
SISL: Concolic Testing of Structured Binary

Input Formats via Partial Speci�cation⋆

Sören Tempel1[0000−0002−3076−893X], Vladimir Herdt1,2[0000−0002−4481−057X],
and Rolf Drechsler1,2[0000−0002−9872−1740]

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{tempel,vherdt,drechsler}@uni-bremen.de

Abstract. Automatically generating test inputs for input handling rou-
tines which implement highly structured input formats is challenging.
Existing input generation approaches (e.g. fuzzing) address this problem
by requiring veri�cation engineers to create input speci�cations based
on which new inputs are generated. However, depending on the input
format, creating such input speci�cations can be cumbersome and error-
prone. We propose simplifying the creation of input speci�cations by
allowing input formats to be only partially speci�ed. This is achieved by
utilizing concolic testing (a combination of concrete random testing and
symbolic execution) as an input generation technique and thereby allow-
ing parts of the input format to remain unspeci�ed (i.e. unconstrained)
symbolic values. For this purpose, we present SISL, a domain-speci�c
language for creating partial input speci�cations for structured binary
input formats.

Keywords: Concolic Testing · Software Veri�cation · Network Proto-
cols.

1 Introduction

Input handling routines are a known source of potentially exploitable bugs in
existing software [4]. An emerging dynamic testing technique to uncover these
sorts of bugs is concolic testing, a combination of concrete random testing (i.e.
fuzzing) and symbolic execution. Employment of concolic testing is limited by
the fact that input handling routines often expect inputs to satisfy a complex
prede�ned structured input format (e.g. JSON). As such, invalid inputs are
rejected early by the software without performing interesting input processing.
Since concolic testing is largely performed with a given time budget, critical
bugs remain unnoticed if deeper parts of the software are not reached within
that budget.

⋆ This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project Scale4Edge under contract no. 16ME0127 and
within the project VerSys under contract no. 01IW19001.



The outlined problem is of central importance in the fuzzing context. Con-
trary to symbolic execution, fuzzing performs no formal reasoning and instead
relies solely on randomly generated values to create test inputs, thus requiring
even more time to satisfy complex input formats. Prior work on fuzzing attempts
to address this problem by randomizing individual rules of a speci�ed grammar
[1,9,6] or individual �elds of speci�ed input blocks [7,3]. Due to the lack of formal
reasoning, it is necessary in both cases to manually provide a detailed description
of the utilized input format, which can be cumbersome and error-prone. Errors
in the provided input speci�cation will cause the software to consider generated
inputs as invalid. We propose using concolic testing (which combines fuzzing
and symbolic execution) to ease the creation of input format speci�cations by
allowing veri�cation engineers to only partially specify the targeted structured
input format. That is, unspeci�ed parts of the input format can be treated as
unconstrained symbolic values, thereby allowing an SMT solver�used in sym-
bolic execution for formal reasoning�to automatically �ll in the leftover gaps
based on extracted program constraints.

We present SISL, a Domain-Speci�c Language (DSL) to partially specify
structured binary input formats which are often used in security critical domains
(such as the Internet of Things). Furthermore, we illustrate that our proposed
language can be easily integrated into existing concolic testing frameworks by
proposing an exemplary integration for SymEx-VP [8], a concolic testing en-
gine for embedded RISC-V software. Lastly, we evaluate our DSL by providing
evidence that the minimal e�ort, required to create partial speci�cations, is out-
weighed by the gain in coverage and that our proposed DSL is expressive enough
to describe a wide range of structured binary input formats. To the best of our
knowledge, SISL is the �rst input format speci�cation language designed explic-
itly for concolic testing. The SISL tooling is open source and can be obtained
from https://agra-uni-bremen.github.io/sisl/.

2 Scheme-based Input Speci�cation Language

The Scheme-based Input Speci�cation Language (SISL) is a DSL for partially
specifying parametrisable binary input formats for concolic software testing. As
the name suggests, SISL is based on the Scheme programming language which,
in turn, is a Lisp dialect. We choose Scheme as the basis for our language since
it supports hygienic macros which allow de�ning custom syntactic constructs
within the language framework, thereby easing the creation of DSLs [2].

Similar to block-based fuzzers [3,7], SISL allows specifying binary input for-
mats as a sequence of variable-width bit blocks. Contrary to existing work on
fuzzing, SISL targets concolic testing and therefore supports distinct block types
to distinguish concrete and symbolic values in the speci�ed input format. Sym-
bolic �eld values can optionally be constrained with symbolic expressions, hence
allowing expressing the relationship between di�erent symbolic �elds (e.g.X < Y
must hold for two symbolic �elds X and Y ). Unconstrained symbolic �elds can
be used to leave parts of the input format unspeci�ed, therefore allowing the

https://agra-uni-bremen.github.io/sisl/


1 (define-input-format (ipv6-packet next -hdr &encapsulate payload)
2 (make-uint 'version-field 4 ipv6 -version -value)
3 (make-uint 'traffic-class 8 0)
4 (make-uint 'flow-label 20 0)
5 (make-uint 'payload-length 16 (input-format-bytesize payload))
6 (make-uint 'next-header 8 next -hdr)
7 (make-uint 'hop-limit 8 42)
8 (make-symbolic 'src-addr 128)
9 (make-symbolic 'dst-addr 128))
10

11 (define-input-format (icmpv6-packet &encapsulate body)
12 (make-symbolic 'type 8 `((Or
13 (Eq type ,icmpv6 -nbr -sol)
14 (Eq type ,icmpv6 -nbr -adv))))
15 (make-symbolic 'code 8)
16 (make-symbolic 'checksum 16))
17

18 (write-format
19 (ipv6-packet
20 icmpv6 -next -header
21 (icmpv6-packet
22 (make-input-format
23 (make-symbolic 'body (bytes->bits 32))))))

Fig. 1. Excerpt of an example SISL input speci�cation for the ICMPv6 message format.

concolic testing engine to �ll in these gaps based on program execution and thus
easing the creation of input format speci�cations. De�ned input formats can also
be nested, e.g. to express encapsulation in the network protocol context.

An example SISL input speci�cation is provided in Figure 1 were a speci�ca-
tion for the ICMPv6 message format is presented. ICMPv6 is a binary network
protocol implemented on top of IPv6. For this reason, the SISL speci�cation in
Figure 1 de�nes two input formats. First, the IPv6 message format is de�ned
in Line 1 - Line 9 using SISL's define-input-format keyword. This keyword
de�nes a new input format and requires specifying the input format name, op-
tional input format parameters, and the input format �elds. In Line 1 the input
format name is given as ipv6-packet, an optional next-hdr parameter is de-
�ned, and the special &encapsulate keyword is used to denote that the format
encapsulates an additional payload format. In Line 2 - Line 9 the �elds of the
IPv6 packet format are de�ned. Each �eld de�nition takes at least two parame-
ters: A �eld name (expressed as a Scheme symbol) and a �eld size in bits. Fields
can either be concrete or symbolic. Concrete �elds require the �eld value as a
third argument. Symbolic �elds support an optional third parameter to express
symbolic constraints. For ipv6-packet, six concrete �elds are de�ned in Line 2
- Line 7. The majority of these �elds (Line 3, Line 4, Line 6, and Line 7) use
an integer literal as �eld value. The version �eld (Line 2) uses a prede�ned
variable as a �eld value and the value of the payload-length �eld depends on
the byte size of the payload parameter. Furthermore, the ipv6-packet de�ni-
tion also uses two symbolic �elds for the source and destination address of the
IPv6 header format (Line 8 - Line 9). IPv6 addresses have a complex internal
structure which is cumbersome to express, by declaring them as symbolic the



Software SymEx-VP

Input

Parser

Concolic

Structures

Processing

Logic

SISL

Spec.

Low-Level

Spec.

Concolic

Values

SISL

Parser

SMT

Solver
Generates

Reads

Constraints

Executes with Concolic Values

Passed via MMIO

Creates

Fig. 2. Overview of our SISL-based concolic testing setup using SymEx-VP.

correct value for these �elds will be inferred by the concolic testing engine during
execution.

The second input format, de�ned in Figure 1, is the ICMPv6 message for-
mat (Line 11 - Line 16) This de�nition is analog to the ipv6-packet de�nition,
with the exception that it only consists of symbolic �elds (Line 12 - Line 16).
Furthermore, the symbolic type �eld (Line 12 - Line 14) demonstrates the ex-
pression of symbolic constraints on a symbolic �eld values. Symbolic constraints
are expressed as a list of KQuery expressions, a textual representation of sym-
bolic constraints from prior work [5]. In Line 12 - Line 16, the type �eld is
constrained so that it either has the value of the variable icmpv6-nbr-sol or
icmpv6-nbr-adv. These two variables refer to constants from the IPv6 Neigh-
bor Discovery Protocol (NDP) speci�cation, thereby enabling targeted concolic
testing of an NDP implementation with this SISL speci�cation.

To enable such tests, the two described input formats are instantiated in Line
18 - Line 23 of Figure 1 with speci�c parameters. In this case, the next-hdr of the
ipv6-packet is instantiated with the value of the variable icmpv6-next-header
and the payload parameter is set to an instance of an icmpv6-packet which
itself has its body parameter set to an input format with 32 unconstrained sym-
bolic bytes.

3 Overview and Implementation

We have integrated our proposed DSL with SymEx-VP, an existing open source
concolic testing engine for RISC-V embedded software [8]. An overview of the
interaction between SISL, the tested software, and SymEx-VP is provided in
Figure 2. The central component of Figure 2 is the high-level SISL speci�cation.
As discussed in Section 3, this speci�cation is created manually by a veri�cation
engineer. Based on the human-readable SISL input speci�cation, a machine-
readable low-level speci�cation is automatically generated. This low-level spec-
i�cation is then provided to and read by SymEx-VP which constrains utilized
concolic values according to the speci�cation. Since SymEx-VP targets embed-
ded RISC-V software in binary form, the constrained concolic input values are



Table 1. Comparison of concolic testing with SISL and the original SymEx-VP.

Application SISL SymEx-VP

Name ALOC SLOC #Paths ST #Paths ST

Zephyr-CoAP 25383 24 23411 226min 22999 232min

Zephyr-IPv6-NDP 31066 30 15122 338min 1736 453min

Zephyr-MDNS 31238 35 19585 242min 2287 452min

passed to the executed software via Memory-Mapped I/O (MMIO) peripheral
interfaces (e.g. via a network peripheral) [8]. The software binary is then ex-
plored by SymEx-VP based on these input values. Figure 2 (left side) shows a
schematic representation of relevant software components performing input pro-
cessing. Conceptually, the input parser of the software will process the concolic
inputs and create data structures based on them. Since the inputs are concolic,
the created data structures will also contain concolic values. Based on these con-
colic values, execution paths through both the input parser and the software
processing logic (which processes data structures created by the input parser
component) will be enumerated by SymEx-VP. For this purpose, SymEx-VP
employs a standard Dynamic Symbolic Execution (DSE) concolic testing tech-
nique where branches in the software are tracked and negated by an SMT solver
to discover new assignments for concolic input values.

By constraining concolic input values prior to execution using SISL, we can
(a) reduce the amount of generated input values which are rejected by the soft-
ware's input parser early on and do not reach the processing logic and (b) reduce
the amount of time spend in the SMT solver by using partially instead of fully
symbolic inputs, thus reducing the complexity of SMT queries.

4 Experiments and Conclusion

We evaluate our proposed input speci�cation language by applying it to Zephyr3.
Zephyr is a popular operating system for programming constrained embedded
devices in the Internet of Things. For this reason, Zephyr provides input handling
routines for structured binary input formats used by di�erent network protocols
in this domain. We performed experiments with three di�erent protocol message
formats (CoAP, IPv6 NDP, MDNS) using example Zephyr applications. Gen-
erated input values were passed directly to the Zephyr network stack through
a network peripheral provided by SymEx-VP. The results of our experiments
are show in Table 1. For each application, we list the amount of RISC-V assem-
bler instructions (ALOC) in the binary and the amount of SISL lines (SLOC),
required for the created input format speci�cation, as a complexity metric. We
executed each application for 8 h using the created input speci�cation with our
SISL enhanced version of SymEx-VP and with the original SymEx-VP (i.e.

3 https://zephyrproject.org/

https://zephyrproject.org/


entirely unconstrained symbolic input). For both executions, we list the amount
of discovered paths through the program (as a coverage metric, column: #Paths)
and the amount of time spend solving constraints on symbolic values (a known
bottleneck of concolic testing, column: ST).

The results in Table 1 demonstrate that partial SISL input speci�cations
signi�cantly reduce the amount of solver time, thereby allowing the discovery of
more execution paths through a given program in a given time span. The gain in
path coverage increases with application complexity (as measured in assembler
instructions, column: ALOC). We deem the e�ort required to create partial
input speci�cations to be comparatively low since complex parts of the input
format can be marked as unconstrained symbolic and will thus be inferred during
execution. For example, even for a complex input format like MDNS (which is
encapsulated in an IPv6 and UDP packet) only 35 lines of SISL speci�cation were
required. The utilized SISL speci�cations and Zephyr applications are available
as part of the publication artifacts4.

In conclusion, we have presented an open source DSL for partial speci�cation
of binary input formats in the concolic testing context. Our experiments with
Zephyr indicate that our DSL is expressive enough to support di�erent binary
input formats and the manual labor required to employ our DSL is outweighed
by the bene�ts in terms of increase in path coverage.

References

1. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.R., Teuchert,
D.: NAUTILUS: Fishing for Deep Bugs with Grammars. In: The Network and Dis-
tributed System Security Symposium 2019. NDSS, San Diego, California (Feb 2019)

2. Ballantyne, M., King, A., Felleisen, M.: Macros for domain-speci�c languages. Proc.
ACM Program. Lang. 4(OOPSLA) (Nov 2020)

3. Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kemmerer, R., Vigna, G.:
SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr. In: Information Security.
pp. 343�358. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

4. Bratus, S., Locasto, M.E., Patterson, M.L., Sassaman, L., Shubina, A.: Exploit Pro-
gramming: From Bu�er Over�ows to Weird Machines and Theory of Computation.
Usenix ;login: 36, 13�21 (2011)

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs. p. 209�224. OSDI'08, USENIX
Association, USA (2008)

6. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. p.
206�215. PLDI '08, Association for Computing Machinery (2008)

7. Pham, V.T., Böhme, M., Santosa, A.E., C ciulescu, A.R., Roychoudhury, A.: Smart
Greybox Fuzzing. IEEE Transactions on Software Engineering 47(9) (2021)

8. Tempel, S., Herdt, V., Drechsler, R.: SymEx-VP: An open source virtual prototype
for OS-agnostic concolic testing of IoT �rmware. Journal of Systems Architecture
(2022)

9. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: Grammar-Aware Greybox Fuzzing.
In: 2019 IEEE/ACM 41st International Conference on Software Engineering (2019)

4 https://doi.org/10.5281/zenodo.6802198

https://doi.org/10.5281/zenodo.6802198

	SISL: Concolic Testing of Structured Binary Input Formats via Partial Specification

