
Empirical Results on Parity-based Soft Error
Detection with Software-based Retry

Gökçe Aydos†
†University of Bremen - Reliable Embedded Systems

Bremen Germany goekce@cs.uni-bremen.de

Goerschwin Fey†‡
‡German Aerospace Center - Institute of Space Systems

Bremen Germany goerschwin.fey@dlr.de

Abstract—Local triple modular redundancy (LTMR) is often
the first choice to harden a flash-based FPGA application against
soft errors in space. In this work, we compare parity-based error
detection with software-based retry, and LTMR on a reference
architecture regarding maximum frequency, area overhead and
processing time. Our results show that our solution based on
parity-based error-detection saves from 30 % up to 45 % of the
area overhead caused by LTMR.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are often utilized
in space avionics. The avionics must be protected from ioniz-
ing radiation in space. In the absence of a shield (e.g., magnetic
field of the earth), a high energy particle can traverse through a
digital circuit and induce significant amount of charge, which
can cause soft errors. These errors are not permanent and
can be corrected e.g., with a reset. In flash-based FPGAs,
soft errors mainly happen in the flip-flops (FFs) of an FPGA
application in form of bitflips. The FPGA configuration bits
do not have to be protected, because flash memory has a
negligible soft error rate.

The state-of-the-art solution for flash-based FPGAs is local
triple modular redundancy (LTMR), i.e., triplicating the appli-
cation FFs and voting their outputs. Unfortunately, triplication
has a significant area overhead. Alternatively, a part of the
space redundancy in the FPGA may be eliminated by imple-
menting additional time redundancy, e.g., in software, if the
FPGA acts as a co-unit beside an already radiation-hardened
processor. An example architecture is depicted in Fig. 1, where
the FPGA implements the communication protocol interfaces
needed for communicating with the satellite subsystems and
the processor runs the mission software. The FPGA circuit
which has to be hardened, only implements error detection.
In case of an error, this circuit is functionally isolated and
the software instructs the circuit to reprocess the last request.
With this collaborative approach, error correction is achieved
and the overhead of local error correction is eliminated in the
FPGA. This technique will be referred as error detection with
software-based retry (EDSR). In this paper, parity-based error
detection (PBED) is used in EDSR.

This work has been supported by the University of Bremen’s Graduate
School SyDe, funded by the German Excellence Initiative.

data handling subsystem

fault-tolerant
processor FPGA subsystem

link links

Fig. 1. Overview of the reference data handling system

Parity-based codes and triplication are well-known concur-
rent error detection techniques (CED) [1],[2]. Also error de-
tection with retry for achieving error correction was proposed,
e.g., in [3]. In recent years, one the one hand, partial hardening
techniques were proposed due to the relatively high overhead
of CED techniques, which selectively harden susceptible parts
of the circuit [4]. On the other hand, software-based fault-
tolerance techniques are also popular due to the flexibility and
relatively loose constraints of software, e.g., regarding memory
requirements, compared to hardware [5],[6]. Software- and
hardware-based techniques have their tradeoffs, therefore these
can also be used together [5].

This work applies parity-based EDSR on an example data
handling architecture based on a commercially-available flash-
based FPGA and provides an experimental comparison to
LTMR. Up to now, there is no detailed comparison based on a
state-of-the-art (e.g., [7]) flash-based FPGA. Due to the limited
resources of space-proven flash-based FPGAs, area savings
can be the key for fitting the application onto the FPGA. Our
contributions are

• EDSR in the context of the full system stack including
the discussion of requirements for the application and

• empirical comparison of LTMR versus EDSR for circuit
area overhead, maximum circuit frequency, and overall
system latency due to error correction on a representative
system in space-proven technology.

In the following sections, we firstly present the reference
data processing system, which is used as the testbench. Then,
we explain LTMR and EDSR and the implementations which
are compared. Afterwards, experimental results based on a
known flash-based FPGA are presented.

II. REFERENCE ARCHITECTURE

We use a reference model of an on-board data handling unit
(OBDH) for satellites [7] for our analysis. In this section, we
describe an overview of the system, the FPGA design, and the
communication protocol between the processor and the FPGA.978–1–4673–6576–5/15/$31.00 c© 2015 IEEE

FIFO

FIFO

Circuit
(A)

Circuit
(B)

Error
Detection

Error
Handling

Mem.

Circuit
(C)

error

data
read en.

mask

data
write en.

address
data
data

read en.

write en.

mask

reset

Fig. 2. Excerpt from the FPGA design. Circuit (B) is hardened by PBED
using the gray components. Other circuits are immune to soft errors.

reset
parse

header
write
RAM

read
RAM

send
resp.

Fig. 3. Simplified state diagram of circuit B, which parses the remote memory
packets sent by the mission software (i.e., the processor).

A. Overview

Fig. 1 shows an overview of the architecture. OBDH
comprises of two main processing modules: a processor and
an FPGA. The processor runs the mission software, which
involves communicating with different subsystems on-board
of the space system. The communication is done through the
FPGA, which acts as an interface component and implements
the various communication interfaces needed by the subsys-
tems (e.g., RS232, CAN). We assume that the processor, the
communication line between the processor and the FPGA, and
the subsystems are sufficiently protected against soft errors.

B. FPGA Design

From the processor point of view, the FPGA is a re-
mote memory bus, where the implemented link interfaces
are memory-mapped. The processor utilizes these interface
modules by reading and writing the respective memory areas.

The FPGA model consists of three functional blocks: circuit
A, B, and C as shown in Fig. 2. Circuit A serves the memory
access requests from the processor to circuit B, which issues
memory accesses on circuit C and finally returns the data to
the processor using the FIFO interface of circuit A. In Fig. 3,
circuit B is shown more in detail. Circuit C with a memory
block inside resembles the memory-mapped interfaces. Circuit
A and C are assumed to be sufficiently protected against soft
errors (e.g., by LTMR). Circuit B must be hardened.

The FIFOs and the memory need a single clock cycle for
reading or writing a single word, which renders the masking a
single word access operation in the same clock cycle possible.

C. Communication Protocol

The communication protocol between the processor and the
FPGA is visualized in Fig. 4. It consists of two kinds of
messages: request and response. The processor sends memory
access requests for a specific address or address interval to

reqn

resp

reqn+1

resp

SW FPGA reqn
resptim

eout reqn

resp

SW FPGA

Fig. 4. Sequence diagram of the communication protocol.

the FPGA and the FPGA (more precisely, circuit B) answers
with the according response: A read request is responded with
read data and a write request is acknowledged after the write
operation. Every request is acknowledged with a response and
a second request cannot be sent before the response to the first
request has been received. If the FPGA does not respond after
a timeout, e.g., due to a soft error, the last request is repeated.

III. COMPARED HARDENING TECHNIQUES

In this section, LTMR and EDSR, and their characteristics
are discussed. EDSR’s implementation on the reference system
is discussed in more detail due to its system impacts.

In LTMR, one FF from the application is triplicated and the
outputs of the resulting three FFs are input to a voter, which
outputs the majority value. LTMR detects and corrects a bitflip
on an FF locally, hence it can be automatically applied on top
of a circuit. This makes LTMR functionally transparent to the
rest of the system, consequently the circuit mostly does not
require a redesign before mapping to an FPGA.

PBED is a well-known error detection technique, which
adds a parity bit to every data word being stored, e.g.,
by XORing the data bits [1]. Upon reading the data word,
the parity is calculated again, compared to the stored parity
value and in case of a mismatch, an error signal is asserted.
Subsequently, an error handler can react and initiate a recovery
scheme to correct the error.

After an error, a module must be recovered to an operational
state. Often, this is done by resetting the module to its initial
state. This in turn leads to a loss of the processing context that
must be brought back, which involves periodically backing up
the processing context, i.e., checkpointing. If the processing
context does not contain any information which is needed for
a long time, i.e., when a module regularly falls back to a
defined state after a short time period, then the overhead of
checkpointing in the circuit may be eliminated by reissuing a
processing request after an error. Examples for such a module
are a protocol converter or a module which exchanges data
between two modules after reformatting data. Reissuing a
request introduces extra delays, which should be negligible
if the soft error rates are low.

Fig. 2 shows PBED applied on circuit B. The error detection
block continuously generates and checks the parity. If an error
is detected, the error signal is asserted and the error handling
block immediately masks the control signals on either side of
the unreliable circuit.

FF

XORpg

FF

XORpc

cl. error

ORrdc

/
scl − 1

/
scl − 1

FF cluster (#FFs = scl)

/
ccl

error

Fig. 5. Generic implementation of PBED.

FFs in the unreliable circuit are segmented to groups and
for each group one parity FF is introduced. One single group
with a parity FF is called a cluster. Fig. 5 shows the generic
implementation of the error detection in a single cluster. The
number of clusters is given by ccl (c: count, cl: cluster). Each
cluster contains scl − 1 user FFs plus one parity FF (s: size).
Even parity is generated by XORing the inputs to the user FFs
by the XORpg. The integrity of the stored bits is checked by
the XORpc with scl inputs and the cluster error is generated
by each cluster. Finally, ccl cluster error signals are reduced to
a single error signal by an OR gate. Error handling is done by
generating the reset and mask signals using the error signal.

If an incomplete or no response is received by the processor
in the timeout window, then a recovery of the software process-
ing context depends on the state: If an error happens during
processing of a read request, then this request is repeated. If an
error occurs in the middle of a write transaction, the software
cannot know which part of the transaction was completed and
the software can synchronize itself by reading these addresses
again or simply retry the last transaction. If a write to a
memory location triggers an operation (e.g., transmitting a
command to a subsystem), then retrying retriggers the last
operation, which can be undesirable and dangerous. In case
of such action-triggering memory locations, the software can
issue single memory write operations only. This has the ad-
vantage that every atomic memory write operation is acknowl-
edged separately and the software knows exactly which single
memory operation did not succeed, avoiding an indeterminable
system state. This requirement can be loosened, if a memory
area is written which does not trigger an action, i.e., the output
of the target system does not change after the transaction. An
example is the transmit buffer of a communication interface
module, where the transmit operation must be first triggered
by setting a bit in a control register allowing to start a data
transfer to a subsystem. In this case, the processor would first
try to write the transmit payload-data to the buffer with one
write request and in the subsequent request the transmission
operation would be triggered using another write request.

IV. EXPERIMENTAL RESULTS

We compared needed processing time for an example mis-
sion and synthesis results on different sizes of circuits. As
circuit B, we implemented a module, which is functionally a
concrete instantiation of the FSM in Fig. 3. For PBED, we
chose the cluster size scl = 3, which fits to the ProASIC
architecture with three-input LUTs and should give area-
efficient results. In the tested implementation, the error han-

Write transmit buffer (200 words)

Trigger transmission (1 word)

Wait for 100 cycles

Read transmit buffer (55 words)

response
timeout

response
timeout

timeout
response

Fig. 6. Simplified flow diagram of one single memory access block. The
packets are retransmitted by the software if there is no response after a timeout.

dling comprises of (a) masking the circuit outputs and (b)
resetting the circuit. In the following, the results are shown.

A. Processing Time Penalty

To verify our PBED implementation tool and compare the
runtime performance of LTMR and EDSR under injection of
bitflips, we implemented a bitflip injection tool and a testbench
which performs a mission. The mission consists of 100 mem-
ory access blocks. Each memory access block consists of three
subsequent memory accesses. One single memory access block
is visualized in Fig. 6. The block starts with a write transaction
consisting of 200 words, which resembles data that should be
sent to a subsystem by the FPGA. After the data are written,
the subsystem data transmission is activated by a single word
access. The subsystem responds in a predefined time window
of 100 cycles. After a delay of 100 cycles, the subsystem
response consisting of 55 words is read. At the end of the
mission, the time needed for the whole mission is measured.

At every clock cycle, the bitflip injection tool iterates over
all FFs in the target circuit and flips the FF bits according to the
given probability p randomly. Probability p is defined as the
bitflip probability per clock cycle for a single FF. The random
numbers generated for the bitflip injection are dependent on
a seed. We run the mission for 0 ≤ p ≤ 0.0001, and for one
single p, the simulation was run with 32 different seeds.

In LTMR, the error is corrected in the same clock cycle,
but EDSR requires that the error is corrected by the software
by repeating the failed memory access request, which in turn
causes additional processing delays. Fig. 7 shows relative
processing time needed by EDSR for the given mission. The
processing time of EDSR is plotted relative to the LTMR
processing time, which is constant. For PBED, the processing
time increases with increasing bitflip probability p, as a failed
memory access request must be repeated. The time loss due
to retransmission is at least the time required to transmit the
failed request. At higher p, if the bitflip rate equals to the
memory access request rate, the processing time would be
infinite. Therefore, the processing time grows exponentially
in respect to p. Note that, at the simulated p interval, there
were no undetected errors (e.g., multiple bitflips in a PBED
cluster) for both techniques.

For comparison, note that, assuming one year mission in L2
orbit under 1/cm2 shielding, a programmed circuit with 5000

TABLE I
SYNTHESIS RESULTS FOR DIFFERENT SIZES OF CIRCUITS. PBED SAVES THE HARDENING OVERHEAD FROM 30.3 % UP TO 44.8 %.

cFF A fmax (MHz) tcrit (ns) tcrit+ (ns) A+
A+

cFF,ba
1− A+,PB

A+,LT

ba LT PB ba LT PB ba LT PB ba LT PB LT PB LT PB LT PB PB

25 75 38 163 240 211 79.9 73.7 66.3 12.5 13.5 15.0 1.0 2.5 77 48 3.0 1.9 37.6 %
73 219 110 500 725 636 77.3 72.6 53.0 12.9 13.7 18.8 .8 5.9 225 136 3.0 1.8 39.5 %

121 363 182 827 1212 1050 81.2 71.1 49.0 12.3 14.0 20.3 1.7 8.0 385 223 3.1 1.8 42.0 %
169 507 254 1204 1772 1517 76.5 70.6 48.0 13.0 14.1 20.8 1.1 7.8 568 313 3.3 1.8 44.8 %
193 579 290 1309 1901 1666 78.2 68.6 47.5 12.7 14.5 21.0 1.8 8.3 592 357 3.0 1.8 39.6 %
241 723 362 1636 2402 2094 74.9 65.6 43.9 13.3 15.2 22.7 1.9 9.4 766 458 3.1 1.9 40.2 %
289 867 434 2100 2942 2641 81.9 69.6 44.9 12.2 14.3 22.2 2.1 10.0 842 541 2.9 1.8 35.7 %
337 1011 506 2435 3452 3072 76.2 65.6 45.4 13.1 15.2 22.0 2.1 8.9 1017 637 3.0 1.8 37.3 %
385 1155 578 2837 3976 3630 79.7 66.2 43.3 12.5 15.0 23.0 2.5 10.5 1139 793 2.9 2.0 30.3 %
433 1299 650 3085 4396 3959 76.2 61.9 41.0 13.1 16.1 24.3 3.0 11.2 1311 874 3.0 2.0 33.3 %
481 1443 722 3390 4893 4291 71.4 61.5 41.8 13.9 16.2 23.8 2.3 9.9 1503 901 3.1 1.8 40.0 %

EDSR

LTMR

0

2 · 10−5
4 · 10−5

6 · 10−5
8 · 10−5

1

1.2

1.4

1.6

1.8

FF bitflip probability per cycle (p)

re
la

tiv
e

pr
oc

es
si

ng
tim

e

Fig. 7. Scatterplot of relative processing time for a given mission. The factor
is relative to the processing time of LTMR.

FFs on a ProASIC RTPE3000L FPGA has four SEUs [8].
Assuming that this design runs at 20 MHz, then p for this
mission is calculated by dividing the errors per year by the
number of cycles in one year:

p = 4/5000/365/24/60/60/(20× 106) ≈ 1.3× 10−18 (1)

Assuming the error rate from Eq. 1 makes the time penalty
per year insignificant.

B. Synthesis Results

To compare the synthesis impacts, we created circuits of
different sizes by multiple instantiations of circuit B. The
circuits were synthesized using the tool Synplify for ProASIC
A3P250. LTMR and PBED were applied using Synplify and a
newly-implemented tool which generates the PBED circuitry
on top of an RTL design, respectively. The output netlists were
then placed and routed using Designer from Microsemi. The
results are shown in Table I. The parameters shown are: FF
count (cFF), circuit area (A), maximum frequency (fmax),
critical path length (tcrit), critical path overhead (tcrit+),
circuit area overhead (A+), circuit area overhead per FF
(A+

cFF,ba
) and redundancy saving by PBED with respect to

LTMR (1 − A+,PB

A+,LT
). The parameters are shown for the bare

(ba), LTMR applied (LT) and PBED applied (PB) circuit.
Note that in ProASIC3 architecture, every configurable logic

block (CLB) can be either configured as an FF or LUT.

Consequently, in this work, circuit area A is defined as the
total count of FFs and LUTs in the circuit.

The impact of PBED on the critical path (and thus on the
maximum frequency) is significant due to the synchronous
reset in the error handling. PBED reduces the hardening
overhead of LTMR by 30.3 % up to 44.8 %.

V. CONCLUSION

We applied LTMR and PBED with software-based retry on
a reference architecture and experimentally compared circuit
area overhead, maximum frequency and needed processing
time using an example mission under fault injection. The
results show that at least 30 % of the area overhead caused by
the LTMR can be saved by implementing PBED and correcting
the errors with time redundancy. In our implementation the
impact on the critical path of the circuit is significant, but
a solution based on asynchronous reset and pipelined error
detection will be investigated as future work.

REFERENCES

[1] M. Nicolaidis and Y. Zorian, “On-line testing for VLSI - a compendium
of approaches,” Journal of Electronic Testing Theory and Applications
(JETTA), vol. 12, pp. 7–20, February 1998.

[2] M. Gössel, V. Ocheretny, E. Sogomonyan, and D. Marienfeld, New
Methods of Concurrent Checking, ser. Frontiers In Electronic Testing.
Springer Netherlands, 2008, vol. 42.

[3] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in 17th IEEE VLSI Test Symposium, 1999, pp.
86–94.

[4] K. Mohanram and N. Touba, “Cost-effective approach for reducing soft
error failure rate in logic circuits,” in International Test Conference (ITC),
vol. 1, Sept 2003, pp. 893–901.

[5] M. Rebaudengo, M. Reorda, M. Violante, B. Nicolescu, and R. Velazco,
“Coping with SEUs/SETs in microprocessors by means of low-cost
solutions: a comparison study,” IEEE Transactions on Nuclear Science,
vol. 49, no. 3, pp. 1491–1495, Jun 2002.

[6] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante, Software-
implemented hardware fault tolerance. Springer, 2006.

[7] C. J. Treudler, J.-C. Schröder, F. Greif, K. Stohlmann, G. Aydos, and
G. Fey, “Scalability of a base level design for an on-board-computer for
scientific missions,” in Proceedings of the Data Systems in Aerospace
(DASIA) Conference, 2014.

[8] N. Battezzati, L. Sterpone, and M. Violante, Reconfigurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer,
2011, ch. 7.

