42 3 1491 0 586 11188 60 0.08
seq 41 35247111433173053 0392144374556082443844.50
t481 16 1 83 6 5228 0 1190 45648 193 0.64
table5 17 151313 2411010477 0257238104300341599212.49
x1 51 35 660 533 222372 0 20473 2735556 0 31.65
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