
In-Memory SAT-Solver for Self-Verification of
Programmable Memristive Architectures

Fatemeh Shirinzadeh∗, Arighna Deb†, Saeideh Shirinzadeh‡§, Abhoy Kole‡, Kamalika Datta∗‡, Rolf Drechsler∗‡
∗Institute of Computer Science, University of Bremen, Germany
†Kalinga Institute of Industrial Technology, Bhubaneswar, India

‡German Research Centre for Artificial Intelligence (DFKI), Bremen, Germany
§Fraunhofer Institute for Systems and Innovation Research(ISI), Karlsruhe, Germany

{shirinfa, kdatta, drechsler}@uni-bremen.de, airghna.debfet@kiit.ac.in, {saeideh.shirinzadeh, abhoy.kole}@dfki.de

Abstract—Formal verification of programmable memristive
architectures utilizing emerging nonvolatile memory technologies
such as Resistive Random-Access Memory (RRAM) has only been
recently addressed by a few works at the software level. In this
paper we propose an in-memory SAT solver utilizing inherent
analog features of RRAM that enables formal verification of
arbitrary designs within resistive crossbars. More importantly,
this allows self-verification of in-memory implementations as the
correctness of designs can be dynamically checked. Additionally,
the required architecture is presented, along with a complexity
analysis for latency and hardware overheads.

I. INTRODUCTION

Non-volatile memory technologies such as Resistive RAM
(RRAM) possess advantages such as zero standby power,
CMOS compatibility, fast switching, and ability to perform
logic and analog computations. RRAM’s computational ca-
pabilities have been used for neuromorphic computing and
programmable logic-in-memory computing architectures as
a potential solution to the memory wall issue in current
computing systems. Various design methodologies have been
explored to bring inherent capabilities of memristive devices
into modern electronic systems. However, these approaches
are mainly about logic synthesis, and verification has been out
of focus despite being an important and complex stage in de-
sign flow. Recently, equivalence checking for logic-in-memory
designs has been addressed at the software level performed
on conventional computing systems [4], [6]. Nevertheless, no
work has been reported to perform verification at the hardware
level using in-memory structures. This enables self-verification
which is of high importance for many complex applications.
Self-verification is a process that integrates verification tech-
niques into a system, enabling independent evaluation of its
own functionality. This methodology assures the system’s ac-
curacy, correctness, and adherence to predefined specifications
without relying on external verification [5].

In this paper, we propose for the first time an in-memory
SAT-solver architecture that can be utilized for computation
of any arbitrary SAT-instance for classical designs as well as
for self-verification of in-memory designs directly performed
on resistive crossbars. We propose two methods to compute
the SAT-instance on a memristive crossbar utilizing analog
features of RRAM devices that are being exploited in a logic
context for the first time. The first method allows parallel

evaluations in crossbar columns. The second method needs
a single write cycle and performs evaluations sequentially to
ensure error-free memory reads.

Experiments have been conducted for formal verification
of majority-based in-memory design as a case study. Results
report the required crossbar dimensions, as well as latency ad-
dressing both memories, writes, and the evaluation cycles that
increases for larger functions. The proposed approach for the
first time enables self-verification of memristive in-memory
computing architectures. The scalability of the approach is
therefore justifiable due to the cyclic nature of RRAM based
computations.

II. BACKGROUND
A. Basic Concepts

This section briefly presents the basic background required
for making the paper self-contained.

1) Operations performed in RRAM: There are several uni-
versal logic primitives that can be executed within RRAM
devices, viz. Material Implication (IMP), Memristor-Aided
LoGIC (MAGIC), and Resistive Majority Operation (MAJ).

Besides the ability to execute aforementioned logical gates,
RRAM possesses an analog computing capability that enables
to perform Multiply and Accumulate (MAC) operation. MAC
is already used in neuromorphic computing to speed up
complex matrix multiplications. Assuming that the resistive
values of the RRAM devices in the crossbar as depicted
in Fig. 1, are initialized with a−1

j,k , m MAC-operations can
be conducted simultaneously within m crossbar columns by
applying the voltages x1, . . . , xn to n to the rows. The
outputs are the currents flowing in the corresponding crossbar
columns, which is the sum of currents in each RRAM device,
i.e. ij =

∑n
k=1 aj,k · xk. This can be denoted as I = Ax,

where I = (i1, . . . , im)T , x = (x1, . . . , xn)
T and the matrix

A is defined as follows:

A =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n


The m MAC-operations can be computed in parallel in a
single cycle, each consisting of n multiplications. MAC-
operation has been widely used for neuromorphic computing
with RRAM; however, its capacity for logic domain has not

x1

x2

xn

. . .

. . .

. . .

..
.

..
.

..
.

..
.

..
.

a−1
1,1 a−1

2,1 a−1
m,1

a−1
1,2 a−1

2,2 a−1
m,2

a−1
1,n a−1

2,n a−1
m,n

i1 i2 im

Fig. 1: MAC computation in RRAM crossbar

been explored yet. In this paper, we exploit MAC-operation
for the first time for computation of logical functions in the
context of our proposed in-memory SAT-solver.

2) SAT-solver: The Boolean Satisfiability Problem (SAT) is
one of the classic problems in computer science. For a given
Boolean formula, it attempts to determine whether a set of
variable assignments exists such that the function is satisfied,
i.e., is evaluated to TRUE. Whenever such an assignment
exists, the function is considered to be satisfiable (sat) and
otherwise unsatisfiable (unsat) [2]. Before a combinatorial
problem can be solved by SAT methods, it must usually be
encoded in conjunctive normal form (CNF). A CNF-clause is

a conjunction of sub-clauses
n∧

i=1

ci, each sub-clause ci being a

disjunction of literals
n∨

i=1

xi. Each literal xi is either a Boolean

variable v or its negation v̄. In addition to its simplicity, CNF
provides a common file representation and easy algorithm
implementation.

In order to evaluate the clauses and sub-clauses of a CNF
in a crossbar, initially the input variables are applied to the
successive word lines as voltages corresponding to their logical
values. As sub-clauses are disjunctions of variables, they can
be computed directly by sensing the current flowing in each
column as mentioned earlier in this section. Next, the current
is measured and its equivalent voltage value is fed to the
next allocated row (for the corresponding sub-clause) as an
input to be used for further calculations. For clauses, which
are conjunctions of sub-clauses (e.g, a∧ b), De Morgan’s law
is used to convert the conjunction term into the negation of
a disjunction (e.g, a ∨ b). This way, the complemented clause
is evaluated in a single MAC-operation in a column. In this
way, sub-clauses are computed in columns having all input
variables allocated in rows. Similarly, the clauses are evaluated
when the computed sub-clauses are allocated to available rows
below the occupied rows in the crossbar.

B. Related Work
A compact, hardware-implemented Boolean Satisfiability

(SAT) solver that can solve any arbitrary SAT-instance is
presented in [10]. Recently, SAT-based equivalence checking
methods for RRAM crossbar arrays are introduced in [4],
[6]. More precisely, the equivalence checker proposed in [6]
determines the functional equivalence between MIGs and a
newly developed HDL-program supporting the RRAM op-
erations. The work [4] introduces an automated equivalence
checking methodology for majority-based in-memory designs,

P
ri

m
ar

y
In

pu
ts

MIG SAT Instances RRAM SAT Instances Verification

C
N

F
 o

f
M
IG

S
ub

-C
la

us
es

C

la
us

es

C
N

F
 o

f
R
R
A
M

S
ub

-C
la

us
es

Final Output

C
la

us
es

V
er

if
ic

at
io

n

Fig. 2: Proposed In-Memory SAT-solver Architecture

which examines the functional equivalence or non-equivalence
between the specification (e.g. MIGs) and the implementation
(e.g. RRAM micro-operations). In this paper, we propose an
in-memory SAT-solver implemented on RRAM crossbars that
can perform self-verification of memristive architectures.

III. PROPOSED IN-MEMORY SAT-SOLVER

Computation of CNF clauses is the first step to develop a
SAT-solver within a memristive crossbar. The existing basic
logic operations developed within RRAM cause various dif-
ficulties for full parallelism and suffer from inherent sequen-
tial nature, requiring many initialization or intermediate read
cycles [3], [7], [9]. In this case, developing logic functions
from higher complexity classes such as SAT-solvers based on
such memristive logic primitives impose high costs in terms
of latency, making them inferior as compared to software-
based implementations. Thus, we propose to compute the SAT-
instance based on MAC-operation (see Section II-A1), as it
allows to exploit highly parallel computations utilizing the
native analog features of RRAM devices.

A. Architectural Design
Initially, for both the MIG and the micro-operations, their

respective CNFs (i.e. clauses and sub-clauses) Mi and Ri

where i = 0, . . . , PO − 1 are generated.
Fig. 2 shows the proposed architectural representation of

the in-memory SAT-solver. The verification can be carried out
in a single crossbar by allocating rows and columns in the
following way:

#Rows =


2V +

∑LMIG
i=1 (

∑
SC +

∑
2C)i+∑LRRAM

i=1 (
∑

SC +
∑

2C)i + 2 if PO = 1

2V +
∑LMIG

i=1 (
∑

SC +
∑

2C)i+∑LRRAM
i=1 (

∑
SC +

∑
2C)i + 3PO otherwise

(1)

#Cols =


∑LMIG

i=1 (
∑

SC +
∑

2C)i+∑LRRAM
i=1 (

∑
SC +

∑
2C)i + 3 if PO = 1∑LMIG

i=1 (
∑

SC +
∑

2C)i+∑LRRAM
i=1 (

∑
SC +

∑
2C)i + 3PO + 1 otherwise

(2)

where V , SC, C, and PO respectively denote the number of
variables, the number of sub-clauses, the number of clauses,
and the number of primary outputs. LMIG and LRRAM

indicate the number of levels for MIG and RRAM-based
designs, respectively. Since variables and their complements
are used in sub-clauses, two rows will be occupied by each
variable. Then at each level, each sub-clause occupies a row to
generate the clause. Thereafter, clauses and their complements
will occupy further rows.

Finally, to evaluate Mi ⊕ Ri for i = 0, . . . , PO − 1 in
the crossbar, two more rows are required (for signals MiR̄i,
M̄iRi) for each primary output. For multi-output function
(PO > 1), the verification requires additional PO rows to
compute PO−1∨

i=0

Mi ⊕Ri. (3)

Similarly, each column will generate a sub-clause and clause
according to the specifications of reference MIG and the
RRAM-based design. Eventually, three more columns are
required to generate MiR̄i, M̄iRi and MiR̄i+M̄iRi for each
primary output and an additional column for the multi-output
function to perform the Boolean OR operation as presented
in Eqn.(3). Following is an example to clarify the process of
realization of an arbitrary CNF function in the crossbar.
Example 1. Consider the CNF f2 = (f1 + d).(f̄1 + ā),
where f1 = (a + b).c̄ and f2 represents the ith output (R)
of the design under verification. Here the CNF is a two-
level function with four primary inputs. To realize the CNF
in a crossbar, initially the rows are assigned to variables
and their complements (e.g. a and a) as depicted in Fig. 3.
Then, the first level sub-clause a + b will be realized in a
column and its inverted output is subsequently mapped in the
next available row to generate the first level clause (f1) in
the complemented form as (a+ b) + c in the next available
column. Thereupon, two rows are used by the clause f1 and its
complement. Thereafter, second-level sub-clauses f1 + d and
f̄1 + ā are computed in the next two subsequent columns and
their inverted outputs are placed in the next two rows in the
crossbar to realize f2 in next column. For the verification step,
(f2, f̄2) and (M , M̄) are placed in the next available rows
in the crossbar to compute the inversion of f2M̄ and f̄2M
in two columns. The realization of the corresponding golden
response (M) also takes place in a similar way. Finally, two
more rows are allocated to f2M̄ and f̄2M in order to compute
the Boolean XOR operation.

B. MAC-based CNF computation on RRAM crossbar
Once rows and columns are assigned according to MIG

and RRAM clauses, verification can be carried out through
parallel or sequential execution of sub-clauses and clauses.
The method chosen impacts cycle count, including crossbar
column initialization and evaluation.

1) Method1 (Parallel MAC-Evaluation): This method re-
quires to sequentially initialize crossbar columns and run
MAC-operations to compute the disjunction sub-clauses, as

Fig. 3: Verification of an example CNF in the crossbar.
well as conjunctions representing CNF-clauses. Assume that
the voltages applied to crossbar word lines in the equation
describing MAC-operation (see Section II-A1) are set to values
representing logical states of the input variables and their
complements in consecutive rows as shown in Fig. 4a. Then
the current flowing in each column can represent a CNF sub-
clause or clause. This is performed by selectively switching
RRAM devices in columns to on and off states, i.e. initializing
their resistive states to low or high values, designating logic
1 and 0, respectively. For an arbitrary CNF sub-clause to be
computed in ith column, the RRAM devices representing the
literals in the sub-clause are initialized with 1, while devices
corresponding to absent literals are initialized with 0.
Example 2. Consider a 2-variable CNF expression with four
sub-clauses a+ b, ā+ b, a+ b̄ and ā+ b̄. In order to realize
a sub-clause ā+ b in the second column, the RRAM devices
in the rows connected to ā and b are initialized to 1, other
devices are initialized to 0. Thus, it requires four initialization
cycles for setting up the sub-clauses on four columns as shown
in Fig. 4b.

As the initialization pattern required for this method is
complex, each column can only be initialized independently.
This requires #Cols (see Eqn. (2)) number of initialization
cycles for the verification of MIG and RRAM clauses. In the
evaluation stage, all sub-clauses can be evaluated by running
MAC operations in parallel. In the next step, the conjunction
of the sub-clauses is computed by applying De Morgan’s
law such that disjunction of complemented sub-clauses is
evaluated by a single MAC-operation in a similar manner. For
this purpose, current obtained in each column representing
the computed sub-clauses is sensed and its inversion is fed
back as voltages to further memory rows below those rep-
resenting primary inputs. Then by allocating a new column
and switching on the corresponding RRAM devices, a single
MAC-cycle evaluates the negated conjunction, i.e. the CNF-
clause. Then, the computed conjunction and its complement
are driven to further rows below previous variables in the
memory to be used for the computation of the next CNF-
level. This procedure continues until the final CNF-level is
computed.

For the computation of SAT-instance, XOR of both CNFs
representing the reference model (Mi) and the design to be

x1
x1
x2
x2

xn
xn

. . .

. . .

. . .

. . .

. . .

..
.

..
.

..
.

..
.

i1 i2 im

(a) Values applied to
row for the realization
of sub-clauses

ON
OFF

a

a

b

b

(b) Realization of sub-clauses
based on method 1

a
0

a

b

b

a

0

b

0

i1 = a + b

(c) Realization of sub-clauses based on method 2

Fig. 4: Required settings for in-memory SAT-solver for both presented methods.

verified (Ri) has to be computed for each output bit for
i = 0, . . . , PO − 1. The computation of each M̄iRi +MiR̄i

requires three columns to be initialized to perform three
MAC-operations for each primary output (PO) for the two
conjunctions and one disjunction. It may be noted that Mi and
Ri can be computed on the same crossbar. Using this method,
initialization cycles need to be performed sequentially for each
of the CNFs, but their evaluation with MAC-operations can
run in parallel. The number of MAC cycles required in the
evaluation phase is:

Evaluation Cycles =

{
(L+ 1)2N+1 if PO = 1

(L+ 1.5)2N+1 otherwise
(4)

where L and N denote the maximum number of levels and
variables present in both CNFs representing the MIG and
RRAM-based design and PO indicates the number of primary
outputs. The number of cycles required for computation of an
example SAT-instance is explained below.
Example 3. To verify a SAT instance consisting of a CNF
representing a MIG expression with 5 sub-clauses and single
level and an RRAM-based design expression with 4 sub-
clauses and single level. If CNF expressions consist of five
Boolean variables describing a function with a single primary
output, then the number of cycles required for verification is
142.

2) Method2 (Sequential MAC-Evaluation): Method1 en-
ables fast parallel MAC-operations, yet long columns can lead
to erroneous reads. Accumulated currents from numerous low
conductivity devices might mistakenly evaluate as 1 instead of
the correct value of 0. Moreover, Method1 might require many
initialization cycles for larger CNF representations that are not
desired due to the low write endurance of RRAM devices.

Therefore, we propose a second method that needs only a
single initialization cycle to switch devices to high conduc-
tivity states. It performs MAC-operations by controlling row
voltages, allowing a single MAC-operation per cycle.

Assuming that all RRAM devices are switched on, a given
sub-clause can be evaluated in an arbitrary column by pro-
viding the inverted or non-inverted forms of primary inputs or
previously computed CNF-clauses that are present as variables
in the sub-clause at the crossbar rows as shown in Fig. 4a. In
this case, all inputs and intermediate variables (CNF-clauses)
are applied to certain rows as in the previous method. However,
by use of this method, we need a more complex row-driver

that can selectively set a row to 0 if the variable applied is
missing in the sub-clause or clause under computation. From
the first CNF-level, sub-clauses are computed independently
in columns using MAC cycles. This resembles the prior
method, with MAC-results applied to rows for conjunction.
This repeats like Method1, but without extra initialization, and
with sequential MAC-operations as illustrated below.
Example 4. Consider again the 2-variable CNF expression
with four sub-clauses a+b, ā+b, a+ b̄ and ā+ b̄. It requires a
single initialization cycle and four MAC (evaluation) cycles for
the execution of all the sub-clauses using Method2 as shown
in Fig. 4c.

Following this method, if CNFs in the SAT-instances are
on the same crossbar, they are sequentially computed for each
MAC-operation. Then we perform XOR for MAC evaluation
using Method1, but this approach requires just one initializa-
tion cycle for the entire computation. The number of MAC
cycles required for evaluation is:

Evaluation Cycles = #Cols× 2N (5)

where #Cols can be evaluated using Eqn. 2 and N denotes
the number of variables present in MIG and RRAM clauses.

C. Complexity Analysis

The verification process is carried out in two phases:
initialization and evaluation. Using Method1: Parallel MAC-
Evaluation, the number of cycles required for verification is:

Verification CyclesMethod1 =

#Cols+

{
(L+ 1)2N+1 if PO = 1

(L+ 1.5)2N+1 otherwise
(6)

Similarly, The cycles required by the Method2: Sequential
MAC-Evaluation process is:

Verification CyclesMethod2 = 1 +#Cols× 2N (7)

Since the maximum number of CNF-levels for both MIG
and RRAM-based design expressions is less than the sum
of clauses and sub-clauses, i.e. L < SC + C, Method2
requires much higher evaluation cycles due to the presence
of the factor 2N in Eqns. (4) and (5). It further increases for
functions with multiple primary outputs, as #Cols in Eqn. (6)
and (7) is increased by a factor 3PO (see Eqn. 2). There is
a tradeoff between the usage of the verification approaches.

INC
HALTSAT:

UNSAT

LR=2n

PC == LR

PO-1

i=0
M0 R0 / Mi Ri

PC=0

HALT

 PC==LR
PC == LR

PO-1

i=0
M0 R0 ==1 / Mi Ri==1

PO-1

i=0
M0 R0 ==1 / Mi Ri==1

SAT:SET:

LR=2N

INC

HALT:

SAT

UNSAT:

UNSAT

PC=LR PC=LR
SET INC:

PO-1

i=0
M0 R0 =1 / Mi Ri =1

Program

Counter(PC)

Limit
Register(LR)

Registers

Signals Conditions

(a) Registers and Control Signals

INC

Comparator

RRAM
Crossbar

HALT

SAT

UNSAT

LRPCSET

M(<2n)

N+1 N+1

X

PC == LR

N+1

PO-1

i=0
M0 R0 / Mi Ri

(b) Data Flow Path of the In-Memory SAT-solver

Fig. 5: Design Implementation

Hence, Method1 requires a higher number of initialization
cycles, i.e. O(#Cols), but the alternate approach suffers from
higher evaluation cycles, i.e. O(#Cols× 2N).

D. Design Implementation
Fig. 5a shows the registers, control signals, and the condi-

tions associated with those signals. Fig. 5b shows the data flow
path of the in-memory SAT-solver with various registers and
control signals. These are the salient features of the in-memory
SAT architecture for verifying an N -bit function:

1) Program Counter (PC), stores the current value of evalua-
tion which is between 0 to 2N−1. It is a N+1 bit register
and is initialized to 0. After every step, it is incremented
by 1.

2) Limit Register (LR), stores the value which is the maxi-
mum number of possible combinations for N-bit, i.e. 2N .
This is initialized to 2N at the start of the evaluation.

3) SET signal initializes the PC and LR registers for evalu-
ation.

4) HALT signal is generated when either PC has reached
LR or the results of the two functions for certain input
combinations are different.

5) INC signal is used to increment PC if PC ̸= LR and
M0 ⊕ R0 ̸= 1 when PO = 1 or

∨PO−1
i=0 Mi ⊕ Ri ̸= 1

when PO > 1.
6) UNSAT signal become active if PC ̸= LR and M0 ⊕

R0 = 1 for PO = 1 or
∨PO−1

i=0 Mi⊕Ri = 1 for PO > 1.
This means when either the SAT-solver is still checking
for all possible inputs and for some inputs M0 ⊕ R0 or∨PO−1

i=0 Mi ⊕Ri is 1.
7) SAT signal is generated when PC value has reached the

content of LR register.
8) HALT signal is generated when either PC = LR i.e.

PC had reached its maximum value or M0 ⊕ R0 = 1
for PO = 1 or

∨PO−1
i=0 Mi ⊕ Ri = 1 for PO > 1 i.e.

for some input combinations the output of the golden re-
sponse and the design under verification does not match.

IV. EXPERIMENTAL RESULTS

To evaluate the in-memory SAT-solver architecture pro-
posed in this work, we have considered IWLS and ISCAS-
85 benchmarks [1], [8]. As a case study, we have considered
the equivalence checking approach reported in [4] that finds

TABLE I: Details of the benchmarks

Benchmark MIGs Micro-operations
Name PI/PO #C #SC #L #C #SC #L
exam1 3/1 6 18 4 9 27 9
exam3 4/1 10 30 4 16 48 9
xor5 5/1 6 18 4 19 57 11
con1 7/1 8 24 4 12 36 8
con2 7/1 9 27 4 13 39 8

newtag 8/1 9 27 4 13 39 8
newill 8/1 20 60 8 28 84 10
9sym 9/1 25 75 14 34 102 26

max46 9/1 132 396 12 178 534 18
sym10 10/1 35 105 17 45 135 29
t481 16/1 25 75 5 36 108 11
rd32 3/2 3 9 2 6 18 3
rd53 5/3 9 27 5 15 45 9
rd73 7/3 12 36 8 16 48 12
rd84 8/4 21 63 10 28 84 21

c6288 32/32 1867 5601 116 2347 7041 136
c1908 33/25 296 888 28 388 1164 41
c432 36/7 95 285 23 124 372 37
c499 41/32 292 876 21 356 1068 28

c3540 50/22 824 2472 33 1159 3477 44

the equivalence between the MIG function representations
of the benchmarks and their corresponding micro-operations
executed on the RRAM crossbar arrays. To execute the
complete equivalence checking approach [4] on our proposed
architecture, we have utilized the SAT-instances obtained from
the MIGs and micro-operations. Note that any SAT instances
consisting of multiple CNF clauses can be executed in the
proposed architecture. That is, the architecture is not restricted
to only the equivalence checking of MIGs and RRAM micro-
operations, but can be utilized for any SAT-based equivalence
checking method.

Table I shows the details of the benchmarks. The first
column provides the name of the benchmark, the number of
primary inputs (PI) and the number of primary outputs (PO).
The second and third columns report the number of clauses
(#C), number of sub-clauses (#SC), and number of levels (#L)
in the SAT-instances of the MIGs and corresponding micro-
operations, respectively.

Table II summarizes the results. The first and second
columns show the benchmark name and crossbar array size
(r × C), where r and C denote the number of rows and
columns, respectively in the crossbar array. The third and
fourth columns respectively report the number of write cycles

TABLE II: Experimental results for single and multi-output functions

Benchmark Crossbar write cycles MAC cycles Total cycles
Name r × c Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
exam1 68× 63 63 1 160 504 223 505
exam3 114× 107 107 1 320 1712 427 1713
xor5 112× 103 103 1 768 3296 871 3297
con1 96× 83 83 1 2304 10624 2387 10625
con2 104× 91 91 1 2304 11648 2395 11649

newtag 106× 91 91 1 4608 23296 4699 23297
newill 210× 195 195 1 5632 49920 5827 49921
9sym 256× 239 239 1 27648 122368 27887 122369

max46 1260× 1243 1243 1 19456 636416 20699 636417
sym10 342× 323 323 1 61440 330752 61763 330753
t481 278× 247 247 1 1572864 16187392 1573111 16187393
rd32 48× 43 43 1 72 344 115 345
rd53 115× 106 106 1 672 3392 778 3393
rd73 135× 122 122 1 3456 15616 3578 15617
rd84 224× 209 209 1 11520 53504 11729 53505

c6288 17016× 16953 16953 1 1.18× 1012 7.28× 1013 1.18× 1012 7.28× 1013

c1908 2877× 2812 2812 1 7.30× 1011 2.42× 1013 7.30× 1011 2.42× 1013

c432 969× 898 898 1 5.29× 1012 6.17× 1013 5.29× 1012 6.17× 1013

c499 2770× 2689 2689 1 1.29× 1012 5.91× 1015 1.29× 1012 5.91× 1015

c3540 8098× 7999 7999 1 1.02× 1017 9.01× 1018 1.02× 1017 9.01× 1018

and the number of MAC cycles required for both methods
to implement the equivalence checking using our proposed
architecture. The summation of the write cycles and the MAC
cycles, i.e. the total cycles required for evaluating the equiv-
alence between MIGs and RRAM micro-operations based
on Method1 and Method2 are reported in the final column.
The results demonstrate that the SAT-instances obtained from
the MIGs and from the micro-operations strongly influence
the size of the crossbar array, while the number of primary
inputs and primary outputs of the functions very loosely
affect the size of the crossbar. That is, higher the number of
clauses, larger will be the size of the crossbar. Considering the
performance of the architecture, the equivalence checking can
be executed in two ways on the architecture: parallel execution
(Method1) and sequential execution (Method2). Depending on
the inputs and CNF clause levels, the runtime will vary. As
evident from Table II, the total cycles required to execute the
equivalence checking using Method2 is almost 10 times more
than that of Method1, since Method1 allows parallel execution
of the SAT-instances. However, the number of write cycles re-
mains constant in the case of Method2 as opposed to Method1
where the write cycle varies with the number of SAT clauses.
The constant write cycle makes Method2 advantageous over
Method1 in terms of the memristor device lifetime which
becomes a limiting factor after performing repetitive write
operations. Overall, the experimental evaluation confirms that
our proposed architecture can efficiently handle any large SAT
instances that can be mapped to a crossbar consisting of more
than 1000 rows and columns.

V. CONCLUSIONS

This paper presents an in-memory SAT-solver architecture
for the first time, that utilizes the inherent computational
capabilities of RRAM devices. The proposed SAT-solver can
compute any arbitrary SAT-instance and more importantly,
can be used for dynamic self-verification within in-memory
computing architectures. Two methods have been proposed

for parallel and sequential evaluation of a given SAT-instance.
The latter aims to ensure error-free memory reads at the
expense of a higher number of evaluation cycles. Time and
area complexities have been addressed for both methods and
experiments have been performed for equivalence checking of
majority-based logic-in-memory designs as a case study. Being
a pioneering approach, no comparisons with other approaches
are available.

ACKNOWLEDGEMENT

This work was supported by the German Research Foundation
(DFG) within the Project PLiM (DR 287/35-1, DR 287/35-2 and SH
1917/1-2).

REFERENCES

[1] C. Albrecht. Iwls 2005 benchmarks. Technical report, June 2005.
[2] A. Biere, M. Heule, and Hans van Maaren. Handbook of satisfiability,

volume 185. IOS press, 2009.
[3] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and

R. S. Williams. ‘memristive’ switches enable ‘stateful’ logic operations
via material implication. Nature, 464(7290):873–876, 2010.

[4] A. Deb, K. Datta, M. Hassan, S. Shirinzadeh, and R. Drechsler.
Automated equivalence checking method for majority based in-memory
computing on reram crossbars. In Proceedings of the 28th Asia and
South Pacific Design Automation Conference (ASP-DAC), page 19–25,
2023.

[5] R. Drechsler, H. M. Le, and M. Soeken. Self-verification as the
key technology for next generation electronic systems. In 2014 27th
Symposium on Integrated Circuits and Systems Design (SBCCI), pages
1–4, 2014.

[6] S. Froehlich and R. Drechsler. Generation of verified programs for in-
memory computing. In Digital System Design (DSD-2022), 2022.

[7] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. De Micheli. The programmable logic-in-memory (plim)
computer. In 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 427–432. Ieee, 2016.

[8] M.C. Hansen, H. Yalcin, and J.P. Hayes. Unveiling the iscas-85
benchmarks: a case study in reverse engineering. IEEE Design Test
of Computers, 16(3):72–80, 1999.

[9] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser. Magic—memristor-aided logic. IEEE
Transactions on Circuits and Systems II: Express Briefs, 61(11):895–
899, 2014.

[10] B. Ustaoglu, S. Huhn, D. Große, and R. Drechsler. Sat-lancer: a
hardware sat-solver for self-verification. In Proceedings of the 2018
on Great Lakes Symposium on VLSI, pages 479–482, 2018.

