
Diagnostic Tests and Diagnosis for
Delay Faults using Path Segmentation

Tino Flenker∗, André Sülflow∗ and Görschwin Fey∗†∗University of Bremen, Institute of Computer Science, 28359 Bremen, Germany†Institute of Space Systems, German Aerospace Center, 28359 Bremen, Germany
Email: {flenker, andre.suelflow}@uni-bremen.de, goerschwin.fey@dlr.de

Abstract—Diagnosis of integrated circuits is an arduous pro-
cess. Tools are needed which aid developers locating circuit’s
faulty parts faster. In this work path delay faults are considered.
A simulation based diagnosis algorithm using diagnostic test
patterns is introduced for locating the cause of the delay fault.
Initial paths are segmented to improve the diagnosis accuracy. For
each segment, additional diagnostic test patterns are generated
using a solver for Boolean Satisfiability. The experimental results
show that a significant improvement of the diagnostic accuracy
is achievable with our approach.

Keywords — diagnostic test pattern generation, delay fault
diagnosis, segmentation

I. INTRODUCTION

Due to continuously shrinking feature size and increasing
number of logic gates at the same time, diagnosis is a major
concern when developing modern integrated circuits. Testing
helps developers to detect a fault, while diagnosis helps
locating the causes of failures more quickly and accurately.
Delay faults may violate timing constraints and falsify the
results produced by a circuit. Several delay fault models have
been proposed. Among them, a prevalent fault model is the
Path Delay Fault (PDF) model [1]. The PDF model captures
small as well as large delay defects distributed along a path
from the primary inputs to the primary outputs. Another fault
model is the Segment Delay Fault (SDF) model [2]. The SDF
assumes a large delay defect on a subpath of the circuit.

Different faults may mask each other, therefore the defini-
tion of robustness is introduced [1][3]. The robustness of tests
is classified in two categories: robust and non-robust. A robust
test detects a path delay fault regardless of whether another
path delay fault is present. In contrast, a fault effect may be
masked when non-robust tests are used. Thus, robust tests are
more desirable.

If a circuit test discovers a delay fault, diagnosis starts to
identify the cause. The search for the cause of delay requires a
large effort which needs a significant proportion in the cycle of
IC development. To reduce this effort, automated approaches
for diagnosis have been introduced like in [4][5].

For our approach techniques for Automatic Test Pattern
Generation (ATPG) are used to generate diagnostic Test Pat-
terns (TP) for activating paths. Then, faulty behavior can
be checked on the activated paths during diagnosis. In the
literature several ATPG-techniques are known [6][7][8][9][10].
The authors of [7] generate diagnostic TPs using a genetic
algorithm. They use a simulation based ATPG with a directed
search mechanism. In addition they introduce a fitness function
based on the distinguishable test pairs. In contrast to [7]
we generate diagnostic TPs with direct search using Boolean
Satisfiability (SAT). In [9], SAT-based ATPG for path delay

This work was supported by the University of Bremens Graduate School
SyDe, funded by the German Excellence Initiative, and the German Research
Foundation (DFG, grant no. FE 797/6-2).

faults is proposed. The authors generate non-robust and robust
tests. They use multiple-valued logic in order to handle tri-state
elements and environmental constraints occurring in industrial
practice. Like in [9] we use multiple valued logic for the
generation of diagnostic TPs and for post processing.

Diagnosis for path delay faults is also known in the
literature [4][11][12][13]. The authors of [11] use a frame-
work for PDF diagnosis based on effect-cause analysis and
enhanced Zero-suppressed Binary Decision Diagrams (ZB-
DDs). In effect-cause analysis the results of the applied tests
are examined to obtain all possible failing tests. For each
failing test a structural representation is used to describe all
possible faults, that could be the cause of the observed error.
In [4] a method is proposed to locate segments that cause
delays on circuit paths. They use delay bounds of tested
paths to build linear constraints. Then a solver for linear
programming solves the constraints to identify segments that
cause extra delays. In contrast to [4], we use a simulation based
approach and identify suspects by taking the intersection of
suspects from all failing tests into account.

We propose a simulation based diagnosis algorithm for
locating faulty gates using tests for path delay faults. We
refine the initial diagnosis by segmenting the given paths. For
that, we introduce three methods for segmentation. For all
segments additional TPs are generated by a SAT-solver. The
experimental results show that at the costs of additional TPs
an improvement of the diagnosis accuracy in most cases by a
factor between 2 and 4 but the best result yields a factor up
to 36.

Our core contributions are a method for generating diag-
nostic TPs by path segmentation and an algorithm for diagnosis
using the TPs.

This paper is structured as follows. In Section II prelimi-
naries are introduced. An overview of our approach is given
in Section III. The process for the segmentation of the paths
is presented in Section IV, whereas the diagnosis algorithm
is treated in Section V. Experimental results are shown in
Section VI and the conclusions are drawn in Section VII.

II. PRELIMINARIES

A combinatorial circuit c is represented by a directed
acyclic graph G = (V,E), referred to as the circuit graph,
where V is the set of circuit nodes and E the set of edges,
which corresponds to the connections between the gates in the
circuit. The successors of a node g ∈ V are given by a set of
nodes succ (g) = {h|(g, h) ∈ E ∧ h ∈ V }. The function
outdegree(g) = | succ (g)| gets the number of successors
of g. The predecessors of a node g ∈ V are given by a
set of nodes pred (g) = {h|(h, g) ∈ E ∧ h ∈ V }. The function
indegree(g) = | pred (g)| gets the number of predecessors of

2015 Asian Test Symposium

978-1-4673-9739-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ATS.2015.32

145

2015 IEEE 24th Asian Test Symposium

978-1-4673-9739-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ATS.2015.32

145

2015 IEEE 24th Asian Test Symposium

978-1-4673-9739-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ATS.2015.32

145

TABLE I. OFF–PATH CONSTRAINTS

↑ robust ↓ robust non-robust

AND/NAND X1 S1 X1
OR/NOR S0 X0 X0

g. A path P from node g1 to node gn is a sequence of nodes
(g1, g2, . . . , gn) with (gi, gi+1) ∈ E. Each sequential circuit is
transformed to a combinatorial circuit for enhanced scan. Flip-
flop inputs are treated like a primary output and the Flip-flop
outputs are treated like a primary input by introducing Pseudo
Primary Inputs (PPI) and Pseudo Primary Outputs (PPO). The
function IsPrimIn(g) returns 1, if g is a (pseudo) primary
input. Otherwise the function returns 0. If the gate g is a
(pseudo) primary output, the function IsPrimOut(g) returns 1
and otherwise 0.

Each gate is considered over two time frames to detect
transitions of a signal’s value. If the value changes from 0 to 1,
then we have a rising edge (↑) and a falling edge (↓) is present
if the value changes from 1 to 0.

The difference of robust and non-robust tests for PDFs are
the sensitization criteria of the off-path inputs. Table I shows
how the logic values for both time frames are set for the robust
and non-robust case [1][3]. The logic values S0/S1 mean, that
over both time frames the same logic value is set statically.
The X which occurs in the first time frame means don’t care.
The polarity at this time frame can be either 0 or 1. At the
second time frame the polarity is set to the non-controlling
value of the given gate. For an AND/NAND gate the polarity
is set to 1 and for an OR/NOR gate to 0.

It is assumed, that only a single gate in the circuit causes
the delay fault.

III. OVERVIEW

The idea of our approach is to segment a set of initial
paths and generate TPs which are used for the diagnosis based
on simulation. We assume the TPs are generated once before
the chip is physically available. After test generation, the tests
are stored in a dictionary (through step (4)), which is used in
diagnosis (from step (5)).

An overview of our methodology is presented in Fig. 1.
First (1), initial paths are analyzed for a given circuit. Robust
and non-robust TPs are generated. In the next step (2), paths
are segmented to narrow the diagnosis along a failing initial
path. For a better refinement the segments need to be sensitized
by a test pattern. TP generation for the segments is done in
step (3). For the segments, robust and non-robust TPs are
generated. For each segment a distinguishing path is searched
in step (4). The distinguishing path leads from the primary
inputs over a segment to the primary outputs and helps to
distinguish from the initial path. The distinguishing path shares
only the gates of the segment with the initial path. Step (5) is
the actual diagnosis. Here suspects are determined, using the
results of the circuit test, executed with previously generated
TPs (6).

IV. SEGMENTATION

This section describes the segmentation. Section IV-A
presents three segmentation methods in detail. Section IV-B
introduces how the segment sensitization and the search for
the distinguishing paths is ensured.

A. Segment Generation
For segmentation a set of initial paths is given on which the

segmentation is executed, where each initial path leads from

in
it

ia
l

p
at

h
s

d
ia

g
n
o
si

s
se

g
m

en
ta

ti
o
n

circuit

PDF TP–Gen (1)

segment generation (2)

segment sensitization TP–Gen (3)

distinguishing paths (4)

diagnosis (5)

suspects (6)

robust non-robust

Fig. 1. Overview of methodology

PI to PO:

P = {(g0, . . . , gn) | path(g0, gn)

∧ isPrimIn(g0) ∧ isPrimOut(gn)} (1)

1) Non-overlapping Segments: Fig. 2 demonstrates the
non-overlapping method of segmentation. The method does
not accept overlapping segments. Thus, a TP can exactly be
allocated to the gates of the segment. Each path is split at each
fan-in/out.

a b c d e

Fig. 2. Non-overlapping segments

The properties of a segment of the non-overlapping method
of segmentation are defined in Equation 2. Inside a seg-
ment (gi, . . . , gn) the gates have only one predecessor or
successor. That is ensured because indegree and outdegree
inside the segment is one. In addition, there must be a path
between gi and gn. A segment starts at a gate which has an
indegree greater than one, or the predecessor has an outdegree
greater than one, or the first gate of the segment is a primary
input. The last gate has more than one successor, or the
successor has more than one predecessor, or the last gate of
the segment is a primary output of the circuit.

S1 = {(gi, . . . , gn) | ∀nj=i+1.(indegree(gj) = 1)

∧ ∀n−1
j=i .(outdegree(gj) = 1) ∧ path(gi, gn)

∧ (indegree(gi) > 1 ∨ outdegree(pred(gi)) > 1

∨ isPrimIn(gi))

∧ (outdegree(gn) > 1 ∨ indegree(succ(gn)) > 1

∨ isPrimOut(gn))} (2)

2) Overlapping Segments: More predecessors or succes-
sors for a segment increase the possibilities to find a distin-
guishing path. The more distinguishable paths are found, the

146146146

more precise is the diagnosis. For this reason the overlapping
method in Fig. 3, is introduced. Each segment has at least two
inputs or outputs at the beginning or ending gate. Exceptions
are segments that start or end at the primary inputs or primary
outputs.

a b c d e

Fig. 3. Overlapping segments

Equation 3 shows the definition of the overlapping method
of segmentation. This method generates a segment for each
gate. Starting from the given gate gk in each direction, a path
is determined. The gates from gi+1 to gk have an indegree
of one. The gates from gk to gn−1 have an outdegree of
one. In addition, the first gate of the segment gi has more
predecessors than one or gi is a primary input. The last gate
of the segment gn has more than one successor gate or is a
primary output.

S2 = {(gi, . . . , gk, . . . , gn) |
path(gi, gk) ∧ ∀kj=i+1.(indegree(gj) = 1)

∧ path(gk, gn) ∧ ∀k−1
j=i .(outdegree(gj) = 1)

∧ (indegree(gi) > 1 ∨ isPrimIn(gi))

∧ (outdegree(gn) > 1 ∨ isPrimOut(gn))} (3)

3) Overlapping Segments with start/end on PI/PO: The
next overlapping method of segmentation is shown in Fig. 4.
Starting from the segment, a search for the distinguishing path
in one direction is needed only.

a b c d e

Fig. 4. Overlapping segments with PIs/POs as start/end

The definition of the overlapping method of segmentation
with start/end on the PI/PO is shown in Equation 4. The
segments (gi, . . . , gn) either start at the primary inputs and
end at a succeeding gate with more than one successor or the
segments end on a primary output and starting at a preceding
gate with more than one predecessor.

S3 = {(gi, . . . , gn) | path(gi, gn)

∧ ((isPrimIn(gi) ∧ outdegree(gn) > 1)

∨ (isPrimOut(gn) ∧ indegree(gi) > 1))} (4)

In summary, the three segmentations are briefly character-
ized as follows:

1) A TP is exactly assignable to the gates of a segment
2) Increased possibility to find distinguishing paths
3) Searching a distinguishing path in one direction is

needed only

B. Segment Sensitization
This section describes the procedure to compute the dis-

tinguishing path for segments generated in Section IV-A. Our
idea is to generate tests for sensitizing the segment, such that

a delay is propagated through the segment but not through
any other part of the initial path. TPs for the segments are
generated by a SAT-solver.

For further explanation the example circuit shown in Fig. 5
is used. Gate g is assumed as the segment and the initial path
propagates over the path fpdf .

g
i

h

k

0

1

1

1 1

fpdf

Fig. 5. Search for distinguishing paths

First, the transitive fan-in cone of the initial path will be
transformed to Conjunctive Normal Form (CNF) [14]. Next,
the side inputs of the segment are set to non-controlling values
accordingly if the given gate is an AND/NAND or an OR/NOR
gate. Next, new constraints ensure, that a distinguishing path
for the segment will be returned by the SAT-solver, if exists.
These constraints do not explicitly fix a path, but leave the
search to the SAT-solver.

In [15] the author wants to propagate the from the
D-Algorithm [16] known D-values to the primary outputs with
SAT. In [17] for each gate in the circuit another variable and
constraint is added. If the variable is set to 1, the constraint
ensures that one of the successors propagates the D-value. Our
idea is similar, however edges are propagated. We introduce
such additional variables only for the gates of the segment’s
output cone (Equation 5) and input cone (Equation 6).

First, for each wire not on the initial path fpdf , a new
variable cgh is added. The indices correspond to the source
gate g and the target gate h of the wire. Next, variables for
the first and the last gate of the segment cg are added and
set to 1. That activates the added implications represented
by Equation 5 and 6. In Fig. 5 only gate g is the segment,
hence, only cg is added and set to 1. Equation 5 for gate g is
constructed as follows: cg → cgh ∨ cgi

cg →
∨

x∈succ (g)
cgx (5)

cg →
∨

x∈pred (g)

cxg (6)

If cgh is set to 1, the edge is propagated along the wire
from g to h. The following constraints are added to ensure this
behavior.

cgh →
∧

x∈pred(h)\g
(x = X1/X0) (7)

In Equation 7 the wire cgh between the gates g and h out
of Fig. 5 is treated. All side inputs x of gate h are set to the
non-controlling value X1.

If robust tests are desired, Equation 7 is extended. The side
inputs need specific values for hazard-free forwarding of the
edge through the path.

For each gate between the segment, in our example gate g,
and the primary outputs, the extended constraints are shown

147147147

in Equation 8 and 9. Equation 8 is only added, if the given
gate has 1 as the non-controlling value. Otherwise Equation 9
is added instead. For all succeeding gates of g holds if the
implication variable cgx is set to 1, g is assigned to a rising
edge and all side inputs except g are set to X1 or g is assigned
to a falling edge and the side inputs unequal to g are set to S1.

x ∈ succ (g)
cgx → ((g =↑ ∧

∧

y∈pred (x)\g
y = X1) ∨

(g =↓ ∧
∧

y∈pred (x)\g
y = S1)) (8)

cgx → ((g =↑ ∧
∧

y∈pred (x)\g
y = S0) ∨

(g =↓ ∧
∧

y∈pred (x)\g
y = X0)) (9)

Equation 10 and 11 show the extended functions for
the gates between the segment and the primary inputs. The
difference to Equation 8 and 9 is that the inputs of gate g are
assigned to the rising or falling edge and the side inputs except
gate x are set to X1/S0 or S1/X0.

x ∈ pred (g)
cxg → ((g =↑ ∧

∧

y∈pred (g)\x
y = X1) ∨

(g =↓ ∧
∧

y∈pred (g)\x
y = S1)) (10)

cxg → ((g =↑ ∧
∧

y∈pred (g)\x
y = S0) ∨

(g =↓ ∧
∧

y∈pred (g)\x
y = X0)) (11)

Finally, the SAT-solver tries to solve the given instance.
If the result is satisfiable, a distinguishing path for the given
segment with a TP exists.

The distinguishing path is not explicitly given by the
SAT-solution. Therefore the distinguishing path needs to be
determined. In the SAT-solution for each TP a depth first search
for edge propagating gates is executed from the segment to the
primary inputs and primary outputs to find the distinguishing
path.

In Fig. 5 the search starts from gate g following the edge
forwarding gates until reaching the primary outputs excluding
the gates of the initial path fpdf . If the search proceeds along
gate h, no solution can be found because the delayed values are
masked at gate k. Afterwards, the search continues and finds a
distinguishing path along gate i to a primary output. Therefore,
the distinguishing path for the initial path fpdf is (g, i). To
obtain the TP for the segment, the logic values of the primary
inputs are taken from the SAT-solution.

V. DIAGNOSIS

The algorithm for diagnosis is described in the following
section. For that, a circuit test with all generated TPs for the
initial paths and the distinguishing paths is assumed to be
executed before. The output values resulting from the circuit
test are stored in a map tr for diagnosis.

The general idea is to take the intersection of suspects of all
failed TPs. To take the intersection is valid, because a single
delay fault is assumed. From the intersection all guaranteed
fault-free gates of passing TPs are removed. All remaining
gates are the final set of suspects.

Now, at first two auxiliary functions are described in Algo-
rithm 1 and 2. Subsequently, the main function for calculating
the suspects is presented in Algorithm 3.

Even for robust tests Algorithm 1 computes the activation
cone for a given path and TP tp. An activation cone only
includes gates, which could be the cause of error by a given
TP. The included gates are able to propagate an edge to the
given path’s primary output. The cones are required later in
the diagnosis in order to distinguish the possibly faulty gates
from the fault-free ones. Line 2 simulates the TP to determine
expected values of gates. To get the input cone of the path’s
output a breadth first search starting at the primary output of
the path is carried out. For that, a queue is initialized with
the output gate of the pdf at Line 4. Then the activation cone
of the path’s output is calculated. For each gate in the queue
the predecessor gates (predecessor) are examined (Line 7).
First the gate is checked, whether it is already visited. If
the examined gate is already visited, the next gate is treated.
Otherwise the gate is set to visited. In addition the polarity of
the current gate is checked (Line 11). Gates with an edge (non-
static value) forward the delay and are pushed to the queue,
so that the predecessors of this gate will be examined later.
Furthermore the examined gate is included in the cone. Finally,
the activation cone is returned.

Algorithm 1 Calculation of activation cone for path and tp

1: function active cone(circ, path, tp)
2: sim← simulate(circ, tp)
3: cone← {path.po()}
4: queue.push(path.po())
5: while ¬queue.empty() do
6: current← queue.pop()
7: for all predecessor ∈ pred(current) do
8: if predecessor.is visited() then
9: continue

10: predecessor.visit()
11: if sim.polarity of(predecessor)
∈ {S0, S1} then
12: queue.push(predecessor)
13: cone← cone ∪ predecessor
14: return cone

Algorithm 2 analyzes the suspects for a given path with
TP tp. On Line 2 the activation cone for the path is calculated
first. Afterwards, it is checked, whether the results of the
circuit test (tr) have discovered a delay fault on the path’s
primary output. In case a delay is present the intersection of
the activation cone and the suspects is computed. Otherwise,
no error is detected and the gates of the activation cone are
removed from the set of suspects (Line 7). Finally, the function
returns, whether a delay is present on the path with the given
TP or not.

Algorithm 3 computes the suspects sps for a given circuit.
First, to take an intersection of two sets of suspects, an initial
set of suspects is needed. For that purpose a failing initial
path’s test instance at Line 2 is randomly selected. Next, the
active cone is taken as initial set of suspects. Then, for all
given initial path’s tests instances pdfts the suspects analysis
is carried out. On Line 7 the suspects for an initial path are

148148148

Algorithm 2 Analyze suspects for path

1: function analyse path(circ, path, tp, suspects, tr)
2: cone← active cone(circ, path, tp)
3: delayed← tr.value of(tp, path.po())
= path.po exp()
4: if delayed then
5: suspects← suspects ∩ cone
6: else
7: suspects← suspects\cone � fault–free
8: return delayed

computed and returned. If a delay fault is non-existent, the
analysis for the next initial path is continued. If a fault is
detected (Line 9), the analysis continues for each segment
represented by the tested initial path. After checking all initial
paths and segments, the remaining suspects are returned, where
the faulty gate must be within.

Algorithm 3 Calculation of suspects

1: function compute suspects(circ, pdfts, tr)
2: pdfti ← sel delayed rnd(pdfts) � initialize suspects
3: sps← active cone(circ, pdfti.path(), pdfti.tp())
4: for all pdft ∈ pdfts do
5: � step 1: pdf analysis
6: delayed
7: ← analyse path(circ, pdft.path(), pdft.tp(), sps, tr)
8: � step 2: segment analysis
9: if delayed then

10: for all s ∈ segments(pdft.path()) do
11: analyse path(circ, s.dist path(), s.tp(), sps, tr)
12: return sps

VI. RESULTS

Circuits from the ISCAS’85, ISCAS’89 and ITC’99 bench-
mark packages are used for the evaluation. The computations
are executed on an AMD OpteronTMProcessor 2222 SE with
64 GB RAM and the runtime is measured in CPU seconds.

A. Evaluation of methods for segmentation
Table II shows the results for robust TPs and non-robust

TPs. Circuits with more than 2,400 gates are considered only
and the initial paths are generated randomly.

The first two columns show the name of the examined
circuit and the number of gates. The third column (#detect)
presents the number of detectable gates by the generated TPs
for the initial paths. A gate is called detectable, if a test exists
for an initial path, that propagates an edge along the given gate
to an initial path’s primary output.

In the first series of experiments, we focus on diagnosis
without segmentation given in “w/o segmentation”. Column
four (%ac) shows the achieved gate coverage of the initial
paths. A gate is called covered, if a path through the gate with
a TP exists, so that an edge is propagated through the gate to
any primary output. The initial set of paths achieves a coverage
between 17.3% to 54.9%. The number of TPs (|tp|) is always
less-or-equal to the number of paths (|p|), because some TPs
are re-usable for different paths.

The average number of suspects returned by the diagno-
sis is shown in column eight (sps). The average diagnosis
accuracy is computed by iteratively assuming each single
gate as defect and carrying out the diagnosis algorithm from
Section V per gate. Finally, the average is taken over all the
results. In some cases the basic diagnosis achieves a quite good

diagnosis accuracy. For example, for b22, a circuit with 15, 690
detectable gates, an average diagnosis accuracy of 4.3 is
achieved. That means, in the average case the algorithm returns
for b22 a set of suspects with 4.3 gates, including the erroneous
gate in all cases.

To improve the total runtime, first all activation cones
are computed for each pair of TP and path. Afterwards, the
diagnosis is applied for each gate by assuming the gate as
faulty. The runtime (t(s)) includes the computation for all
active cones and the sum for the diagnosis for each gate.
The runtime for the computation of the cones increases linear
with the number of paths whereby the time of simulations
increases linear with the number of test instances. A test
instance consists of a path or segment and a corresponding
TP. In case of circuit b22 the consumed runtimes are 1, 167s
for the calculation of all cones and 2, 329s for the diagnosis
for all detectable gates. In sum, we obtain a runtime of 3, 496s.

For some circuits the achieved diagnosis accuracy is still
unsatisfactory, so that manual diagnosis would be an arduous
work. For example, the circuit c6288 achieves a diagnosis ac-
curacy of 37.9 with robust tests and 55.2 with non-robust tests
only. To improve these results three methods for segmentation
were introduced.

The remaining columns are related to diagnosis with
non-overlapping segmentation (s1), overlapping segmenta-
tion (s2) and segmentation with overlapping segments start-
ing/ending at the primary inputs/outputs (s3). The relative
coverage (%rc), is the percentage of gates covered by a
segment relating to the covered gates of the initial paths (%ac).
The number of generated segments (|seg|), the additionally
generated test patterns (| + tp|), the consumed time for the
diagnosis (t(s)) for the segments and the achieved average
number of suspects (sps) returned by the diagnosis with
segments are also shown.

Table II shows a significant improvement of the diagnosis
accuracy from diagnosis without segmentation to diagnosis
with segmentation. The average improvement achieved is the
factor of 5.2 in terms of the number of suspects. The runtime
for the diagnosis with segments increases by the factors 3.7
for the non-overlapping segments, 8.8 for the method with
overlapping segments and 16.7 for the last segmentation,
respectively.

The overlapping segmentation with start/end at the primary
inputs/outputs always achieves the best relative gate coverage.
Segmentation s3 also generates most testable segments in
comparison to the non-overlapping s1 and the overlapping s2
segmentation (|seg|). Segmentation s3 also produces most TPs
and needs the longest runtime but also leads to better diagnosis
accuracy. Thus, a trade-off between diagnosis accuracy and
runtime has to be made.

These results show the efficiency of our diagnosis approach
based on distinguishing paths. Reducing the large number of
TPs is out of the scope of this work and will be addressed in
future work.

B. Increase the number of initial paths
For circuits with a limited diagnosis accuracy despite of

segmentation like c5315 the number of initial paths can be
increased. More initial paths improve the diagnosis accuracy,
because more tests and segments will be generated. Moreover,
additional tests increase the number of detectable gates and
the runtime for diagnosis.

149149149

TABLE II. EXPERIMENTAL RESULTS

robust

circ #gates #detect
w/o segmentation

w/ segmentation
s1 s2 s3

%ac |p| |tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps

b14 10,042 4,642 33.6 704 704 375 4.6 21.9 3,654 1,984 1,586 3.2 71.4 11,174 5,283 4,539 1.5 99.9 20,379 9,609 10,095 1.2
b15 8,852 4,521 37.1 714 714 340 5.2 27.8 4,881 3,002 1,699 4.2 69.4 10,022 6,371 4,046 3.5 99.8 12,414 9,235 6,919 2.5
b17 32,229 14,451 35.4 2,438 2,434 3,304 3.5 27.5 19,168 11,370 16,726 2.1 78.6 39,688 25,313 41,650 1.4 99.5 47,135 36,029 71,372 1.2
b20 20,204 10,459 36.9 1,405 1,405 1,785 5.4 22.1 9,030 5,578 7,059 4.2 79.4 23,464 14,611 18,018 2.9 100.0 38,161 24,845 35,478 1.2
b21 20,549 10,236 36.4 1,442 1,442 1,644 5.1 21.1 8,772 5,059 6,619 3.8 75.5 22,650 13,452 17,060 2.4 100.0 39,709 24,280 34,856 1.2
b22 29,929 15,690 39.8 2,087 2,087 3,497 4.3 21.4 14,508 9,016 14,618 3.0 83.5 37,793 24,746 38,065 1.6 99.9 57,628 40,478 74,187 1.2
c5315 2,485 724 27.3 141 141 5 2.9 14.2 717 290 34 2.2 36.7 1,532 558 89 1.8 100.0 2,723 1,796 195 1.4
c6288 2,448 2,383 54.9 78 78 110 37.9 29.7 1,163 657 491 1.5 34.0 1,226 697 883 1.5 86.3 1,710 1,243 1,368 1.3
c7552 3,718 1,301 23.2 180 180 31 10.5 15.8 613 308 98 6.8 37.8 1,216 561 202 4.6 98.4 2,720 1,629 395 2.4
s13207 8,601 1,518 17.2 378 369 50 5.5 32.0 1,213 417 228 4.4 67.3 2,791 1,080 589 4.1 100.0 4,022 2,306 1,084 4.0
s15850 10,372 3,366 28.4 402 400 110 7.9 32.1 1,383 724 411 5.2 76.9 4,303 2,222 1,126 4.2 99.9 5,009 3,449 1,979 4.1
s35932 17,828 7,820 43.2 1,007 1,007 462 8.2 9.5 2,014 1,149 1,486 7.1 36.1 5,224 3,264 3,364 5.4 92.6 8,881 6,012 6,166 3.3
s38417 23,703 7,854 27.8 1,065 1,060 655 5.0 41.1 5,743 3,053 3,070 3.5 81.8 12,849 7,072 7,613 2.5 99.9 17,952 12,578 13,912 2.4
s38584 20,715 6,793 28.1 1,393 1,379 740 6.2 25.4 3,813 1,932 2,654 5.1 88.0 10,732 5,618 6,787 3.4 93.5 11,864 7,628 11,274 3.3
s5378 2,993 973 25.2 148 148 6 5.8 33.7 604 312 30 4.4 84.9 1,507 796 83 3.1 100.0 1,777 1,167 149 2.9
s9234 5,844 2,046 25.2 220 220 38 9.9 23.7 791 246 135 8.2 66.4 1,848 635 315 6.2 93.0 2,905 1,563 575 5.8

non-robust

circ #gates #detect
w/o segmentation

w/ segmentation
s1 s2 s3

%ac |p| |tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps %rc |seg| |+ tp| t(s) øsps

b14 10,042 4,794 32.9 709 709 624 9.4 22.2 3,735 1,967 2,151 4.0 72.3 11,638 5,223 5,787 1.6 100.0 22,194 10,768 12,782 1.5
b15 8,852 5,756 37.3 741 740 927 9.9 31.3 6,147 3,703 3,556 4.2 80.7 12,864 7,990 8,095 2.9 100.0 17,227 13,138 15,479 2.4
b17 32,229 18,149 35.3 2,522 2,516 10,513 15.6 29.8 22,720 13,039 33,033 8.3 86.6 48,475 29,548 72,024 4.3 100.0 61,446 48,041 125,358 4.0
b20 20,204 10,937 37.0 1,417 1,417 2,689 8.3 22.7 9,148 5,588 8,977 3.1 80.7 23,999 14,699 21,962 1.8 100.0 41,252 27,451 44,034 1.6
b21 20,549 10,585 36.3 1,454 1,454 2,470 10.0 21.4 8,892 5,085 8,596 4.4 76.4 23,317 13,511 21,080 2.5 100.0 43,113 27,130 43,889 1.5
b22 29,929 16,265 39.9 2,106 2,106 5,574 12.9 22.0 14,717 9,085 18,975 4.2 84.6 38,817 24,966 46,724 2.1 100.0 62,198 44,365 92,138 1.9
c5315 2,485 1,068 23.3 161 160 105 221.8 14.8 755 252 274 109.0 34.1 1,454 458 509 86.2 100.0 3,788 2,228 1,062 58.4
c6288 2,448 2,207 54.2 119 116 347 55.3 44.3 3,236 1,867 1,645 1.6 69.2 3,781 2,281 3,212 1.5 100.0 7,736 6,369 10,592 3.5
c7552 3,718 1,428 23.7 230 230 147 139.4 11.5 804 266 346 69.1 30.2 1,611 526 621 61.6 100.0 5,016 2,834 1,387 32.0
s13207 8,601 1,771 17.4 411 401 126 8.9 39.9 1,793 627 465 5.7 95.2 5,075 1,977 1,300 4.3 100.0 6,553 3,599 2,481 4.2
s15850 10,372 3,458 25.7 449 444 297 9.9 31.8 1,840 906 915 6.5 88.1 6,130 3,248 2,336 4.7 99.9 7,268 5,140 4,278 4.4
s35932 17,828 7,820 43.2 1,007 1,007 469 8.2 19.4 2,848 1,618 1,776 6.5 51.5 7,049 4,359 4,324 5.2 100.0 12,423 8,798 8,461 3.3
s38417 23,703 8,176 26.3 1,119 1,115 1,131 7.9 40.9 6,211 3,108 4,141 4.0 85.2 14,561 7,644 9,874 2.7 100.0 21,054 14,297 18,135 2.5
s38584 20,715 7,855 29.8 1,482 1,341 1,274 19.0 25.8 4,489 2,030 3,974 17.3 90.5 12,449 6,067 9,352 15.2 93.3 13,745 8,363 15,309 15.1
s5378 2,993 1,063 25.9 151 151 9 9.0 33.7 633 329 39 6.7 85.2 1,581 844 103 3.9 100.0 1,861 1,233 181 2.9
s9234 5,844 2,759 24.9 247 243 180 39.6 26.3 918 288 414 25.8 64.7 2,143 717 733 11.4 93.3 3,527 1,902 1,200 10.4

TABLE III. DIAGNOSIS ACCURACY FOR c5315 WITH INCREASED

NUMBER OF INITIAL PATHS

|p| w/o segmentation s1 s2 s3
161 221.8 109.0 86.2 58.4
319 51.5 27.7 25.0 23.5
482 25.9 16.3 15.1 14.9

As shown in Table III the diagnosis accuracy can be
improved by increasing the number of initial paths. An im-
provement by the factor of 14.9 is achieved from the first
diagnosis without segmentation (221.8) to diagnosis with seg-
mentation (14.9).

VII. CONCLUSION

A simulation based algorithm for delay fault diagnosis has
been proposed. To improve the initial diagnosis accuracy three
methods for segmentation were introduced and diagnostic TPs
for the paths and segments were computed by a SAT-solver.

As result, we significantly improved the diagnosis accuracy
and figured out, that more improvements of the diagnosis
accuracy can be achieved, when the number of initial paths
increases.

For future work we focus on a reduction of the TPs for the
segments e.g. with a heuristic approach. Further, a diagnosis
algorithm to handle multiple delay faults will be examined.

REFERENCES

[1] C. J. Lin and S. Reddy, “On Delay Fault Testing in Logic Circuits,”
Computer–Aided Design of Integrated Circuits and Systems, vol. 6,
no. 5, pp. 694–703, 1987.

[2] K. Heragu, J. Patel, and V. Agrawal, “Segment delay faults: a new fault
model,” in VLSI Test Symposium, 1996, pp. 32–39.

[3] A. Pramanick and S. Reddy, “On the design of path delay fault testable
combinational circuits,” in Fault-Tolerant Computing, 1990, pp. 374–
381.

[4] Y.-Y. Chen and J.-J. Liou, “Diagnosis Framework for Locating Failed
Segments of Path Delay Faults,” Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 6, pp. 755–765, 2008.

[5] Z. Wang, M. Marek-Sadowska, K.-H. Tsai, and J. Rajski, “Delay
fault diagnosis using timing information,” in Quality Electronic Design,
2004, pp. 485–490.

[6] P. Camurati, A. Lioy, P. Prinetto, and M. Reorda, “Diagnosis oriented
test pattern generation,” in European Design Automation Conference,
1990, pp. 470–474.

[7] P. Girard, C. Landrault, S. Pravossoudovitch, and B. Rodriguez, “A
diagnostic ATPG for delay faults based on genetic algorithms,” in
International Test Conference, 1996, pp. 286–293.

[8] R. Tekumalla, “On test set generation for efficient path delay fault
diagnosis,” in VLSI Test Symposium, 2000, pp. 343–348.

[9] S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
R. Drechsler, “MONSOON: SAT-Based ATPG for Path Delay Faults
Using Multiple-Valued Logics,” Journal of Electronic Testing, vol. 26,
no. 3, pp. 307–322, 2010.

[10] S. Prabhu, M. Hsiao, L. Lingappan, and V. Gangaram, “A SMT-based
diagnostic test generation method for combinational circuits,” in VLSI
Test Symposium, 2012, pp. 215–220.

[11] S. Padmanaban and S. Tragoudas, “An implicit path-delay fault diag-
nosis methodology,” Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 10, pp. 1399–1408, 2003.

[12] A. Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou, and T. Mak, “Enhancing
diagnosis resolution for delay defects based upon statistical timing and
statistical fault models,” in Design Automation Conference, 2003, pp.
668–673.

[13] Y. Lim, J. Lee, and S. Kang, “Path delay fault diagnosis using path
scoring,” in International SoC Design Conference, vol. 02, 2008, pp.
II–199–II–202.

[14] G. Tseitin, “On the Complexity of Derivation in Propositional Calcu-
lus,” in Automation of Reasoning, ser. Symbolic Computation, J. H.
Siekmann and G. Wrightson, Eds. Springer Berlin Heidelberg, 1983,
pp. 466–483.

[15] T. Larrabee, “Test pattern generation using Boolean satisfiability,”
Computer-Aided Design of Integrated Circuits and Systems, vol. 11,
no. 1, pp. 4–15, 1992.

[16] J. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,”
IBM Journal of Research and Development, vol. 10, no. 4, pp. 278–291,
July 1966.

[17] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combina-
tional test generation using satisfiability,” Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 9, pp. 1167–1176, 1996.

150150150

