
Security Coverage Metrics for Information Flow at
the System Level

Ece Nur Demirhan Coşkun∗ Sallar Ahmadi-Pour⋓ Muhammad Hassan∗⋓ Rolf Drechsler∗⋓
∗Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

⋓Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
ece.coskun@dfki.de {drechsler, hassan, sallar}@uni-bremen.de

Abstract—In this paper, we introduce a novel set of security
coverage metrics for information flow at the system level. The
proposed security coverage metrics play a crucial role in assessing
the qualification and quantification of various security properties,
in addressing specific threat models, such as availability, and
in identifying potential security vulnerabilities associated with
information flow. To implement these metrics, we present SiMiT,
a tool that leverages Virtual Prototypes (VP), and Static and
Dynamic Information Flow Tracking (IFT) methodologies. We
demonstrate the applicability of the proposed security coverage
metrics through SiMiT on an open-source RISC-V VP architecture
with its peripherals. By assessing the security properties using
these metrics, we pave the way for a security-aware Completeness
Driven Development (CDD) concept and the development of secure
System-on-Chip (SoC) designs.

I. INTRODUCTION

Modern System-on-Chip (SoC) designs are ubiquitous in
Internet of Things (IoT) devices, combining software (SW),
and digital hardware (HW) with microcontrollers and micropro-
cessors, and various Intellectual Properties (IP). These diverse
components seamlessly integrate to provide feature-rich func-
tionality in IoT devices for mission-critical applications. Many
of these critical applications, such as modern car Electronic
Control Unit (ECU) systems, require real-time responses.

One bug in any of these critical systems could be catas-
trophic through incidents, such as delayed rescue operations or
accidents [1]. Moreover, the presence of real-time requirements
in HW designs makes them susceptible to Denial of Service
(DoS) attacks [1]. These attacks render the IPs unavailable on
demand, potentially causing the entire system to malfunction.
An example of such vulnerability was found in [2], where an
attacker could attempt to shut down the network established
by Roadside Units (RSUs), disrupting communication between
vehicles and/or RSUs. As a result, vehicles could not receive
the road status information in time. In [3], JellyFish attack
was introduced, where an attacker could disorder, delay, or
periodically drop packets it was supposed to forward. These
attack scenarios emphasize the importance of security valida-
tion techniques in preventing security vulnerabilities.

Information Flow Tracking (IFT) is one of the security
validation techniques that has been shown as a powerful

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project ECXL under contract no.
01IW22002, the project PaSVer under contract no. 16ME0855, the project
SASPIT under contract no. 16KIS1852K, and the project Scale4Edge under
contract no. 16ME0127.

technique to help mitigate security vulnerabilities that violate
information flow policies and non-interference properties such
as confidentiality, integrity, and availability [4], [5]. However,
the effectiveness of this technique relies on the accurate security
property definition by the SoC designer, ensuring the detection
of vulnerabilities aligned with the threat model. Therefore,
the security properties should be assessed qualitatively and
quantitatively as part of the security validation. This assessment
can be done by defining security coverage metrics. The security
coverage metrics assist verification engineers in gaining a better
intuition to assess weaknesses, understand vulnerabilities, and
derive appropriate security properties that enhance the security
of SoC designs.

Consequently, it is crucial to proactively integrate security
considerations very early in the SoC design phase [5], [6]. This
approach helps to decrease in verification time and effort sig-
nificantly, ensuring compliance with very tight Time-to-Market
(TTM) budget. Therefore, Virtual Prototypes (VPs) are being
increasingly adopted by the semiconductor industry [4], [5].
The VPs are the abstract SW models of the HW, implemented
in SystemC [7] with its Transaction Level Modeling (TLM)
[8] extension. They serve as a golden reference for early SW
and HW development [5]. The VPs are used at the Electronic
System Level (ESL) as the starting point for early design
and verification in Completeness-Driven Development (CDD)
concept [9]. The CDD is an approach used in the design phase
to ensure completeness, i.e. verifying the complete behavior of
the design at each level of abstraction. The CDD concept makes
progress to subsequent abstraction levels only after achieving
completeness by verifying the entire behavior at each level of
abstraction.

The current CDD concept solely focuses on functional cor-
rectness. However, integrating the security aspect of the design
process is of utmost importance. Building a security-aware
CDD concept is crucial in addressing security vulnerabilities. It
highlights the importance of questioning the security properties
by applying security coverage metrics to mitigate potential
threats. Although several security properties for IFT have been
defined [4], [5] to validate the VP-based models based on the
security requirements, there is still a lack of security coverage
metrics to check the security properties at the system level.

Our Contributions: In this paper, we propose a novel set of
security coverage metrics for Information Flow at the system
level. Thereby, we assess the quality and quantity of various



security properties. Then, we introduce SiMiT, which is a Static
and Dynamic IFT tool, to implement these security coverage
metrics at the system-level. By assessing the security properties,
it becomes possible to ensure that IFT techniques meet the
necessary criteria for obtaining the desired security sign-off,
a crucial milestone in the verification process. These novel
security coverage metrics are defined based on information
flow, such as direct/indirect signal connectivity, partial/full
path activation, information flow rate.

The major contributions of this paper are summarized as
follows:

• We define a novel set of security coverage metrics for
system-level Information Flow to present valuable insights
into how well these security coverage metrics can address
the target threat models.

• We introduce SiMiT, a tool that leverages Static and
Dynamic IFT techniques, to implement security coverage
metrics at the system level.

• We assess the availability security properties with pro-
posed security coverage metrics.

• We demonstrate the applicability of these security cover-
age metrics using an open source RISC-V VP [10].

Paper Structure: Section II discusses the related work. In
Section III, we describe the target threat model and the mo-
tivating example. Then, in Section IV, we introduce the novel
security coverage metrics. Afterwards, in Section V, we explain
the IFT methodologies of SiMiT and the implementation of the
security coverage metrics in SiMiT. Finally, Section VI presents
the experimental results, and Section VII concludes the paper.

II. RELATED WORK

In this section, we provide some related works, and then we
discuss how SiMiT is related to and distinguished from others.
Although several security coverage metrics have been intro-
duced to evaluate vulnerabilities under various threat models
[11], [12], such as Trojans, IP piracy, reverse engineering, side
channels, and counterfeiting, these studies do not specifically
address the metrics that we proposed in SiMiT.

Some security metrics were presented for Quantitative Infor-
mation Flow (QIF) that serve as a measure of the information
leakage magnitude. Researchers have translated QIF to the HW,
with a specific emphasis on cryptographic cores and Trojans
[13]–[15]. However, extending the application of QIF beyond
these specific threat models presents a challenge that requires
further research.

Yet, other security metrics on Vulnerability analysis were
introduced in [16]. They specifically designed to test structures,
placing particular emphasis on cryptographic cores, Trojans,
and access control. This analysis involves performing a gate-
level path traversal and calculating the distance, measured by
the number of gates, from the asset to control or observation
points.

In another work [17], the definition of attributes and security
coverage metrics for the hyperflow graph was undertaken for
several threat models, including confidentiality, integrity, and
availability. While they presented useful security coverage
metrics by applying noninterference, our approach provides

security coverage metrics at the system level instead of RTL
or Gate level that enables early bug detection. Additionally, we
extend the assessments to include RISC-V VPs. To the best
of our knowledge, no existing work has investigated security
coverage metrics for VP-based IFT against availability security
properties.

III. BACKGROUND AND MOTIVATION

In this section, we describe the target threat model, specif-
ically focusing on availability. After that, we discuss a moti-
vating example to illustrate how security coverage metrics are
defined.

A. Threat Model

In SiMiT, we consider a threat model based on the Confiden-
tiality, Integrity, Availability, Authentication (CIAA) principles
[5], in particular availability. Availability problems arise when
an IP uses some shared resources to the point that they are
unavailable to other IPs [5].

B. Motivating Example

We provide here a motivating example that is used to
illustrate the representation of the security coverage metrics
throughout this paper. The motivating example is a simplified
Keyless Entry System (KES) that utilizes Near Field Commu-
nication (NFC) and Bluetooth (BT) IPs for smart lock/unlock
in KES via application-based authentication [18].

The system consists of a Bus that facilitates communication
between an NFC module, a BT module, a Microcontroller
(MC), and a Memory as shown in Fig. 1. The NFC enables
short-range wireless communication for authentication to give
an access to the authorized entities between the KES and NFC-
enabled smartphones. The BT is also used for authentication
to give an access to the authorized entities. The MC acts as
the control unit and, responsible for processing data, managing
access control policies, and executing keyless entry function-
alities. It coordinates the integration of the NFC, BT, and
Memory modules. The Memory stores authorized credentials,
and critical data required for the operation of the KES. It holds
configuration settings, access logs for the communication and
authentication.

Now consider a scenario where the access control policy in
the Bus is misconfigured, giving higher priority to BT over NFC

Memory

Bus

Microcontroller
(MC)

Fig. 1: The SystemC design of a simplified Keyless Entry
System, and code excerpt from the Bus IP implementing priority
encoded access policy.



to the shared Memory. Thereby, the system utilizes the BT for
authentication, while NFC is given lower priority seen in Fig. 1.
The first priority is determined in Line 4 of the code excerpt
of the Bus IP: If the BT request signal of BT is true, the signal
grant bt is set and data is transferred from BT to Memory. The
second priority is shown in Line 8. When nfc request signal
for the NFC is true, grant nfc is set to allow access to Memory.

Most of the smart devices’ peripherals (e.g. BT, NFC) are
restricted to establish only one connection at a time. This can be
interpreted as a security vulnerability, leading to eavesdropping,
interception, or relay attacks from a longer range [18].

Due to a misconfiguration of priorities, attackers can poten-
tially exploit these vulnerabilities to block the availability of
NFC module on time, leading to the possibility of skipping
requests from the NFC. However, these modules should have
an equal opportunity to have access to the shared Memory.
Such indirect information flow across another IP is difficult
to detect, particularly without an automated analysis using
IFT. Therefore, security coverage metrics are essential here
to provide more information about Information Flows across
a system to ensure that the security properties are correctly
defined.

IV. SECURITY COVERAGE METRICS

In this section, we introduce a novel set of security coverage
metrics for Information Flow at the system level. Essentially,
the proposed security coverage metrics to assess various secu-
rity properties while addressing the threat model, availability,
mentioned in Section III-A. In the following subsections, we
explain how each metric provides details on what informa-
tion/insights it can offer.

A. Direct Signal Connectivity

The Direct Signal Connectivity (DSC) metric determines
whether a signal A and a signal B are directly, i.e. explicitly
connected. The Explicit Information Flow (EIF) results from
two modules that are directly communicating. For example, an
EIF could occur, if the BT module and the NFC module were
directly exchanging data.

B. Indirect Signal Connectivity

The Indirect Signal Connectivity (ISC) metric determines
whether a signal A and a signal B are indirectly connected.
These connections can be identified through Implicit Informa-
tion Flow (IIF), which is more subtle compared to the EIF,
and could result in the unavailability of the IPs through certain
behaviors. The IIF might occur between two modules, where
one belongs to the trusted zone and the other to the untrusted
zone, sharing memory. An example of such an IIF can be
observed between the BT module in an untrusted zone and the
NFC module in a trusted zone, as both are allowed to access
the memory via the Bus.

C. Partial Path Activation

Establishing a definite flow between signals goes beyond
mere connectivity; it requires path activation as a crucial
confirmation. Introducing the Partial Path Activation (PPA)
metric helps illustrate this concept. The PPA metric serves

as a quantitative measure to assess the extent to which paths
between a signal A and a signal B are activated in a given
simulation for a given time interval [t1, t2]. Activation of a path
occurs when information originating from signal A successfully
propagates to signal B. By employing this metric, we can
effectively demonstrate that although a path exists between
signal A and signal B in the system, an exact flow cannot be
guaranteed.

D. Full Path Activation

The Full Path Activation (FPA) quantifies the total path
activation for the whole execution time. For example, if there
are 5 different paths in total from signal A to B, we look into
how many of them are activated throughout the entire execution
time.

E. Information Flow Rate

The Information Flow Rate (IFR) metric quantifies the
occurrence of an information flow from a signal A to a signal
B within a given time frame. In other words, by quantifying
the IFR metric, we can have an insight into how many times
the signal A reaches the signal B during the time interval.

V. SIMIT - STATIC AND DYNAMIC IFT TOOL

In this section, we first provide a high-level overview of
SiMiT, depicted in Fig. 2. Then, we show how the security
coverage metrics are implemented in SiMiT. The SiMiT is a
tool that leverages Static and Dynamic IFT techniques that
enables a comprehensive understanding of information flow
across a system.

A. The Static and Dynamic IFT techniques of SiMiT

The various IFT techniques used in SiMiT are explained as
follows:

Test-input SystemC Model

SP

Clang

Trace Generation

LoC
Testcase Results

PathTime
fn Lx

Time
tn

CFGCFLCFG

DDG

use-dep

Static Taint
Analysis

Observed Dependency List

Call-Graph

Binding Info

def-use

tn

Information Flow Tracking 

PPA

Test-input
signal
value

t[0,n-1]

IFRISCDSC FPA

Security Coverage Metrics Results

ODDG

DFA

Fig. 2: The workflow of SiMiT (SP: Security Properties, LoC:
Line of Codes, Lx: Line number, fn: File name, CFL: Control
Flow List, tn: Simulation time)



a) Trace Generation: We save the information flow of the
SystemC model at a given time tn, along with the current file
name fn and the line number Lx within the module where it
is located. In trace generation, we get comprehensive testsuits,
but the quality of the testcases is out of the scope in this paper.
Through the examination of the testcase results, we can infer
the interconnection of signals during each instance.

b) Security property definition (SP): We target the avail-
ability security properties. It is defined such that various IPs
are required to be available in a timely manner [19]. Thus, we
define SPs as follows:

SP =
{
(SI, SO)|SI ∈{in1 = HS, ..}, SO∈{out1 = AA, ..}

}
(1)

The SP in Eq. (1) ensures that each SP has inputs with the High
Security (HS) tag and outputs that must be Always Available
(AA) when needed.

c) Binding Information (BI) & Call Graph (CG): The
BI is necessary for the modules’ connectivity. This information
is crucial for understanding how data moves through the system
and for constructing CG. The method constructs the CG once
at the beginning. The CG is used to coordinate the analysis so
that the information is propagated to the correct function inside
the VP.

d) Control Flow Graph (CFG) & Control Flow List
(CFL): The CFG extracted from the Abstract Syntax Tree
(AST) of the VP using Clang to understand the relationship
between various statements (data flow and control flow) of the
design. We create the CFL for each time step of the testbench
results. To create it, we take the CFG and add the traversed
nodes of the CFG to the CFL. The traversal always starts
from the root node of the CFG. When it is at a node that
has a single child, it moves to it. When the current node is
of a conditional type and has multiple children, the traversal
moves to the child that was executed. To find out whether
a child node was executed, we create a log file during the
testbench execution, where we log the visited nodes with file
names and line numbers. SiMiT uses that file to traverse to the
executed child by comparing the file name and line number of
the children nodes with the log file.

e) Data Flow Analysis (DFA): The DFA is used to
create the definition-use (def-use) and the use-to-dependence
(use-dep) pairs, for a given VP by performing intra-function
analysis. The def-use pairs for a VP effectively addresses the
question of ”for each defined variable, which uses may po-
tentially utilize its values?”. The use-to-dependence represents
the dependence for variables in the conditional statements of
CFG blocks, where definitions in the possible succesors to the
conditional statements are stored.

f) Data Dependency Graph (DDG) & Observed Data
Dependency Graph (ODDG): The DDG is used to understand
the relationship between the variables in a design, including
signals, ports, and global and local variables of all modules.
It is created from the CFG, def-use pairs, use-to-dependence
pairs, function calls, and BI. The ODDG for each time step is
created similarly, but by using the corresponding CFLs of the
time steps, instead of the CFG.

g) Static Taint Analysis (STA): The STA is performed
to generate the Observed Dependency List (ODL). It starts
with a tainted source and adds variables while performing a
Depth First Search (DFS) based on dependence data from each
ODDG.
B. Illustration of Security Coverage Metrics in SiMiT

The following section explains how security coverage metrics
are implemented in SiMiT, and shows the results from the
motivating example.

a) DSC: To evaluate the DSC metric, from an HS-tagged
signal A to an AA tagged signal B (see Eq. (1)), we identify
the EIFs. To determine whether a variable is affected by
secure inputs (HS tag), a DDG uses forward tracing from the
corresponding secure input node to a Secure Output (SO) node
(AA tag). The HS tag is assigned to all nodes in this trace
that are related to the Secure Input (SI) and are added to the
Sensitive List of Secure Inputs (SLSI). Furthermore, because
the output variables may receive their final values via the
intermediate variables, a backward tracing on the DDG is also
performed to extract the variables of assignment statements
that are explicitly related to the outputs with the AA tag.
These nodes are added to the Sensitive List of Secure Outputs
(SLSO). The CFG of VP is then analyzed to find all sensitive
control signals that influence the occurrence of updates on
variables with AA tags. Each control flow of CFG condition
node type (e.g., if-else, switch-case, while, etc.) is visited, and
its control variables are retrieved. If the intersection of the
condition node’s extracted control variables and the SLSI is
not empty, additional analysis is performed on the condition
node’s child nodes, which are not conditional node types. This
analysis identifies assignment statements whose left-hand side
variables are in the SO list, in the case of EIFs. From the
motivating example, one of the SP is defined as follows:

SP = ({bt_enable_in = HS}, {grant_nfc = AA}) (2)

The SP in Eq. (2) ensures that the signal grant_nfc sent by
the NFC module to the Bus module must not be dependent on
the primary input bt_enable_in of the BT module seen in
Fig. 3. According to the assessment no direct flow is found in
between, and DSC = FALSE.

b) ISC: The ISC metric distinguishes itself from the DSC
metric in terms of handling paths from an HS-tagged signal A
to an AA-tagged signal B that involve conditional edges. In
such cases, one more step in addition to DSC is to look at the
SLSO that gives the IIFs. According to the assessment with
same SP in Eq. (2), we found that there exist indirect flow via
controlling variable bt_request (n11) (seen in Fig. 3), and
ISC = TRUE.

c) PPA: The PPA implementation starts with gathering
the number of paths, n

P
, from the DDG where information

originating from signal A reaches signal B. In the next step, for
each time step of the testbench results, the ODDGs are used
to find the number of partially activated paths, n

PPA
, where

information from signal A has reached signal B.

PPA(HS,AA, t1, t2) =
n

PPA
(HS,AA, t1, t2)

n
P
(HS,AA)

(3)



n5

n7 n8

NFC

n4

n1

Bluetooth

t= 0.002s [IF:1]
Visualization of the Dependency List

without a trace 

n7 n8

NFC

Bus

n9

n4

Bluetooth

n7 n8

NFC

Bus

n4

Bluetooth
 t= 0.001s [IF:0]

n5

n7 n8

NFC

Bus

n9n10n11

n4

Bluetooth
 t= 0.006s [IF:0]... ...

Visualization of the Observed Dependency List

Bus

n11

static IFV

observed IFV
dynamic

output

input
intermediate var.

static

n10 n9

n1 n5

n11 n10

n1 n5

n11 n10 n9

n3 n2 n6

n12 n13

n3 n2 n6 n3 n2 n6 n3 n2

n1 n5n5

n6

n12
n13

Fig. 3: The a part of the results of security coverage metrics from the motivating example, n1: bt_enable_in, n2: bt_tag,
n3: bt_proximity_threshold, n4: bt_pair_out, n5: nfc_enable_in, n6: nfc_proximity_threshold, n7:
nfc_tag_out, n8: nfc_request_out (NFC), n9: nfc_request (Bus), n10: nfc_tag_id, n11: bt_request, n12:
grant_bt, n13: grant_nfc, IFV: Information Flow Violation.

For the motivating example, from bt_enable_in to
grant_nfc in Eq. (3), we find n

P
= 1, n

PPA
= 1, and

PPA = 1 for the first 10 ms.
d) FPA: The FPA metric implementation distinguishes

itself from the PPA by quantifying the total path activation
for the whole execution time of the testbench. It is defined as:

FPA(HS,AA) =
n

FPA
(HS,AA)

n
P
(HS,AA)

(4)

For the motivating example, from bt_enable_in to
grant_nfc in Eq. (4), we find n

P
= 1, n

FPA
= 1, and

FPA = 1.
e) IFR: To implement the IFR metric, we attach the

tainted source information (HS tag), and perform STA for each
tainted source to create the ODL. This list is scrutinized to
calculate the percentage of IFR as follows:

IFR(HS,AA, s1, s2) =
NF (HS,AA, s1, s2)

1 + s2 − s1
· 100 (5)

The IFR metric in Eq. (5), is computed over a specified time
interval, from sample index s1 to s2. The ‘1’ is added since
both s1 and s2 are inclusive. In this calculation, NF represents
the number of flows from the HS tag (source) signal to the AA
tag (destination) signal.

From the motivating example, the IFR metric results seen
in Fig. 3 show one of the situations where bt_enable_in
reaches grant_nfc at 2ms. In total we found that it happens 2
times in 10 ms, for s1 = 1, s2 = 100, and results in IFR = 2%.

VI. EXPERIMENTAL RESULTS

We have demonstrated the applicability of the proposed
security coverage metrics using an open source RISC-V VP
[10] to demonstrate the applicability of the metrics. The RISC-
V VP is based on the SystemC hardware modeling language
and utilizes the TLM 2.0 modeling style. We evaluate the
methods in three steps. First, we present a case study for an
Electronic Control Unit (ECU) of a car engine immobilizer.
Then, we show the effectiveness of our methods in detecting
availability security problems. All the experiments were carried

out on a PC equipped with 24 GB RAM and an Intel Core i7-
8565U CPU running at 1.8 GHz.

Car Engine Immobilizer
In this experiment, we focus on a case study involving an

ECU of a car engine immobilizer equipped with SoC based
on a RISC-V Central Processing Unit (CPU), an Univer-
sal Asynchronous Receiver/Transmitter (UART), an Controller
Area Network (CAN) controller, a Platform Level Interrupt
Controller (PLIC), and a Memory centered around a central
Bus shown in Fig. 4. The other peripherals are abstracted away
for brevity.

The CAN plays a crucial role in managing low-level commu-
nication between the vehicle’s internal systems, such as sensors,
actuators, and the central processing unit CPU. On the other
hand, the UART peripheral enables debugging capabilities and
represents the attack surface a potential attacker can abuse to
interact with the system. In both cases, the system interaction is
modeled as random incoming received packets that are handled
through buffers, that trigger configured interrupts upon a config-
ured buffer limit. Both modules interact with the CPU through
the PLIC, based on external interrupts. For the identification of
the CAN and UART, the PLIC utilizes unique identifications,
in our case study id = 2 for CAN and id = 8 for the UART.

In such a system, a potential security vulnerability may
arise when the UART is (accidentally) given a higher priority

RISC-V CPU

BUS

CAN
Memory

UART

PLIC

SW

E
N

V

RISC-V VP

rxd
tdx

tdx
rxd

Fig. 4: The RISC-V VP model of a Car Engine Immobilizer



TABLE I: Security Coverage Metrics Results

No. AA-tagged SOs DSC ISC PPA FPA IFR (%)
SP1 interrupt_can FALSE TRUE 1 1 3·10−4

SP2 hart_config FALSE TRUE 1 1 7.79·10−3

SP3 c.m.f.m FALSE TRUE 1 1 7.78·10−3

SP4 c.m.f.e FALSE TRUE 1 1 7.38·10−3

SP5 target_harts FALSE TRUE 1 1 7.79·10−3

c.m.f.e: csrs.mcause.fields.exception_code
c.m.f.m: csrs.mip.fields.meip

configuration than the CAN peripheral. If the UART generates
an interrupt more frequently and reaches a certain threshold, the
PLIC and thus the CPU will prioritize its processing, leading
to delays or even the complete disregard of incoming CAN
messages. Consequently, this configuration flaw prevents effec-
tive communication with the CPU and peripherals with crucial
tasks, such as adaptive cruise control or collision avoidance.

The software executed on the processor initially configures
the devices (i.e. the device interrupt configurations), registers
interrupt handler callbacks for the CAN (id = 2) and UART
(id = 8), and sets their respective priorities in the PLIC. The
latter part contains the flaw, as the configured priorities are set
such that the UART is prioritized over the CAN. In a normal
use-case, such a flaw would not be visible due to the unused
access to the ECUs debugging interface. Regarding availability,
the CAN interrupt handling signals must be independent of
unrelated signals, such as those generated by excessive tasks
from the UART, which may cause the threshold for sending
interrupt signals to be exceeded. Accordingly, we have defined
multiple SPs with AA-tagged SO signals for the same HS-
tagged input signal plic_uart, but chose five of these SPs
that have IIF to present in Table I. They check whether the
value of the SO signals are dependent on plic_uart via
the other controlling variables. This means that the signal
plic_uart, which is supposed to be isolated from the
AA-tagged SO signals may affect the availability of CAN
messages. We created trace instances for 15 ms and observed
196313 samples. As an example from Table I, SP1 failed
in the static analysis, where the variable interrupt_can
was found to be dependent (implicitly) through 6 paths to
plic_uart with controlling variables; plic and min_id.
Then, we observed using dynamic analysis that 6 of these 6
paths from plic_uart to interrupt_can were activated.
Additionally, interrupt_can was reached by plic_uart
in 6 of the observed samples.

VII. CONCLUSION

In this paper, we have introduced a novel set of security
coverage metrics designed for Information Flow at the system
level. We present SiMiT, a tool that leverages scalable Static
and Dynamic IFT techniques to implement these metrics di-
rectly on SystemC VP models with the TLM 2.0 extension.
SiMiT identifies static paths and, for each time step in the
trace results, observes instances to assess security properties
and identify violated information flows. The applicability of
these assessments has been demonstrated through the analysis
of a complex RISC-V VP model.

The accuracy of the results, particularly concerning false
positives, depends on the precision of static analysis and the

reliability of input cases from dynamic analysis. Our study
primarily focuses on digital systems, suggesting future research
directions to extend the scope to analog-mixed signal systems
and explore broader security aspects, such as confidentiality
and integrity for a more comprehensive understanding.

REFERENCES

[1] F. Sakiz and S. Sen, “A survey of attacks and detection mechanisms on
intelligent transportation systems: VANETs and IoV,” Ad Hoc Networks,
vol. 61, pp. 33–50, Jun. 2017.

[2] I. A. Sumra, I. Ahmad, H. Hasbullah, and J.-l. bin Ab Manan, “Classes
of attacks in VANET,” in 2011 Saudi International Electronics, Commu-
nications and Photonics Conference (SIECPC), Apr. 2011, pp. 1–5.

[3] I. Aad, J.-P. Hubaux, and E. W. Knightly, “Impact of Denial of Service
Attacks on Ad Hoc Networks,” IEEE/ACM Transactions on Networking,
vol. 16, no. 4, pp. 791–802, Aug. 2008.

[4] E. N. Demirhan Coşkun, M. Hassan, and R. Drechsler, “Security Val-
idation of VP-based Heterogeneous Systems: A Completeness-driven
Perspective,” in Methoden und Beschreibungssprachen Zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV), Mar. 2023.

[5] E. N. Demirhan Coşkun, M. Hassan, M. Goli, and R. Drechsler, “VAST:
Validation of VP-based Heterogeneous Systems against Availability Se-
curity Properties using Static Information Flow Tracking,” in 2023 24th
International Symposium on Quality Electronic Design (ISQED), Apr.
2023, pp. 1–8.

[6] M. Hassan, D. Große, and R. Drechsler, Enhanced Virtual Prototyping
for Heterogeneous Systems. Springer, 2023.

[7] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638, Jan.
2012.

[8] F. Ghenassia, Ed., Transaction Level Modeling with SystemC: TLM Con-
cepts and Applications for Embedded Systems. Boston, MA: Springer
US, 2005.

[9] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne, H. M. Le, J. Seiter,
M. Soeken, and R. Wille, “Completeness-Driven Development,” in Graph
Transformations, ser. Lecture Notes in Computer Science, H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds. Berlin, Heidelberg:
Springer, 2012, pp. 38–50.

[10] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and Config-
urable RISC-V Based Virtual Prototype,” in 2018 Forum on Specification
& Design Languages (FDL), Sep. 2018, pp. 5–16.

[11] K. Xiao, A. Nahiyan, and M. Tehranipoor, “Security Rule Checking in
IC Design,” Computer, vol. 49, no. 8, pp. 54–61, Aug. 2016.

[12] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, Aug. 2014.

[13] B. Mao, W. Hu, A. Althoff, J. Matai, Y. Tai, D. Mu, T. Sherwood,
and R. Kastner, “Quantitative Analysis of Timing Channel Security in
Cryptographic Hardware Design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1719–1732,
Sep. 2018.

[14] X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin, “QIF-Verilog:
Quantitative Information-Flow based Hardware Description Languages
for Pre-Silicon Security Assessment,” in 2019 IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), May 2019,
pp. 91–100.

[15] L. M. Reimann, L. Hanel, D. Sisejkovic, F. Merchant, and R. Leupers,
“QFlow: Quantitative Information Flow for Security-Aware Hardware
Design in Verilog,” in 2021 IEEE 39th International Conference on
Computer Design (ICCD), Oct. 2021, pp. 603–607.

[16] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, and M. Tehranipoor,
“Security vulnerability analysis of design-for-test exploits for asset pro-
tection in SoCs,” in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan. 2017, pp. 617–622.

[17] A. Meza and R. Kastner, “Information Flow Coverage Metrics for
Hardware Security Verification,” Apr. 2023.

[18] K. Lounis and M. Zulkernine, “Bluetooth Low Energy Makes “Just
Works” Not Work,” in 2019 3rd Cyber Security in Networking Conference
(CSNet), Oct. 2019, pp. 99–106.

[19] E. Jonsson, “Towards an integrated conceptual model of security and de-
pendability,” in First International Conference on Availability, Reliability
and Security (ARES’06), Apr. 2006, pp. 646–653.


