
HARDWARE PROJECT MANAGEMENT - WHAT WE CAN LEARN
FROM THE SOFTWARE DEVELOPMENT PROCESS FOR

HARDWARE DESIGN?

Rolf Drechsler, Andreas Breiter
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{drechsle,abreiter}@informatik.uni-bremen.de

Keywords: hardware design, description language, project management, software engineering, project

Abstract: Nowadays hardware development process is more and more software oriented. Hardware description lan-
guages (HDLs), like VHDL or Verilog, are used to describe the hardware on the register-transfer level (RTL)
or on even higher levels of abstraction. Considering ASICs of more than 10 million gates and a HDL to gate
ratio of approximately 1:10 to 1:100, i.e. one line of HDL code on the RTL corresponds to 10 to 100 gates in
the netlist, the HDL description consists of several hundred thousand lines of code.
While classical hardware design focuses purely on the development of efficient tools to support the designer,
in industrial work processes the development cycle becomes more and more important. In this paper we
discuss an approach, where known concepts from software engineering and project management are studied
and transferred to the hardware domain. Several aspects are pointed out that should ensure high quality designs
and by this the paper presents a way working towards a more robust design process by a tight integration
of hardware design and project management. The intention of this work is not to provide an exhaustive
discussion, but many points are addressed that with increasing circuit complexity will become more and more
important for successful ASIC design.

1 INTRODUCTION

Nowadays application-specific integrated circuits
(ASICs) consist of several million gates. To handle
this complexity a high level of abstraction is needed as
provided by hardware description languages (HDLs),
like VHDL or Verilog. Efficient tools exist to guaran-
tee the translation of HDLs to netlists that can be au-
tomatically placed and routed. Even though in most
cases experienced designers have to optimize man-
ually the description to result in high performance
circuits, the tool support is very satisfying. Sev-
eral methods for efficient high-level and logic syn-
thesis have been developed in the past few years that
are well understood (for an overview see (DeMicheli,
1994; Hachtel and Somenzi, 1996)). Due to changes
in the technology, these techniques are steadily im-
proved, e.g. by also considering layout aspects dur-
ing the synthesis step, but the overall flow of the de-
sign process remained the same. In contrast the form
of the description changed significant over the past

years. While ASICs described in HDLs contained
only a few thousand lines some years ago, today’s
design can consist of up to several hundred thousand
lines of code. By this observation it is only a small
step to ask whether the concepts that evolved over the
last couple of years (and are still applied in indus-
trial practice) are adequate to cope with the emerg-
ing complexity of ASICs to be developed in the near
future. The same problem - in a different formula-
tion - arose in the context of software development 30
years ago. Starting from very simple programs huge
software systems grew. Detailed studies showed the
high demand for a structured development process.
The important parameters to guarantee high quality
designs were determined and evaluated resulting in
the field of software engineering (Naur and Randell,
1969; Sommerville, 2004). Moreover, the cost of
software projects increased, making it necessary to
develop adequate cost estimation models. In this pa-
per we will study the concepts proposed for the soft-
ware development process and point out that most of



the aspects also apply to hardware design based on
HDLs. We will discuss important aspects, like speci-
fication, (interface) design, and documentation. The
analysis leads to the formulation of a concept that
covers the complete hardware development process
and can easily be integrated in existing flows. This
results from the observation that several of the steps
described in the following are quite intuitive and some
might already be integrated in the development cy-
cle, but in most cases without considering the overall
structure, e.g. some well accepted rules are used as
coding guidelines. As a consequence of the discus-
sion it follows that modern hardware design can and
should consider and incorporate techniques known
from software engineering and project management
to allow high quality designs. Analogously to the
software domain, the resulting process describes the
tight integration of project management and hardware
design. Note, that the points addressed in the follow-
ing are not complete and the paper can only be seen
as first step in this direction. Starting with the anal-
ysis of similarities between hardware and software
development processes, we will introduce a process
model for hardware-engineering. The three constitut-
ing layers will be explained in detail, focusing espe-
cially on project management and aspects of quality
management within the hardware development pro-
cess. The paper closes by reflecting core problems in
hardware design which might occur during the devel-
opment process.

2 SIMILARITY BETWEEN
HARDWARE AND SOFTWARE
DEVELOPMENT PROCESS

The “classical” hardware development process -
in a simplified way - is shown in Figure 1. Start-
ing from an initial idea, a specification is written as a
text. This is later formalized, such that it can be sim-
ulated, e.g. in a programming language like C. Then
a designer writes the code in a hardware description
language, like VHDL or Verilog. In a next step the
netlist is generated by automatic logic synthesis tools
and mapped to the layout later. From this description
the final chip is produced. It can be observed that the
main part has to do with coding, similar to software
development.

Recent years have seen a pronounced shift in soft-
ware engineering practice away from linear water-
fall process models toward the iterative approaches
pioneered by Boehm (Boehm, 1988) and others.
Boehm’s spiral model point out the basic phases of

software development: inception - analysis - risk as-
sessment - design - implementation - test - deploy-
ment - maintenance. Modern process models tend to
cycle through basic phases (iterative model) and to
use at each development step all information avail-
able from artefacts created in the process. Addition-
ally, we can find further similarities between hard-
ware and software description languages. For hard-
ware and software high level languages have been de-
fined to simplify the development process. For soft-
ware, the goal was to leave the low level descriptions,
like assembler, while on the hardware level the cor-
responding format was the schematic entry. Start-
ing from small descriptions, in the meantime com-
plex systems - hardware and software - can have up
to several thousand lines of code. While in the early
beginning single developers build a system, today up
to hundred designers work on a project in parallel.
Even though in first programming languages for hard-
ware were very similar to software descriptions (see
e.g. (Chu, 1965)), aspects of concurrency have been
added to HDLs in the meantime. But successful con-
cepts from software are also integrated in HDLs, like
e.g. object orientation.

3 HARDWARE-ENGINEERING:
MANAGING THE HARDWARE
DEVELOPMENT PROCESS

Taking this into account, it becomes obvious that
many problems occurring in hardware development
are very similar to what has been considered in soft-
ware several years ago. In this section, different topics
are considered and their importance to high quality
hardware development is discussed. Here, it should
be noted that several recent studies of larger hardware
design projects showed that many of the design bugs
that are found during the verification step do not result
from “real” design errors, but from an incompletely
specified design flow (see e.g. (Krishnamurthy et al.,
2001; Bentley, 2001)). We will separate the process in
three interconnected layers (see Figure 2) which will
then be described in more detail.

3.1 Product Development Cycle

To get a better understanding of the project work-
flows, the development process is subdivided in three
(more or less) independent steps which are identical
with the “classical” management cycle from planning
to organizing and to controlling.



Figure 1: Hardware Development Process

Planning: This phase includes the description of
the hardware architecture and the resulting sub-
components. Additionally, general aspects of avail-
ability of human and technical resources, financing,
costs etc. as should be integrated. Especially, already
at this stage methods of quality assurance and pre-
vention, i.e. what happens in an “emergency”, should
be discussed to allow a risk management. During the
planning phase it is also important to describe the re-
sponsibilities of each team member with in the pro-
duction process.

Production: Assuming that all CAD tools are se-
lected, sub-tasks are assigned and the design and cod-
ing phase starts. Already during the creation, the in-
dividual modules are verified by simulation or formal
techniques. From the experience of several projects of
large size, it can be concluded that it does not make
much sense to start with the complete team at once.
It is better to first take a few - but highly qualified -
designers. These first clarify the technical flow, since
in some cases it can be necessary to go back to the
planning phase, if problems occur. Usually, one can
distinguish between the hardest-first strategy and the
easiest-first strategy depending on the goals and the
schedule of the project.

Checking: This process does not start after the
product has been build, but has to be considered dur-
ing the complete project cycle. (Of course, at the end

the overall functionality is checked.) This verifica-
tion process already starts at the module level, but
several test, like consistency of interfaces, can only
be considered after all sub-components are available.
Still, most of nowadays ASICs are verified by simula-
tion, while formal verification (equivalence checking,
property checking) or semi-formal verification (sym-
bolic simulation, assertion checking) become more
and more important. But the checking phase also in-
volves evaluation of the complete project. It has to
consider the instruction and motivation of the team,
decision making, adaptation of goals (if needed), val-
idation, product delivery, and the final evaluation of
the project.

Dependent on the phases a high interaction might
be necessary. From the initial project planning to the
final product delivery it usually takes more than three
years for multi-million gate ASICs. Thus, the require-
ments can change during this time and the organiza-
tion structure of a project must be flexible enough to
take these ”re-definitions” into account.

3.2 Hardware Development Process

The hardware development process can be divided
into several sub-phases which are quite similar to
those in software engineering. In the following the
project phases are addressed, not the design phases.
The design steps as described in e.g. (DeMicheli,
1994) remain the essential part of the design phase.



Figure 2: Three Layer Model of Hardware Engineering

But to run a successful project, it is important to con-
sider and understand the overall workflows.

Initialization: Beside getting to know the project
partner, in the very early phase of the project it has to
be clarified, whether everyone involved has enough
knowledge about the hardware to build. Already in
this phase all “constraints” of the project (resources,
available know-how, time, etc.) should be consid-
ered and written down in the form of a protocol. It
is important in this phase to be as realistic as possible
and not to be to euphoric about the chance of a new
project.

Offer/contract: Based on the first contact an of-
fer should be made and if accepted the contracts can
be signed. The offer must be as specific as possible
and should cover a detailed project description, dates,
structure, warranty etc.

Design: The design phase has been studied inten-
sively over the past twenty years and in the meantime
is well understood. Several commercially available
tools support the designer. From the project man-
agement side, it is important to first concentrate on
the main features of the hardware to be build, while
some special “extensions” can often be added in a
later stage.

Prototype: For larger projects it is often helpful
to first build a prototype. Depending on the type of
hardware, the prototype can later be extended to a
complete project. The role of the prototype should be

determined first, and then the implementation should
start. In the software domain a classification in hori-
zontal and vertical prototypes is used which cannot be
transferred directly to the hardware domain. But the
way to build the prototypes, i.e. exploratory prototyp-
ing, experimental prototyping and evolutionary pro-
totyping (see e.g. (Floyd, 1984; Vonk, 1990)), gives
helpful insights. Most prototyping approaches draw
the attention to the end user as the key actor in the
adoption process. The development of a prototype is
also often used to evaluate new CAD tools and to try
to integrate them in an existing workflow. This be-
comes especially important, if new design processes
are used.

Maintenance: The IEEE defines software main-
tenance as “the modification of a software product
after delivery to correct faults, to improve perfor-
mance or other attributes, or to adapt the product
to a changed environment.” (IEEE, 1993). It can
either be perfective (increasing performance, main-
tainability, efficiency), adaptive (changing software to
match different requirements or processing environ-
ments) or corrective (identifying and correcting fail-
ures in performance and/or implementation) (Lientz
and Swanson, 1980). In hardware development, while
the component is in use - we ideally assume that no re-
design was necessary - the requirements may change.
Nowadays hardware is in use only for about two to
three years on average. But often slight modifica-



tions are sufficient to extend the product to satisfy
the new demands. Here it is very important to have
already considered reuse aspects in the design phase
(see e.g. (Keating and Bricaud, 1999)).

Re-use: If we take reuse into account, many com-
ponents are in use for 10 years (or even longer). For
this, the interface design and conforming with stan-
dards is becoming a key issue. This should already be
considered during the planning phase (see above).

The decisions in the early project phases influence
many individual steps that become very important in
the later stages. If they are not taken into account at
the beginning, it can become difficult - or even im-
practical - to run a successful overall project.

3.3 Hardware Project Management

The complete design process - from the initial plan-
ning phase until the final delivery of the product - can
be regarded as a project. The general tasks of project
management are shown in Figure 3.

From the description above, it easily follows that
the project organization and management has cru-
cial impact on the overall success of the hardware
design. Relating this to the previous section, there
are different roles within project teams: management
(planning and checking, but not production), devel-
opment (planning (in the sense of working within the
defined goals, meeting the deadline, staying within
the planned resources) and production, but not check-
ing1), and monitoring and controlling (checking and
production, but not planning). These roles have to
be clearly assigned to each team member prior to the
project start. Otherwise, the competence and - in case
of problems - the responsibility are not clear. There
are many different ways of organization that can be
applied in a hardware design process. Even though of-
ten forgotten during the planning phase, each project
is only as good as the weakest team member.
• Forms of organization: Starting from small

groups which are exclusively working for one
project (task force), in larger teams some people
might be involved in different projects that are
headed by different project managers. Conflicts
may results from the unclear responsibility.

• Motivation of team: The topic is not directly
related to hardware design, but practice shows
that many project managers - even though having
very high technical skills - are not very compe-
tent when leading a group. Psychological and so-
cial components play a very important role. To

1Of course, the checking of the modules can be done
by the designer himself/herself, but he/she should not be
involved in the controlling of the overall project.

keep the group members motivated the planning
has to be realistic, competences must be clear,
each individual most know about its importance
and must participate in the success of the project.
The project manager has to identify conflicts and
has to solve them within the team without having
“winners” and “losers” in the end.

• Workflow management: The classical software de-
velopment models for the organization, like step-
wise, sequential, or cyclic, can also be applied in
the hardware domain. Techniques that have been
developed along new methods for object orienta-
tion, like tool-smithing, can be applied when us-
ing HDLs having the same features.

• Documentation: Even though not very popular,
the documentation of the individual steps in a
project is very important. Looking at principles
like design reuse the availability of a complete de-
scription becomes crucial. Often, components are
still in use for years even after the designer left
the company. Having a standard for documenta-
tion in this case helps significantly to guarantee a
high quality of the modules.

The organization form determines the long term
success of a hardware development group. Looking at
the availability of hardware designers on the market,
each company has to ensure good working conditions
to keep the teams motivated. To guarantee a success-
ful development it is important to introduce the differ-
ent aspects of the project to all members of the team.
For this, first a list of different project aspects is given
(the list is not complete, but covers the most relevant
topics) including some questions that should be an-
swered prior to the project start:

• Strategic goals: In-house or outsourcing? Type of
project? (consulting/coaching, turn-key develop-
ment, joint venture)

• Product / goals definition: What exactly do we
build?

• Timeline / Duration: When will the project start?
How long will it take, and who will be involved in
the different phases?

• Resources: Which and how many sub-tasks are
defined? What is the number of people involved
in each phase? How much do we get/invest for the
project?

• Complexity / difficulty: How many tasks are de-
fined and how are their mutual dependencies? Is
the technology needed known or is research re-
quired? What is the risk in the calculations on
investment?



Figure 3: Project Management Tasks

• Priority: How does the success of the project
influence other projects or sub-tasks? Has the
project a strategic position?

• Costs: Can the costs and the risk of the project
be estimated? Can further studies or information
give a better picture?

• Coordination/Organization: Who is responsible
for the defined sub-tasks and who manages the
complete project?

• Risk analysis: Which potential items might en-
danger a successful project outcome? How can
the tasks be prioritized and how to establish alter-
natives?

Some of the aspects mentioned seem to be obvi-
ous, but in practice it happens too often that some
(or even most) of the questions cannot be clearly an-
swered. It is also easy to see that not all points can
be optimized at the same time. E.g. the costs be-
come lower, when the project takes less time, but this
usually has a negative influence on the quality of the
product. Especially, the missing clear definition of
the responsibility with respect to project coordination
and organization in the early phase often results in se-
rious problems later. A comprehensive understand-
ing of the technical, organizational and social aspects
of any project help to make it successful. Following
the developments in software engineering, the cost-
effectiveness of large-scale projects will become more
and more important. In software engineering, using
source lines of code (SLOC) was one of the earli-
est, straightforward methods to estimate the effort of
a software project. As timeliness was one key argu-
ment against the use of SLOC, because this number

can only be calculated after a project has been fin-
ished, there are further problems with SLOC. There
is no relation to complexity of functions or numer-
ical equations. A term that occupies three lines in
the code, but took 4 weeks to be developed by ex-
perts counts as much as a three line code for an in-
put/output device. As an organizational obstacle, the
number that refers to the estimation is hard to under-
stand for non-experts, i.e. top-level management. In
more advanced cost estimation models, most of the
attributes are also weighted according to their prior-
ities. This leads to a complex estimation which out-
performs SLOC methods. Function points (FP), first
introduced in (Albrecht and Gaffney, 1983), has been
developed historically for business applications. FPs
are a weighted sum of the number of inputs, outputs,
user inquiries, files, and interfaces to a system. How
to transfer these cost estimation models to hardware
projects is still an open research question.

3.4 Quality Management

As for software, it is a difficult task to measure the
quality of a description in a HDL. The coding guide-
lines used in companies are not sufficient. Follow-
ing the criteria well accepted in the software domain,
some measures for hardware are outlined. We now
distinguish between the goals that should be achieved
and the methods and standards used:

Goals: It is obvious that the quality should be as
high as possible, but it is also critical to consider the
available resources. The following criteria have to be
considered: correctness, reliability, user friendliness,
reuseability, efficiency, and portability. Quality goals



have to be defined and methods have to be developed
that ensure that these goals are met. It is not sufficient
to just define a process and hope that the quality will
be satisfying. Even though, some of the criteria above
might be contradicting, a careful analysis what is ex-
pected and what can and should be created leads to a
robust development flow.

Methods: To guarantee a high quality some mea-
sures or standards have to be defined. The currently
most popular ones in the software domain are the Ca-
pability Maturity Model (CMM) and ISO9000. In his
CMM, (Humphrey, 1995) distinguishes between five
stages of organizational development: 1. Initial (ad
hoc, reactive), 2. Repeatable (intuitive, depending
on isolated staff, using former experience), 3. De-
fined (qualitative, defined process, controlling along
the entire software process), 4. Managed (quantita-
tive, development and use of metrics, data collection
and analysis), 5. Optimizing (improving and adjust-
ing the entire process). He also points out the steps
that have to be made in order to improve the develop-
ment process, which include understanding the cur-
rent status of their development process and develop-
ing a vision of the desired process. This is the source
of a potential conflict: the persons that measure are
also the ones being measured. If the assessment re-
veals, that the stage the development processes are in
is not the one expected to be but rather below that, the
management is responsible. Accordingly, this implies
the danger, that evaluations might be forged, so that
the management appears in a better light. One way
to avoid this conflict is to make use of outside con-
sultant, whose perspective on that is neutral and not
disturbed by such influences. A big disadvantage of
such a procedure is, that is is costly and takes a lot
of time, as outsiders have to become familiar with the
present circumstances. Therefore, it might be helpful
to ask a person within the company who is not directly
involved in the development processes that are to be
discussed. Again, this contains potential for a con-
flict, as the unit concerned might not see the necessity
why somebody should get an insight is not really in-
volved. It is human pride and maybe stubbornness
that account for that. Finally, this remains a difficult
and incalculable problem as it is often the case when
human factors are involved.

Standards: Also in the hardware domain, using
standards has been observed as being very impor-
tant and resulted in HDLs, like VHDL or Verilog,
for the synthesis step. In other domain, like ”veri-
fication languages” standards are not established yet
(see e.g. (Goering, 2001))2. But the certification of a

2Even though recently SUGAR has been selected as a
property language standard there are still more than 10 other

development process is not used. Many of the rules
developed for ISO900X on quality management and
quality assurance can be directly transferred to hard-
ware, while some aspects need to be modified.

To provide a high quality in the development pro-
cess, clear goals have to be defined and methods have
to be developed that ensure the realization of these
goals.

4 PROBLEMS IN HARDWARE
DESIGN

Beside the “optimal project flow” described so far,
several problems can occur that should be consid-
ered when starting a hardware development project,
although not unique for hardware projects.

• Uniqueness of hardware systems: Most hardware
systems are only developed once and later on
modified to meet new requirements. This often
makes the requirement analysis and risk manage-
ment (costs, financing etc.) difficult.

• Technically oriented management: Many (maybe
most) of the project managers have a technical
background and have been designers before. They
are very qualified regarding the hardware itself,
but do not necessarily have good management
skills in leading a group. Often they start to de-
sign on their own or try to influence the designers
in their group. This might leads to problems re-
garding the role of each team member. (On the
other hand “pure managers” without sufficient in-
sight in the technology have problems of getting
accepted by the design teams!)

• Weak planning: In practice the time invested in
the early project phase for specifying the details
of the behavior of the hardware to build is not suf-
ficient. An unclear specification is one of the main
reasons for delayed or even failing projects.

• High number of possible solutions: Usually, there
is not one unique way of realizing a circuit. The
main bounds are given by the constraints of the
resources of the hardware and are very difficult to
restrict regarding nowadays hardware complexity.

• Individuality of designers: Many designers see
themselves more as artists than as hardware de-
signers. They are individualists and are often not
willing to work in a team. This is especially some-
thing they do not learn during their education at
the universities. Even though this is changing

languages around.



more and more, as group oriented working be-
comes a topic.

• Rapid technological changes: The technology
evolves very fast, and often the tools and tech-
niques have to be modified during the develop-
ment cycle. This makes an exact planning re-
garding the resources nearly impossible. The
project managers must have flexibility to incorpo-
rate these and must also have the leader quality
to communicate these “negative messages” to the
project team.

• Missing standards: Even though there are many
standardization committees in the hardware do-
main, there are still many problems related to in-
compatibility of data formats or language defini-
tions.

• Status monitoring: Many systems cannot be tested
under “real” conditions until the final design is
done. Thus, during the project it is often diffi-
cult to say what the current status of the project is.
A project might seem in time, since most of the
code is written, while a lot of effort is needed for
debugging, if the quality is poor.

5 CONCLUSIONS

Over the last 25 years the number of components
of an integrated circuit has grown from a few thou-
sand to more than 20 million in nowadays ASICs.
While in the beginning of this process one or two de-
signers were doing the complete development, today
in a project group more than 30 designers are working
in parallel. This demands for a closer integration of
project engineering and hardware design. Problems
that might occur during a chip design have been dis-
cussed in this paper. Hardware designers can make
use of many concepts that have been developed over
the last couple of years in the software domain. This
transfer is justified by the similarities between hard-
ware and software development. Only by applying
structured methods of project management high qual-
ity designs can be obtained and successful tape-outs
of multi-million gate ASICs can be expected.

REFERENCES

A. J. Albrecht, J.E. Gaffney, Software Function,
Source Lines of Code and Development Ef-
fort Prediction: A Software Science Valida-
tion, IEEE Transactions on Software Engineer-
ing, (9)6, pp.639-648, 1983

B. Bentley, Validating the Intel Pentium 4 Micropro-
cessor, Design Automation Conference, pp. 244-
248, 2001

B. W. Boehm, A spiral model of software develop-
ment and enhancement, IEEE Computer, 21(5),
pp. 61-72, 1988

Y. Chu, An Algol-like Computer Design Language,
Comm. ACM, p. 607-615, October 1965.

G. DeMicheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994

T. DeMarco, Controlling Software Projects: Manage-
ment, Measurement and Estimation, Prentice-
Hall, 1982

C. Floyd, A Systematic Look at Prototyping, in
R. Budde, K. Kuhlenkamp, L. Mathiassen, H.
Züllinghoven (editors), Approaches to Prototyp-
ing, pp. 1-9, Springer, 1984

R. Goering, Assertion’s Babel Tower? EE Times,
August, 2001, available online under url:
http:www.eedesign.com/story/OEG20010828S0054

W. Humphrey, A Discipline for Software Engineer-
ing. Reading, Addison-Wesley, 1995.

G. Hachtel, F. Somenzi, Logic Synthesis and Verifi-
cation Algorithms, Kluwer Academic Publisher,
1996

IEEE Standard 1219: Standard for Software Mainte-
nance. Los Alamitos CA., USA. IEEE Computer
Society Press, 1993.

N. Krishnamurthy, M. Abadir, A. Martin, J. Abra-
ham, Design and Development Paradigm for In-
dustrial Formal Verification CAD Tools, IEEE
Design & Test of Computers, pp. 26-35, July-
August 2001

M. Keating, P. Bricaud, Reuse Methodology Manual,
Kluwer Academic Publisher, 1999

C.F. Kemerer, Software Project Management, Read-
ings and Cases, McGraw-Hill, 1997

B.P. Lientz, E. Swanson, Software Maintenance Man-
agement: A Study of the Maintenance of Com-
puter Application Software in 487 Data Process-
ing Organizations, Addison-Wesley, 1980

P. Naur, B. Randell (editors), Software Engineering:
A Report on a Conference sponsored by the
NATO Science Committee, NATO, 1969

Sommerville, I., Software Engineering (7th Edition).
Pearson Addison Wesley, 2004

R. Vonk, Prototyping - The effective use of CASE
Technology, Prentice Hall, 1990


