Exact Synthesis of Ternary Reversible Functions using Ternary Toffoli Gates

Abhoy Kole*, P. Mercy Nesa Rani ${ }^{\dagger}$, Kamalika Datta ${ }^{\dagger}$, Indranil Sengupta ${ }^{\ddagger} \quad$ Rolf Drechsler §
* B. P. Poddar Institute of Management and Technology, Kolkata, India Email: abhoy.kole@gmail.com
${ }^{\dagger}$ National Institute of Technology Meghalaya, Shillong, India
Email: \{mercyranip, kdatta\}@nitm.ac.in
\ddagger Indian Institute of Technology, Kharagpur, India
Email: isg@iitkgp.ac.in
§ University of Bremen, Germany
Email: drechsler@informatik.uni-bremen.de

Abstract

Realization of logic functions using ternary reversible logic is known to require lesser number of lines as compared to conventional binary reversible logic. This aspect of ternary reversible logic has motivated researchers to explore various synthesis approaches in the past. Existing synthesis methods require additional lines (called ancilla lines) for synthesis, which is expensive from the quantum implementation point of view. There is no reported work for ternary reversible logic synthesis that require the minimum possible number of gates and also lines. This class of synthesis methods is called exact synthesis. In this paper two exact synthesis methods for ternary reversible logic have been proposed for the first time, one based on boolean satisfiability (SAT) and the other based on level-constrained heuristic search technique. A permutation representing a reversible ternary truth table is given as input, and a reversible circuit consisting of generalized ternary Toffoli gates that implements the permutation is obtained as output. Experimental studies have been carried out on various randomly generated ternary reversible functions.

Keywords: Ternary reversible logic, exact synthesis, boolean satisfiability, heuristic search

I. Introduction

Research in the area of reversible logic has been motivated by Landauer [1] and Bennett [2], and has drawn the attention of researchers for more than one decade in the search of an alternate technology that can provide very low power consumption. A number of synthesis approaches have been proposed for reversible circuits, that map a given function specification to a cascade of reversible gates. These methods can be broadly classified as Exact, which guarantee minimum cost solutions but are computationally very complex, and Nonexact, which do not guarantee optimality but can perform synthesis in less amount of time. Methods for exact synthesis have been explored for binary reversible circuits [3], [4], [5], [6], [7] mainly to compare the quality of the solutions generated by non-exact synthesis algorithms with respect to
the optimal ones. However, no such exact synthesis methods exist in the literature for ternary reversible logic.

The reversible gates as synthesized are typically mapped to gates from some well-known quantum gate library to evaluate the cost of implementation. Research in multivalued reversible and quantum computing have picked up recent years, because they promise low cost implementations both in terms of number of gates and lines [8], [9], [10], [11], [12], [13], [14], [15], [16]. The basic unit of information in a multivalued quantum system is called a qudit. For an n-valued quantum system, a qudit can be expressed as a linear superposition of the basis states $|0\rangle,|1\rangle, \ldots .|n-1\rangle$. A qudit for $n=3$ is referred to as a qutrit, which corresponds to a ternary quantum system with states $|0\rangle,|1\rangle$, and $|2\rangle$.

A number of works have been reported for the synthesis of logic functions using ternary reversible gates, which generates sub-optimal solutions and use various ternary reversible gates for synthesis. However, no exact synthesis method for ternary reversible circuits exists in the literature that guarantees minimum gate solutions. In this context, the present work proposes two exact synthesis approaches for ternary reversible circuits for the first time. The first approach is based on mapping the synthesis problem into a boolean 0 problem and then using a SAT solver to get the solution. The second approach is based on mapping the synthesis problem as a state-space search problem, and using level-constrained heuristic search to get the solution. Results show that the heuristic search based approach is better only for very small circuit instances as compared to the SAT-based approach.
The rest of the paper is organized as follows. Section II provides a background of ternary reversible logic and some existing synthesis approaches. Section III presents the SATbased exact synthesis approach, while section IV discusses the heuristic search based approach. Section V presents the experimental results, while section VI concludes the paper.

II. Background

In this section we briefly introduce ternary reversible gates and some the variations proposed in the literature, and some existing synthesis approaches for ternary reversible logic.

A. Ternary Reversible Functions and Gates

Definition 1. An n-input ternary reversible function f represents a bijection $f: T^{n} \rightarrow T^{n}$, where T denotes the set of ternary logic values $\{0,1,2\}$.

A ternary reversible function can be realized as a cascade of ternary reversible gates. Some of the ternary reversible gates that have been proposed in the literature are Toffoli gate, controlled-NOT gate, and NOT gate as shown in Figure 1.

- A ternary Toffoli gate $T:\left\{c_{1}, c_{2} ; t\right\}$ contains two control lines c_{1} and c_{2} and one target line t. The target line changes to $t^{\prime}\left(=t \oplus_{3} 1\right)$ when both c_{1} and c_{2} are in state $|2\rangle$.
- A ternary controlled-NOT gate $C N O T:\{c ; t\}$ contains one control line c and a target line t. Here also the target line changes to $t^{\prime}\left(=t \oplus_{3} 1\right)$ when c is in state $|2\rangle$.
- A ternary NOT gate always changes $\left(t \oplus_{3} 1\right)$ the state of the target line t.
Different versions of Toffoli gates are also available. In the present work we consider the one proposed in [17].

Fig. 1: Ternary reversible gates. (a) Toffoli gate, (b) controlledNOT gate, (c) NOT gate

In the literature three kinds of conditions under which a Toffoli or CNOT gate triggers have been mentioned [10], [11], [18]: (i) when all the controls are in state $|2\rangle$, (ii) when all the controls are in state $|1\rangle$, and (iii) when one control is in state $|1\rangle$ and the other in state $|2\rangle$.

To evaluate the cost of implementation, reversible gates are realized using elementary quantum gates (each of unit cost). For conventional reversible logic we usually use the NCV quantum gate library [19]. For ternary reversible gates, one of the commonly used quantum elementary gate is the Muthukrishnan-Stroud (M-S) gate [20], which is a 2-qutrit gate MS(C;t), defined as follows:

$$
\begin{aligned}
t^{\prime} & =Z(t), \text { if } C=|2\rangle \\
& =t, \text { otherwise }
\end{aligned}
$$

and depicted in Figure 2.
The state of the control line C remains unchanged. Z represents a unitary operation that can be one of $+1,+2,12$, 01 , and 02 , with the corresponding mappings illustrated in Table I.

Fig. 2: Muthukrishnan-Stroud (MS) gate

TABLE I: Truth table of MS-gate

Target	t^{\prime}				
	$\mathrm{Z}(+1)$	$\mathrm{Z}(+2)$	$\mathrm{Z}(12)$	$\mathrm{Z}(01)$	$\mathrm{Z}(02)$
$\|0\rangle$	$\|1\rangle$	$\|2\rangle$	$\|0\rangle$	$\|1\rangle$	$\|2\rangle$
$\|1\rangle$	$\|2\rangle$	$\|0\rangle$	$\|2\rangle$	$\|0\rangle$	$\|1\rangle$
$\|2\rangle$	$\|0\rangle$	$\|1\rangle$	$\|1\rangle$	$\|2\rangle$	$\|0\rangle$

A ternary Toffoli gate can be realized using M-S gates as shown in Figure 3, which only uses gates corresponding to $Z(+1)$ and $Z(+2)$.

Fig. 3: Ternary Toffoli gate using M-S gates

B. Existing Works on Ternary Reversible Logic Synthesis

In this subsection, we discuss a few significant works related to ternary reversible logic synthesis. Broadly various ternary reversible synthesis methods can be classified into three main categories viz., group theory based synthesis, Ternary Galois Field Sum of Products (TGFSOP) based synthesis and some miscellaneous approaches (like, based on genetic algorithm).

In [10] Li et al. presented the synthesis of ternary reversible circuits with the minimum number of ancilla lines and garbage lines. They have converted conventional ternary logic circuits into ternary reversible logic circuits and the permutations are obtained from the truth table. The 3 -cycle permutations are decomposed into the product of 03 -cycles. Then the 03 cycles are synthesized using ternary NOT gate and ternary Toffoli gate. Here, ternary Toffoli gate fires when the control inputs are 2. The merit of this approach is the number of ancilla lines and garbage lines are less in the realization of ternary half and full adders as compared to [12], at the cost of an increase in the number of gates.

In [15], Mondal et al. presented the synthesis of balanced ternary reversible logic circuits. Balanced ternary reversible logic consists of 3 states, $-1,0$ and +1 . They have proposed balanced ternary NOT, CNOT and C^{2} NOT gates. The realizations for full adder, half adder, single-trit multiplier and double-trit multiplier circuits are shown. The hardware complexity of synthesis has been reduced significantly using this approach.

In [13] Khan et al. proposed constant ternary literals for the variables to represent functions. They have also proposed
the composite ternary literals and reduced post literals. They used 16 Ternary Galois Field Expansions (TGFE) and three different types of ternary decision diagrams to realize ternary benchmarks for the first time.

In [21] Khanom et al. presented a GA based solution to realize ternary half adder using M-S gates. GA allows to find appropriate combination of the gates that realize ternary logic functions. Redundant gates presented in the synthesized circuit are eliminated using a post GA reduction process.

III. SAT Based Exact Synthesis

In this section we present a SAT based exact synthesis approach for ternary reversible circuits. This is basically an extension of existing SAT based exact synthesis approaches for binary reversible circuits to the ternary domain. The method exhaustively searches for an assignment of input variables satisfying constraints encoded in SAT formulation to realize a given function F_{z} using d number of Multiple Control Ternary Toffoli (MCTT) gates. In order to obtain minimal gate realization, the search starts with $d=1$ and continues incrementing the value of d until the specification become satisfiable. The problem encoding is similar to the approach presented in [5], [6]. For the sake of completeness, we reintroduce all the constraints and extend them to the ternary domain.
a) Encoding Toffoli gate: For an n variable ternary reversible function F_{z}, a Toffoli gate $T\left(\mathbf{C}^{k} ; \mathbf{t}^{k}\right)$ at depth k can be selected in $n .2^{n-1}$ ways where control (\mathbf{C}^{k}) and target $\left(\mathbf{t}^{k}\right)$ lines can be selected 2^{n-1} and n ways respectively. The selection vectors for control and target lines are encoded as follows:

$$
\mathbf{t}^{k}=\left(t_{\left\lceil\log _{2} n\right\rceil}^{k} \ldots t_{1}^{k}\right) \quad \mathbf{C}^{k}=\left(c_{n-1}^{k} \ldots c_{1}^{k}\right)
$$

for $0 \leq k<d$, where \mathbf{t}^{k} represents an integer between 0 to $n-1$ in binary format, and $\left(t^{k}+l\right) \bmod n$ is a control line if $c_{l}^{k}=1$.
b) Input/Output constraints: A ternary state z is realized as a pair of bits (x, y) representing the most and least significant bits respectively. For a given ternary reversible function F_{z} synthesized using d gates, the Boolean vectors representing the states of each circuit line are

$$
X_{i}^{k}=\left(x_{i(n-1)}^{k} \ldots x_{i 0}^{k}\right) \quad Y_{i}^{k}=\left(y_{i(n-1)}^{k} \ldots y_{i 0}^{k}\right)
$$

for $0 \leq i<3^{n}$ and $0 \leq k \leq d$, and the pair $\left(X_{i}^{k}, Y_{i}^{k}\right)$ represents input, output, or intermediate ternary state vector Z_{i}^{k} for $k=0, k=d$ or $0<k<d$, respectively. The constraints for input and output of the truth table are set as:

$$
\bigwedge_{i=0}^{3^{n}-1} X_{i}^{0}=i_{x} \wedge X_{i}^{d}=F_{x}(i) \wedge Y_{i}^{0}=i_{y} \wedge Y_{i}^{d}=F_{y}(i)
$$

where the pairs $\left(F_{x}, F_{y}\right)$ and $\left(i_{x}, i_{y}\right)$ represent the MSBs and LSBs of the given function F_{z} and n-variable input i, respectively.
c) Functional constraints: Depending on the input Z_{i}^{k} (X_{i}^{k}, Y_{i}^{k}) of the k-th gate $T\left(\mathbf{C}^{k} ; \mathbf{t}^{k}\right)$, the gate output $Z_{i}^{k+1}\left(X_{i}^{k+1}, Y_{i}^{k+1}\right)$ is computed as
$\bigwedge_{i=0}^{3^{n}-1} \bigwedge_{i=0}^{d-1} X_{i}^{k+1}=T_{x}\left(Z_{i}^{k}, \mathbf{C}^{k}, \mathbf{t}^{k}\right) \wedge Y_{i}^{k+1}=T_{y}\left(Z_{i}^{k}, \mathbf{C}^{k}, \mathbf{t}^{k}\right)$
where the functions $\left.T_{x}\left(Z_{i}^{k}, \mathbf{C}^{k}, \mathbf{t}^{k}\right)\right)$ and $\left.T_{y}\left(Z_{i}^{k}, \mathbf{C}^{k}, \mathbf{t}^{k}\right)\right)$ together realizes the functionality of the MCTT gate $T\left(\mathbf{C}^{k} ; \mathbf{t}^{k}\right)$ for the i-th truth table entry.
A MCTT gate $T\left(\mathbf{C}^{k}, \mathbf{t}^{k}\right)$ performs the operation $\left(Z_{i t}^{k} \oplus_{3}\right.$ 1) on the target line when all control lines are in state $|2\rangle$, i.e. $\bigwedge_{c \in C} Z_{i c}^{k}=2 \Rightarrow \bigwedge_{c \in C} X_{i c}^{k}=1 \wedge Y_{i c}^{k}=0$. Figure 4a shows a ternary CNOT gate. When the control line is in state $|2\rangle$, the target line changes as shown in Figure 4b.

(a) CNOT

$x_{i 2}^{k}$	$y_{i 2}^{k}$	$x_{i 2}^{k+1}$	$y_{i 2}^{k+1}$
0	0	0	1
0	1	1	0
1	0	0	0
1	1	\times	\times

(b) $Z_{i 2}^{k} \oplus_{3} 1$

Fig. 4: Operation of Ternary CNOT gate
Specifically, to realize a 3-variable ternary function, the following constraints for the k-th MCTT gate with $\mathbf{t}^{k}=$ (10) and $\mathbf{C}^{k}=(01)$ are added on i-th circuit instance corresponding to the i-th truth table entry.

$$
\begin{aligned}
\mathbf{t}^{k}=(10) \wedge \mathbf{C}^{k}=(01) \Rightarrow & x_{i 0}^{k+1}=x_{i 0}^{k} \wedge x_{i 1}^{k+1}=x_{i 1}^{k} \\
& \wedge x_{i 2}^{k+1}=\overline{x_{i 2}^{k}} \wedge y_{i 2}^{k} \wedge x_{i 0}^{k} \\
& \wedge y_{i 0}^{k+1}=y_{i 0}^{k} \wedge y_{i 1}^{k+1}=y_{i 1}^{k} \\
& \wedge y_{i 2}^{k+1}=\overline{x_{i 2}^{k}} \wedge y_{i 2}^{k} \wedge x_{i 0}^{k}
\end{aligned}
$$

d) Target line constraints: These constraints ensure that the target line (\mathbf{t}^{k}) never exceeds the number of circuit lines n :

$$
\bigwedge_{k=0}^{d-1} \mathbf{t}^{k}<n
$$

The formulation of the synthesis problem is illustrated by the following example.

Example 1. Figure 5 shows the SAT formulation for the ternary function $F_{z}=(67170111341415162691020$ 12132324258181922122 5) with $n=3$ variables and depth $d=3$. Each of $3^{3}=27$ truth table entries is represented by a circuit instance with input and output mapped to the corresponding truth table input and output. In each instance, all the 3 gates (marked with dashed rectangles) are defined by assigning values to their respective control $\left(\mathbf{C}^{k}\right)$ and target $\left(\mathbf{t}^{k}\right)$ lines.

With all the above constraints defined appropriately, the synthesis flow can be stated as shown in Algorithm 1. One restriction of the SAT based approach is that it starts the search from $d=1$ onwards. In other words, it will fail for an identity reversible function (i.e. $d=0$), where zero number of gates are required. However, this is an extremal case that would show up with extreme rarity in practical scenarios.

$$
\begin{aligned}
& N=3^{n}-1
\end{aligned}
$$

Fig. 5: Example SAT formulation

```
Algorithm 1: SAT-based Exact Synthesis
Input: Ternary reversible function \(F_{z}\)
Output: Sequence of MCTT gates that realize \(F_{z}\)
begin
    found = false; \(d=1\);
    while ( found \(=\) false) do
        instance \(=\) formulateProblem \(\left(F_{z}, d\right)\);
        result \(=\) callSolver \((\) instance \()\);
        if (result is satisfiable)
            asgn \(=\) getAssignement () ;
            circ \(=\) createCircuit \((\) asgn \() ;\)
            found \(=\) true;
        else
            \(d=d+1 ;\)
        endif
    end
return circ;
```


IV. Heuristic Search Based Exact Synthesis

For an n-variable ternary reversible function, the inputoutput relationship can be specified as a permutation defined on the values $\left(0,1,2, \ldots, 3^{n-1}\right)$. Every n-input MCTT gate G_{i} corresponds to a permutation $\Pi\left(G_{i}\right)$. A sequence of gates $G=\left\{G_{1}, G_{2}, \ldots, G_{p}\right\}$ implements the permutation $\Pi\left(G_{1}\right)$ o $\Pi\left(G_{2}\right)$ о \cdots о $\Pi\left(G_{p}\right)$. Given a permutation $\Pi_{\text {given }}$ to synthesize, the synthesis problem consists of finding a sequence of gates G that implements $\Pi_{\text {given }}$.

The synthesis problem can be mapped to a graph search problem, where each node of the graph represents a permutation. Every (directed) edge of the graph from v_{i} to v_{j} is labeled with a MCTT gate G_{k} that maps a permutation $\Pi_{v_{i}}$ to $\left(\Pi_{v_{i}}\right.$ o $\left.\Pi\left(G_{k}\right)\right)$. Starting from an initial node that represents the identity permutation, the objective is to search for a path in the graph that leads to the desired permutation to synthesize.

For an n-input MCTT gate, the target can be placed in n different ways, while the controls can be placed in various ways on the $(n-1)$ other lines, resulting in $N=n 2^{n-1}$ possibilities.

Fig. 6: Heuristic search for goal node

An n-input MCTT gate is encoded as an $\left\lceil\log _{2} n\right\rceil(n-1)$-bit number, where the first $\left\lceil l o g_{2} n\right\rceil$ bits indicate the position of the target, while the last $(n-1)$ bits represent the positions of the control connections. In the search graph, from any node the number of outgoing edges will be N.

We have implemented the heuristic search algorithm A^{*} to explore the search graph. The cost of a node x is computed as $f(x)=g(x)+h(x)$, where $g(x)$ represents the cost of the current node x from the starting node, and $h(x)$ represents the heuristic function that gives an estimate of the cost from x to a goal node representing the desired permutation as shown in Figure 6. $g(x)$ is simply calculated as the number of edges traversed from the starting node (i.e. number of gates) .

In the implementation, $h(x)$ has been estimated by counting the number of mismatches in the permutation positions between the current node x and the goal node. Following the justification given in [22], for a particular bit position, if the bits change for $p / 2^{i}$ positions, then $(i+1)$ is added to the heuristic estimate, where $p=2^{n}$.

Algorithm 2 shows the steps of level-constrained A^{*}. The input provided is the desired permutation P, number of inputs n, and the maximum number of levels $l_{\max }$ up to which the search will proceed. The initial permutation $P i_{\text {init }}$ is inserted into a priority queue OPEN. The function add_to_OPEN(x) calculates the cost of a node x and enters it into OPEN. The function remove_from_OPEN() returns the node with the smallest cost from OPEN. The process is repeated until either the desired permutation is reached, or if the number of levels exceeds $l_{\text {max }}$ or the time budget runs out.

[^0]```
 Get solution by tracong path from NODE to S;
 else
 if (NODE.level < level) then
 \(Q=\) Set of child nodes of NODE;
 foreach \(q \in Q\) do
 child.perm \(=q\);
 child.level \(=\) NODE.level +1 ;
 add_to_OPEN (child);
 end
 endif
 endif
 level \(=\) level +1 ;
 until \(\left((\right.\) found \(=1)\) or \(\left(\right.\) level \(\left.\left.>l_{\text {max }}\right)\right)\);
end
```

In the algorithm, search proceeds with increasing values of level, starting from the initial node. If a solution is found for the first time at level $i$, it clearly means that there was no solution with levels less than $i$, and hence the solution obtained is exact (that is, minimal in number of gates).

## V. Experimental Study

The exact synthesis tools based on $\mathrm{A}^{*}$ and SAT solver have been implemented in C and run on a core-i3 desktop with 2.4 GHz clock and 4 GB memory. The open access SAT solver MiniSAT [23] is used in the implementation.

To compare the performances of the two implementations, we have run the synthesis tools on a number of randomly generated ternary reversible functions in the form of permutations. The synthesis results are summarized in Table II, where results for up to 6 lines and 6 gates are shown. The first two columns give the name of the random permutation and the number of variables respectively. The permutation $p-x-y-z$ indicates that the permutation corresponds to a randomly generated ternary gate netlist with $x$ lines and $y$ gates, where $z$ is the instance of the random permutation generated. The next three columns give the number of gates $G$, the quantum cost in terms of the number of M-S gates required for implementation, and the run time in seconds for the SAT based implementation. The last three columns show the corresponding values for the $\mathrm{A}^{*}$ based implementation. The dashed ('-') entries indicate that results could not be obtained due to resource limitations.

The following can be concluded from the synthesis results.
a) Though the run time for the $\mathrm{A}^{*}$ based tool is less than that for the SAT based tool for several smaller permutations, it increases significantly for functions with larger number of variables and gates. For some of the permutations (e.g. p-4-5-1), the $A^{*}$ tool ran out of memory and could not give any result.
b) The SAT based tool gave results for some larger functions that the $\mathrm{A}^{*}$ based tool failed to synthesize; however, the run time increases rapidly with increase in number of variables and gates.

## VI. Conclusion

The problem of exact synthesis of ternary reversible circuits have been addressed for the first time in this paper. Two different exact synthesis methods have been presented, one based

TABLE II: Comparison of synthesis results

| Permutations |  |  | SAT |  | A* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | $n$ | $G$ | cost | runtime | $G$ | cost | runtime |
| p-2-3-1 | 2 | 3 | 3 | 0.01 | 3 | 3 | 0.00 |
| p-2-3-2 | 2 | 3 | 3 | 0.01 | 3 | 3 | 0.00 |
| p-2-4-1 | 2 | 4 | 4 | 0.02 | 4 | 4 | 0.00 |
| p-2-4-2 | 2 | 4 | 4 | 0.02 | 4 | 4 | 0.00 |
| p-2-5-1 | 2 | 5 | 5 | 0.01 | 5 | 5 | 0.00 |
| p-2-5-2 | 2 | 5 | 5 | 0.02 | 5 | 5 | 0.00 |
| p-2-6-1 | 2 | 5 | 5 | 0.03 | 5 | 5 | 0.00 |
| p-2-6-2 | 2 | 6 | 6 | 0.03 | 6 | 6 | 0.00 |
| p-3-3-1 | 3 | 3 | 3 | 0.05 | 3 | 3 | 0.00 |
| p-3-3-2 | 3 | 3 | 11 | 0.04 | 3 | 11 | 0.00 |
| p-3-4-1 | 3 | 4 | 4 | 0.07 | 4 | 4 | 0.04 |
| p-3-4-2 | 3 | 4 | 12 | 0.05 | 4 | 12 | 0.04 |
| p-3-5-1 | 3 | 5 | 5 | 0.11 | 5 | 5 | 0.22 |
| p-3-5-2 | 3 | 5 | 13 | 0.08 | 5 | 13 | 0.19 |
| p-3-6-1 | 3 | 6 | 6 | 0.14 | 6 | 6 | 1.25 |
| p-3-6-2 | 3 | 6 | 10 | 0.15 | 6 | 10 | 3.20 |
| p-4-3-1 | 4 | 3 | 11 | 0.17 | 3 | 11 | 0.12 |
| p-4-3-2 | 4 | 3 | 11 | 0.16 | 3 | 11 | 0.21 |
| p-4-4-1 | 4 | 4 | 12 | 0.28 | 4 | 12 | 2.75 |
| p-4-4-2 | 4 | 4 | 12 | 0.28 | 4 | 12 | 1.29 |
| p-4-5-1 | 4 | 5 | 13 | 0.44 | - | - | - |
| p-4-5-2 | 4 | 5 | 17 | 0.39 | 5 | 17 | 43.13 |
| p-5-3-1 | 5 | 3 | 15 | 0.74 | 3 | 15 | 5.40 |
| p-5-3-2 | 5 | 3 | 11 | 0.70 | 3 | 11 | 7.91 |
| p-5-4-1 | 5 | 4 | 16 | 1.12 | - | - | - |
| p-5-4-2 | 5 | 4 | 12 | 1.17 | - | - | - |
| p-5-5-1 | 5 | 5 | 17 | 2.82 | - | - | - |
| p-5-5-2 | 5 | 5 | 13 | 2.33 | - | - | - |
| p-5-6-1 | 5 | 6 | 14 | 5.10 | - | - | - |
| p-5-6-2 | 5 | 6 | 22 | 5.73 | - | - | - |
| p-6-3-1 | 6 | 3 | 15 | 3.93 | - | - | - |
| p-6-3-2 | 6 | 3 | 19 | 3.37 | - | - | - |
| p-6-4-1 | 6 | 4 | 20 | 5.31 | - | - | - |
| p-6-4-2 | 6 | 4 | 24 | 5.91 | - | - | - |
| p-6-5-1 | 6 | 5 | 25 | 18.73 | - | - | - |
| p-6-5-2 | 6 | 5 | 29 | 19.72 | - | - | - |
| p-6-6-1 | 6 | 6 | 42 | 31.66 | - | - | - |
| p-6-6-2 | 6 | 6 | 54 | 33.69 | - | - | - |

$n$ : no. of lines $G$ : no. of MCTT gates cost: no. of M-S gates
on the $\mathrm{A}^{*}$ heuristic search algorithm with level constraints, and the other using a SAT solver. Synthesis results with up to 6 variables have been reported. As expected, the run times increase rapidly as the number of variables or required number of gates increase. These approaches can provide a benchmark against with the performances of other non-exact synthesis techniques can be compared.

Non-availability of ternary benchmark has restricted the experimental analysis in the present work. As a future work, identifying a set of ternary benchmark functions from their binary equivalents shall be taken up.

## REFERENCES

[1] R. Landauer. Irreversibility and heat generation in the computing process. Journal of IBM Research and Development, (5):183-191, 1961.
[2] C. H. Bennett. Logical reversibility of computation. Journal of IBM Research and Development, 17(6):525-532, November 1973.
[3] R. Wille and D. Große. Fast exact Toffoli network synthesis of reversible logic. In Intl. Conf. on $C A D$, pages 60-64, 2007.
[4] D. Große, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based Toffoli network synthesis. In ACM Great Lakes Symposium on VLSI, pages 96-101, 2007.
[5] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis of elementary quantum gate circuits for reversible functions with don't cares. In Intl Symp. on Multi-Valued Logic, pages 214-219, May 2008.
[6] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiplecontrol Toffoli network synthesis with SAT techniques. IEEE Transactions on CAD, 28(5):703-715, May 2009.
[7] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis of elementary quantum gate circuits. Multi-Valued Logic and Soft Computing, 15(4):283-300, 2009.
[8] M. H. A. Khan. GFSOP-based ternary quantum logic synthesis. In Proceedings of SPIE - The International Society for Optical Engineering, volume 7797-16 V.2, pages $1-15,2010$.
[9] M. H. A. Khan. GFSOP based ternary quantum logic synthesis. In In Proc. Optics and Photonics for Information Processing IV, pages 1-15, 2010.
[10] X. Li, G. Yang, and D. Zheng. Logic synthesis of ternary quantum circuits with minimal qutrits. Journal of Computers, 8(3):1941-1946, December 2013.
[11] G Yang, X. Song, M. Perkowski, and J. Wu. Realizing ternary quantum switching networks without ancilla bits. Journal of Physics A: Mathematical and General, 38:1-10, 2005.
[12] S. Mandal, A. Chakrabarti, and S. Sur-Kolay. Synthesis techniques for ternary quantum logic. In Proc. 41st Intl. Symp. on Multiple Valued Logic (ISMVL), pages 218-223, 2011.
[13] M. H. A. Khan, M. Perkowski, M. R. Khan, and P. Kerntopf. Ternary GFSOP minimization using Kronecker decision diagrams and their synthesis with quantum cascades. Journal of Multi Valued Logic and Soft Computing, 11:567-602, 2005.
[14] F. S. Khan and M. Perkowski. Synthesis of ternary quantum logic circuits by decomposition. Phys. Rev. A, 62(5):052309/1-8, 2005.
[15] B. Mondal, P. Sarkar, P. K. Saha, and S. Chakraborty. Synthesis of balanced ternary reversible logic circuit. In Proc. 43rd Intl. Symp. on Multiple Valued Logic, pages 334-349, 2013.
[16] S. Basu, S. B. Mandal, A. Chakrabarty, and S. Sur-Kolay. An efficient synthesis method for ternary reversible logic. In Intl. Symp. on Circuits and Systems (ISCAS), pages 2306-2309, 2016.
[17] M. H. A. Khan. Design of reversible/quantum ternary multiplexer and demultiplexer. Engineering letters, 13(2):65-69, 2006.
[18] P. M. N. Rani, A. Kole, K. Datta, and A. Chakrabarty. Realization of ternary reversible circuits using improved gate library. In Proc. 6th Intl. Conf. on Advances in Computing and Communication, pages 153-160, 2016.
[19] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[20] A. Muthukrishnan and C. R. Stroud Jr. Multivalued logic gates for quantum computation. Phys. Rev. A, 62(5):052309/1-8, 2000.
[21] R. Khanom, T. Kamal, and M. H. A. Khan. Genetic algorithm based synthesis of ternary reversible/quantum circuit. In Proc. 11th Intl. Conf. on Computer and Information Technology, pages 270-275, 2008.
[22] K. Datta, G. Rathi, I. Sengupta, and H. Rahaman. Exact synthesis of reversible circuits using $\mathrm{A}^{*}$ algorithm. Journal of Institution of Engineers (Series B), 96(2):121-130, 2015.
[23] N. Eén and N. Sörensson. MiniSAT SAT solver. MiniSAT is available at http://minisat.se.

## Appendix: The Random Permutations

Some of the random permutations for which synthesis results have been reported in Table II are given below.

| p-2-3-1: | 786120453 |
| :---: | :---: |
| p-2-3-2: | 346782015 |
| p-2-4-1: | 726150483 |
| p-2-4-2: | 347862015 |
| p-2-5-1: | 827150463 |
| p-2-5-2: | 671205348 |
| p-2-6-1: | 251483706 |
| p-2-6-2: | 782013456 |
| p-3-3-1: | 01203423151689102121352425171819112122146726 |
| p-3-3-2: | 01234567891011121314151617212226242520192318 |
| p-3-4-1: | 01203423161769102121352526151819112122147824 |
| p-3-4-2: | 12045378610119131412161715222324252618202119 |
| p-3-5-1: | 91021213525261518191121221478240120342316176 |
| p-3-5-2: | 10119131412161715192018222321252624456780231 |
| p-3-6-1: | 21221424251719209342367261218121351516810110 |
| p-3-6-2: | 10149131712111516192318222621202425486720531 |
| p-4-3-2: | 272829303132333462363738394041424371454647484950515280545556 57585960611763646566676869702672737475767778798011134146735 910201213231516441819221225242553 |


| p-4-4-1: | 0123451516179101112131479807845464748495067827282930313242 434436373839404125262472737475767733343554555657585969707163 6465666768525351181920212223606162 |
| :---: | :---: |
| p-4-4-2: | 272829303132333460363738394041424369454647484950515278555654 58595761621764656367686670712673747276777579808011134146735 910201213231516441819221225242553 |
| p-4-5-1: | 0123451516179101112131480787946474549504867827282930313242 434436373839404126242573747276777533343554555657585969707163 6465666768535152192018222321606162 |
| p-4-5-2: | 3456780121213141516179101148495051525345464730313233343527 282939404142434436373875767778798072737458625761566055595467 7166706569646863222621202425192318 |
| p-5-3-1: | 0123456789101112131415161719201822232125262427282930313233 3435363738394041424344464745495048525351545556575859606114363 646566676869701527374727677757980159818283848586878889909192 93949596979810010199103104102106107105108109110111112113114115116 117118119120121122123124125127128126130131129133134132135136137138 139140141142224144145146147148149150151233154155153157158156160161 240162163164165166167177178179171172173174175176187188186181182180 184185183168169170189190191192193194204205206198199200201202203214 21521320820920721121221019519619721621721821922022123123271225226 2272282292302412427823523623423823923722222362 |
| p-5-3-2: | 34567801291213141516179103821222324252618194730313233343527 2865394041424344363774484950515253454656575859606162636426667 6869707172731175767778798054552084858687888981821109394959697 98909111910210310410510610799100128111112113114115116108109146120 121122123124125117118155129130131132133134126127137138139140141142 1431441458314714814915015115215315492156157158159160161135136101165 166167168169170162163191174175176177178179171172200183184185186187 188180181209192193194195196197189190227201202203204205206198199236 210211212213214215207208218219220221222223224225226164228229230231 232233234235173237238239240241242216217182 |
| p-5-4-1: | 0123456789101112131415161719201822232125262427282930313233 343536373839404142434446474549504852535163646667687015272 737475767778791615556545859576162141818283848586878889909192 93949596979810010199103104102106107105108109110111112113114115116 117118119120121122123124125127128126130131129133134132144145146147 148149150151233153154155156157158159160242136137135139140138142143 222162163164165166167177178179171172173174175176187188186181182180 184185183168169170189190191192193194204205206198199200201202203214 21521320820920721121221019519619722522622722822923024024180234235 2362372382392232246021721821622022121923123271 |
| p-5-4-2: | 34578601291213141617159103821222325262418194730313234353327 2865394041434442363774484950525351454656575859616260636426667 6870716972731175767779807854552084858688898781821109394959798 96909111910210310410610710599100128111112113115116114108109146120 121122124125123117118155129130131133134132126127137138139140142143 1411441458314714814915115215015315492156157158160161159135136101165 166167169170168162163191174175176178179177171172200183184185187188 186180181209192193194196197195189190227201202203205206204198199236 210211212214215213207208218219220221223224222225226164228229230232 233231234235173237238239241242240216217182 |
| p-5-5-1: | 0111341467179102012132315162619218225212582427283830314133 3444363747394050424353462945493248523551636474666777697016172 7356757659787914355655458685761711418182928485958788989091101 9394104969710710083991038610210689105108109119111112122114115125 117118128120121131123124134127110126130113129133116132144145155147 148158150151242153154137156157140159160224136146135139149138142152 222162163173165166176177178188171172182174175185187170186181164180 184167183168169179189190200192193203204205215198199209201202212214 19721320819120721119421019519620622522623622822923924024162234235 2182372382212232336021722721622023021923123280 |
| p-5-5-2: | 303132343533272856394041434442363765484950525351454674575859 6162605455116667687071696364207576777980787273234578691029 1213141617151819382122232526240147111112113115116114108109137 120121122124125123117118146129130131133134132126127155138139140142 14314113513692147148149151152150144145101156157158160161159153154 838485868889879091110939495979896991001191021031041061071058182 128192193194196197195189190218201202203205206204198199227210211212 214215213207208236219220221223224222216217173228229230232233231225 226182237238239241242240234235164165166167169170168171172191174175 176178179177180181200183184185187188186162163209 |
| p-5-6-1: | 0111341467179101812132115162420219235222682527283830314133 3444363745394048424351472946503249533552666775697015963647276 775979801437374565868576171141556554818292848595878898909199 93941029697105101831001048610310789106108109119111112122114115125 117118126120121129123124132128110127131113130134116133147148156150 151240144145153157158140160161224154155137139149138142152222136146 135162163173165166176168169179171172180174175183177178186182164181 185167184188170187189190200192193203195196206198199207201202210204 20521320919120821219421121519721422822923723123278225226234238239 2212412426223523621822023021922323360217227216 |
| p-5-6-2: | 303132344433272829394041435342363738484950523551454674575859 61716054555666676870806963646575767779627872732345717691011 121314162615181920212223258240147111112113115125114108109110120 121122124134123117118119129130131133116132126127155138139140142152 14113513613714714814915116115014414514615615715816014315915315483 848586889887909192939495971079699100101102103104106891058182128 192193194196206195189190191201202203205215204198199200210211212214 197213207208236219220221223233222216217218228229230232242231225226 227237238239241224240234235164165166167169179168171172173174175176 178188177180181182183184185187170186162163209 |


[^0]:    Algorithm 2: Level Constrained $A^{*}$ Synthesis
    Input: Desired permutation P , number of inputs n , max. level $l_{\max }$ Output: Sequence of MCTT gates that realize P
    begin
    found $=0$;
    $\Pi_{\text {init }}=\left(0,1,2, \ldots, 3^{n}-1\right)$
    initial.perm $=\Pi_{\text {init }} ;$ initial.level $=0$;
    add_to_OPEN (initial);
    level $=$ initial level;
    repeat
    $N O D E=$ remove_from_OPEN(); if $(N O D E$. .perm $=\mathrm{P})$ then
    found $=1$;

