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Abstract

The demand for safety of electronic devices is high. Es-
pecially in safety-critical systems, e.g. electronic railway in-
terlocking systems, safety is an important issue. Nowadays
these systems are tested and simulated with a manually cre-
ated set of test cases. But testing is a very cost-intensive
procedure and can never reach a complete coverage for
large designs. Hence, an efficient way to formally verify
these systems is required.

In this paper we present the formal verification of
Counting Heads for railways, a real-time system that is
used in most electronic railway interlocking systems from
SIEMENS. For the verification bounded model checking al-
gorithms are applied, i.e. a set of properties is formally
proven. The completeness of this set is also determined effi-
ciently.

1. Introduction

Today’s electronic systems become more and more com-
plex. They are applied in many areas of our personal lives,
e.g. cellular phones or entertainment electronics, and it is
nearly impossible to imagine a modern life without them.
Failures of these devices would normally result just in mi-
nor problems for the users. But complex electronic systems
are also used in safety-critical areas like medical equipment,
avionics and electronic railway interlocking systems. Espe-
cially in these sectors, the demand for safety is exception-
ally high, because human life may depend on the error-free
functionality of such devices.

Nowadays railway systems are designed and tested in a
very conventional way, i.e. the systems are simulated with a
manually created test bench. The advantage is that the de-
signers have a considerable expertise with this kind of work,
but there is still a lot of potential for human failure. Fur-
thermore, testing is very cost-intensive and can never reach
complete coverage for large or complex designs. Thus,
components like Counting Heads (CHs) [8], which are used
in railway specific applications, have to be formally veri-
fied. These real-time systems are applied in safety-critical
systems. They are used to determine whether a specified
Track Vacancy Detection Section (TVDS) is clear or oc-
cupied. Especially for electronic railway interlocking sys-
tems, e.g. as constructed by SIEMENS, the correct function
of CHs is crucial. An electronic interlocking system deter-
mines automatically, whether a TVDS is clear or occupied.

But if the CHs fail to work properly a TVDS would either
be falsely indicated as occupied — resulting in a deteriora-
tion of availability and reliability — or falsely indicated as
clear — possibly introducing a safety hazard.

The interlocking system has to be verified to avoid such
dangerous situations. In order to do this, our approach is to
begin with the verification of the basic buildings blocks of
such systems, namely CHs. Hence, we present the formal
verification of CHs in this paper. The verification is done in
two steps:

1. Properties are written for each signal, which is neces-
sary in the verification process. These properties are
proven to hold for the system using Bounded Model
Checking (BMC).

2. The set of properties for each signal is proven to be
complete, i.e. the properties cover all possible scenar-
ios for this signal. The proof is done using the methods
presented in [6].

In this way the correctness of the system can be com-
pletely verified. A CH works in two steps. The first one
is counting axles, the second one is the evaluation of the
counters. The verification of the system up to its evaluation
phase is presented in this paper.

This paper is structured as follows: In Section 2 a
brief introduction into the Property Specification Language
(PSL) is given. Furthermore, the fundamental ideas of BMC
and coverage proofs of properties are introduced in this sec-
tion. We motivate the usage of CHs in railway systems in
Section 3. Afterwards, the formal verification of CHs is
discussed in detail in Section 4. The verification section is
divided into two sections. In Section 4.1 properties are pre-
sented and explained. The proof that these properties cover
all possible scenarios is given in Section 4.2. The final Sec-
tion 5 concludes this paper and gives an outlook to future
work.

2. Preliminaries

In this section we give some details regarding the pre-
liminaries of formal verification. Although, the underlying
system is modeled using SystemC, we omit details about
SystemC and refer the reader to [5, 10].

2.1. Property Specification Language

Properties of a system are often described using tempo-
ral expressions in hardware design. With these properties
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the system can be verified using formal techniques. De-
scribing temporal properties for verification can be done in
many different ways, since there exist several languages and
temporal logics. As property specification language we use
a subset of the widely known industrial standard PSL [1]
from Accellera. A PSL-property, as used here, consists of
two parts: a list of assumptions and a list of commitments.
Assumptions and commitments have the form:

next [a] (expression)
or next_ala..b] (expression)
or next_el[a..b] (expression)

where a and b are time points. If all assumptions hold, all
commitments in the proof part have to hold as well. All
used time points have to be greater or equal to 0. Since
a and b are finite, a property argues only over a finite in-
terval, which is called observation window. Temporal de-
pendencies are expressed by using the keywords next,
next_a and next_e, whereas next__a states that the ex-
pression has to hold at all time points in the interval and
with next_e the expression has to hold at least once in
the specified interval. Also a set of advanced operators and
constructs is provided to allow for expressing complex con-
straints more easily.

In the way we formulate properties, they state that when-
ever some signals have a given value, some other (or the
same) signals assume specified values. Of course, it is also
possible to describe symbolic relations of signals. Further-
more the property language allows to argue over time inter-
vals, e.g. that a signal has to be stable in a specified interval.

2.2. Bounded Model Checking

In model checking (also called property checking) prop-
erties for a given system are formulated in a “dedicated ver-
ification language”. In this paper PSL is used as verification
language. It is then formally proven whether these proper-
ties hold under all input and state assignments for the given
assumptions. While “classical” CTL-based model check-
ing [3] can only be applied to medium sized designs, ap-
proaches based on Bounded Model Checking (BMC) as dis-
cussed in [2, 11] give very good results when used for com-
plete blocks. In BMC the properties are only considered
over a finite interval. BMC has originally been proposed
for circuit verification and in this context considering a fi-
nite number of steps is reasonable.

In order to verify a property the model has to be unrolled
n times, where n is the maximum time interval of the prop-
erty (the observation window). The unrolled model and the
property are translated into a Boolean formula. The formula

is solved by a SAT-solver and if it is satisfiable a counter ex-
ample has been found, disproving the validity of the prop-
erty. If the SAT instance is unsatisfiable the property holds.
Since there is no restriction to reachable states during the
proof of the corresponding SAT instance a counter-example
may start from an unreachable state. Usually, if such a case
occurs these states are excluded by additional assumptions.

2.3. Functional Coverage

So far the completeness of a property set is only ensured
in a manual review by a verification engineer. Recently an
approach to estimate functional coverage for BMC has been
proposed in [6]. First, there have to be several properties de-
scribing the behavior of a particular signal or output. Sec-
ond, after proving the correctness of these properties using
BMC, the completeness of the set of properties is shown.
The proof either verifies the coverage of the properties or
provides a counter-example. Thus, an uncovered scenario,
which has to be analyzed, can be derived.

The basic idea is to generate a new property, a so called
coverage property, for each considered signal or output. If
this coverage property is valid there is no scenario, in which
the value of a signal or an output is not specified by the
properties. It is proven that the union of all properties re-
garding a particular signal or output do not admit a behav-
ior different to the one defined by the model. This is done
by introducing a multiplexor for each bit which is driven by
the signal or output and the inverted value of it. Afterwards,
the coverage check is performed by proving that the mul-
tiplexor is forced to select the original value of the signal
or output, assuming all involved properties. Examples are
shown in Section 4.2. For a detailed description see [6].

3. Counting Heads

This section gives a short summary about the functional-
ity and the modelling of Counting Heads (CHs) to keep this
paper self-contained. For a more detailed description on the
SystemC model see [7].

CHs [8] are needed to determine whether a railway track
section is vacant or occupied. This is essential for electronic
railway interlocking systems in order to position points into
the correct direction for the next train. CHs are used in a
lot of interlocking systems all over the world. A CH failing
to work properly could result in a collision of railways and
endanger the life of passengers.

In Figure 1 a small network of railtracks is shown, which
could be operated by an electronic railway interlocking sys-
tem. Every Track Vacancy Detection Section (TVDS) is de-
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fined by at least two CHs, one at the beginning and one at
the end of such a track section. The output of the CH is
transmitted to an evaluation computer. The evaluation com-
puter interprets the signals, compares the number of axles
that entered and left a TVDS, issues clear or occupied indi-
cations and monitors the clear/occupied state of the TVDS.

3.1. Model

The CH is implemented using SystemC, a C++ class li-
brary. To model this system it is advisable to partition the
design into a module for the Finite State Machine (FSM)
and a module for the timeout control. The partitioning is
necessary because a timeout can be triggered in any state.
An abstracted model of the CH is shown in Figure 2. In the
following we give some details about the model of the CHs
that is verified later on.

As can be seen in Figure 2 the model has three input sig-
nals. The inputs systeml and system?2 indicate which
sensor system of a double wheel detector is affected and
which is not. How a double wheel detector works and its
influence on the system is explained in Section 3.2.1. The
input reset is used to reset the system into its initial state.
The inputs are Boolean values.

As mentioned above the system consists of two modules.
These are interconnected to each other by three timeout sig-
nals and one timeout request signal. The timeout request
to start the timer is issued every time the module “FSM-
Counting Head” reaches another state in the FSM (see Fig-
ure 4 and Section 3.2.2). The timer module activates the
timeout signals, when the corresponding timeout is reached.
The internal timing signals are Boolean values, too.

The number of outputs depends on the type of the CH.
But all CHs have at least the following outputs:

e Number of axles, integer value (The sign indicates the

direction of the axles.)

e Number of errors, unsigned integer value

e Time the system has been unaffected (idle time), un-

signed integer value

e Counter control token, Boolean value

Additionally, there can be several more outputs, called
failure tokens, depending on the specific needs for a railroad
track.

If a timeout is triggered in any state, the system starts its
evaluation phase. In this phase the system determines how
many axles crossed the double wheel detector, how many
errors occurred and if the control token has to be set. During
this phase all outputs are written.

3.2. Axle Counting Procedure

In this section the basics for the axle counting procedure
are presented. This is necessary to understand the formal
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verification in Section 4. First, the double wheel detector
and its influence on the FSM is clarified in Section 3.2.1.
Second, the FSM itself is discussed in Section 3.2.2.

3.2.1. Double Wheel Detectors

A double wheel detector is mounted on one of the rails. It
detects passing wheels of the vehicles. A double wheel de-
tector consists of two sensor systems, which are triggered
when an axle crosses. The impacts on both sensor sys-
tems occur with a delay, which indicates the direction of
the crossing axle. A regular crossing of an axle from left to
right is illustrated in Example 1.

Example 1. The triggering of the sensor system is shown
in Figure 3(a). The signal waveform of both sensor systems
is given in Figure 3(b). These figures correspond to an axle
which crosses the double wheel detector regularly.

If the space between wheel and sensor system is big
enough, both sensor systems are unaffected (state (1)) as
can be seen in Figure 3(a). The wheel approaches from the
left side and the left sensor is affected first (state (2)). When
the wheel is positioned right above the double wheel detec-
tor, both sensor systems are affected (state (3)). The axle
moves on and the left sensor is not affected anymore (state
(4)). Finally, the axle left the double wheel detector and
both systems return to their unaffected states (state (5)).

The output of the double wheel detector is taken as an
input for the model shown in Figure 2. These two inputs
determine the state transition to the corresponding state in
the FSM.

3.2.2. Finite State Machine

The basic idea for the axle counting procedure is as follows:
There are five counters (1, r, g, %, a). They count a defined
type of state transition for a single axle, while traversing the
FSM given in Figure 4. All counters are integer valued.

Every time the FSM enters state unaffected, i.e. both
sensor systems of the double wheel detector are unaffected,
these counters are added to a second set of counters, which
are counting the whole group of axles. Afterwards, the
counters for a single axle are set to zero.

The FSM consists of four states. They correspond
to the four possible impact combinations on both sen-
sor systems. The states, in which one sensor system
is exclusively affected, are divided into two substates
was_both_systems and was_unaffected. De-
pending on whether the CH was in state both_sys-—
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tems_affected orin state unaffected before enter-
ing this state.

The states of the FSM are traversed in a circle either
clockwise or counterclockwise, depending on the direction
in which the axle crosses the detector. For a better under-
standing, two possible state transitions are illustrated. A
transition which could occur in a regular passing of an axle
is shown in Example 2 and a transition which indicates a
irregular passing of an axle is presented in Example 3.

Example 2. Assume the system is in state systeml-—
_affected and in substate was_both_sys—
tems, ie. systeml of the double wheel detector is
affected and system? is not. If the impact on systeml
stops, a state transition to state unaffected oc-
curs. During this transition the counters a and r are
incremented.

Example 3. Assume none of the sensor systems is affected
and in the next time step both sensor systems are affected.
This means that a state transition from state unaffected
to state both_systems_af fected occurs. During this
transition only the counter g would be incremented.

The remaining transitions can be seen in Figure 4. The
counters x and g are necessary to determine whether an
axle crossed the detector regularly. Without interferences
the counters x and g stay equal to zero.

At some of the states in Figure 4 there is a time anno-
tated. The time intervals are ranging from 12 ms to 1 s
and they are not given in form of discrete clock cycles as
usually known in hardware design. These intervals indicate
the time the CH has to stay in that particular state, before
a timeout is triggered and the counter values are evaluated.
In the evaluation phase the counting head determines how
many axles have passed the detector. The direction of these
axles is calculated and whether irregularities occurred is de-
termined. The results of the evaluation phase are written to
the corresponding outputs. The verification of the evalua-
tion phase is not discussed in this paper. Hence, we refer
to [8] for a detailed description.

All calculations and increments of counter values have
to be done in real-time. This is important since the railway
interlocking system has to be up-to-date at any time.

4. Formal Verification

A reliable implementation is essential for safety-critical
systems, as electronic railway interlocking and its basic
building blocks. For these systems, which also operate
time-critical, it is very complex to prove the correct behav-
ior in any circumstance. For example, for a CH the time
intervals, as annotated in Figure 4, have to be considered.
In this paper, the formal verification is done by an induc-
tive proof strategy combined with BMC. Without BMC the
proofs would most probably fail, because of the state ex-
plosion problem known from conventional model checking
algorithms.

In Section 4.1 we present properties for the formal veri-
fication of all internal signals which are necessary to prove
the correctness of the system from its initialization up to
the beginning of its evaluation phase, i.e. state variables,
counter values and signals for timeouts and timeout re-
quests. Afterwards, in Section 4.2 we show the proof of
completeness of these properties. In this way, we prove the
correctness of the model from the time the system is initial-
ized until the evaluation phase begins. Finally, the correct-
ness of the evaluation phase has to be proven, but this part
of the formal verification is not discussed here.

4.1. Verification by BMC

In this section we explain details about the formal veri-
fication of properties on state variables, counter values and
timing issues. Most of the proofs are done according to the
inductive principle:

1. Prove the correctness of the system after initialization.
2. Assume this correctness at time point ¢.

3. Prove that the system is still correct at the next time
point ¢ + 1.

Now, it is very important that all counter values have got
the expected values at the beginning of the evaluation phase,
since they are used to evaluate the system. The counter val-
ues are determined by traversing the FSM, as already de-
scribed in Section 3.2.2. Thus, we have to prove that the
FSM is implemented correctly according to its specification
and we have to prove that the system actually reaches the
evaluation phase. Both parts are shown in the following
sections. To prove the the properties as valid or invalid the
SystemC property checker CheckSyC [4] is used.

4.1.1. Verification of the FSM

Basically, two steps have to be considered to verify the cor-
rectness of the FSM. These steps are explained in the fol-
lowing paragraphs.

Relations between states and inputs The first step is to
relate the states of the FSM to the inputs systeml and
system2. This is done by five properties. There are three
of these properties given in Figure 5. As can be seen the
properties start with a triggered reset (lines 1 — 6). This
property states that if the reset is set to 1 (line 3) the state
is set to unaf fected at the next time point (line 5). Note,
a state set to 0 means the state is unaffected, 1 means
systeml_affected, 2 means system2_affected
and 3 means both_systems_affected. The second
property (lines 8 — 14) states that, if both sensor systems
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state_old does not change either (lines 8 — 9). The prop-
erty may seem trivial, but in most cases this is one of the
properties which is forgotten. If this property is missing in
the coverage proof, a counter-example would be provided
with exactly the scenario where the behavior is not spec-
ified. Of course, there are more properties for this signal
defining its remaining behavior.

The proofs for the completeness of the properties pre-
sented here will be given in Section 4.2.

Relations between state transitions and counters In
this section the values of the counters are related to the state
transitions, i.e. it is proven that the counters are incremented
according to the annotation given in Figure 4. There are 17
properties to cover all possible state transitions:

1. Three properties for every state transition from each
state.

2. For each state one property for the case that no changes
occur.

3. One property for the reset condition.

In Figure 7! there is the property given which formulates
a state transition from state 1 (systeml_affected)
to state 0 (unaffected) (line 3), similar to Exam-
ple 2. The assumption state 1 states that the FSM
is in state systeml_affected and the transition to
state unaffected is enforced by systeml and
system2 == 0. The remaining assumptions (line 4) are
given to avoid false negatives and overflows of the counter
values. To constrain the counters like that is valid, be-
cause they are considered to have a low value. Accord-
ing to the specification CHs are only used in environments,
where the values of these counters are in a reasonable in-

1 property trans_1_0 =
2 always (
3 state == 1 && systeml == 0 && system2 =
4 && 1 < 65535 && 1 < 65535 && x < 65535 && g < 65535 && a == 0
5 ) —> (
6 next[1](state == 0
7 ]
8 && state_old == prev[1](state_old)
9
10 )
1 property state_reset =
2 always (
3 reset == 1
4 ) = (
5 next[1](state == 0)
6 ;
7
8 property state_0 =
9 always (
10 systeml == 0 && system2 ==
11 && reset ==
12 ) —> (
13 next[1](state == 0)
14 ;
15
16 property state_1 =
17 always (
18 systeml == 1 && system2 ==
19 && reset ==
20 ) —> (
21 next[1](state == 1)
22 ;
Figure 5. Properties for state
1 property state_O_change =
2 always (
3 systeml == next[l](systeml)
4 && system2 == next[l](system2)
5 && state == next[l](state)
6 && next_a[0..1] (reset == 0)
7 ) —> (
8 next[1](state_old)
9 == next[2](state_old)
10 )

Figure 6. Property for state_old

are unaffected (line 10) and the reset is 0, the system will
be in state unaffected in the next clock cycle (line 13).
There are also properties for the remaining combinations of
the inputs systeml and system2. These are formulated
in a similar way. Thus, there exist six properties in total. At
this point we assume these properties to cover the behavior
of the variable state completely. The proof is shown in
Section 4.2. Now we can use the variable state in the
assume parts of following properties.

The correct value of state_old has to be verified,
too. This variable determines the substates in the states
systeml_affected and system2_affected. Ex-
emplarily, we give one property for this variable in Figure 6.
This property states that if nothing happens, i.e. systeml,
system2 and the state do not change (lines 3 — 5),

terval. In the list of commitments (proof part, lines 6 — 9)
the first statement is that state unaffected (0) (line 6)
is reached. According to Figure 4 all counters keep their
values except for the counter 1 and the counter a (lines 7 —
8). An increment of the latter counter depends on the pre-
vious state. If the previous state was unaffected (sub-
state was_unaffected in Figure 4) no axle was counted
and the counter a keeps its value (end of line 8). Otherwise,
the system has been in state both_systems_affected
and the axle counter a is incremented by 1 (line 9).

The properties for the remaining state transitions are
formulated in a similar way according to the FSM-
specification. The property for the reset condition is
straightforward, i.e. after the reset is triggered every
variable is set to 0. The remaining four properties state
that if there is no alternation on the inputs systeml and

I'The conditional operator ?, known from C, is used here with same
meaning as it has in C, ie. (X)? Y : Z states if (X) then Y
else Z.



1 property timer_eval =

2 always (

3 evaluation == 0

4 && reset == 0

5 && (state == 1 || state == 2)
6 && state_old == 1

7 && ttrail_signal == 1

8 ) —> (

9 next[1](evaluation == 1)

10 );

Figure 8. Property for evaluation

system?2, there is no alternation in any of the counter or
state variables.

Finally, each counter for a single axle has to be related
to its corresponding counter for a group of axles. This is
necessary since the group counters are used in the evalua-
tion phase. But the details for this proof are left out due to
page limitation. The inductive proof needs three properties
for each counter:

1. One property for the reset state.

2. One property for the induction step.

3. One property for the case that the system state remains
the same.

4.1.2. Timeouts and Evaluation

If a timeout is triggered, the system has been idle in a par-
ticular state for a specified time interval. If this happens the
evaluation phase begins, as already said in Section 3. The
timeout intervals range from 12 msup to 1 s.

To verify the correct behavior of the system until the be-
ginning of the evaluation phase, the timer module from Fig-
ure 2 has to be verified. This is done with five properties
and an inductive proof strategy. In the top module the vari-
able evaluation has to be related to the timeouts coming
from the timer module. Exemplarily, this is done for two
states with the property shown in Figure 8. This property
states that the system starts the evaluation phase in the next
clock cycle (line 9), if

1. the system is not already in the evaluation phase
(line 3),

2. the system is not in the initial state (line 4),

3. the system is in state systeml_affected (1) or
system2_affected(2) (line 5),

4. the previous state (state_old) was both_sys-—
tems_affected (line 6),

5. the timeout ttrail (12ms) was triggered.

There is one property for each state and substate in which
a timeout can be triggered. Thus, there are four properties
to prove evaluation. Of course, there is a last property
which formulates that if no timeout is triggered, the evalu-
ation phase does not begin. Finally, there are 10 properties
to prove the correct beginning of the evaluation phase (in-
cluding the necessary timeouts).

2. Coverage Analysis and Proving Com-
pleteness

In this section the completeness of the property set is
shown. Several properties have been formulated and pre-
sented in the previous section. Internal signals, e.g. state,

property coverage_state =

// @insertMuxForSignal: state select

1

2

3 always (

4 //reset

5 ((reset == 1) ?

6 next[1](state == 0)
7 1)

8 &&

9 // state_0

10 ((systeml == 0 && system2 == 0
11 && reset == 0) ?

12 next[1](state == 0)
13 1)

14 &&

15 // state _1

16 ((systeml == 1 && system2 == 0
17 && reset == 0) ?

18 next[1](state == 1)
19 1)

20 && ...

21 // coverage transformations for the
22 // two remaining states properties
23 && (select == 1)

24 )—>(

25 next[1](select == 1)

26 ;

Figure 9. Coverage Property for state

were proven by a set of properties. In order to use the
signals in assumptions of other properties, the property set
has to be proven to cover every possible scenario. During
the proof of completeness using the approach [6], counter-
examples can occur. Due to the nature of this approach
these counter-examples describe uncovered scenarios.

4.2.1. Coverage Property

To prove the completeness, the given properties for one par-
ticular signal have to be transformed into a coverage prop-
erty. For example, the properties from Figure 5 are trans-
formed to a new property, shown in Figure 9. To do this,
all properties which argue over the considered signal have
to be identified and the maximum time point has to be de-
termined. Afterwards, each property is syntactically trans-
formed from the expression in Figure 5 (e.g. lines 2 — 6)
to an expression which can be assumed (lines 5 — 7 in Fig-
ure 9). Note, the transformation is straightforward and does
not change the semantic of the property. In this way all
properties are reformulated and assumed in the coverage
property (lines 9 — 22). To complete the coverage prop-
erty a multiplexor has to be inserted into the model. This is
done by the special command in line 2. The multiplexor is
inserted at the considered signal and the input of the mul-
tiplexor is named select. Finally, select has to be as-
sumed to be true at all time points except the maximum time
point (line 23). The proof part consists of the commitment
select == 1 at the maximum time point 1 (line 25). If
this property holds, the signal is completely covered by the
properties presented in Section 4.1.1, i.e. there is no un-
covered scenario. The coverage property in Figure 9 holds.
That a coverage property identifies uncovered scenarios is
shown in detail in [6]. Such a coverage property has to be
generated for each signal needed to verify the correctness
of the CH model, starting from the initial state up to the
beginning of the evaluation phase.



Table 1. Number of Properties

# | Signal #p | covered? | #p added
I | state 6 yes -
2 | state_old 8 yes -
3 | state transitions 17 yest -
4 | for each counter 3 yes -
5 | timeouts & evaluation | 10 yest 5

t excluded states ¥ added properties

1 mnext_a[0..2](
2 X < 65535 && g < 65535
3 && 1 < 65535 && r < 65535)

Figure 10. Added Assumptions

A summary of the signals and the number of needed
properties is given in Table 1. The name of the verified
signal is given in column Signal and a related ID is shown
in column #. The number of required properties is listed in
column #p. The result of the coverage proofs is presented
in column covered?. Note, the coverage properties for the

signals in the rows marked with T or ¥ could not be proven
as valid in the first attempt. For both signals uncovered sce-
narios in form of counter-examples have been found. These
coverage gaps are discussed in the next section and possible
solutions to close them are presented.

4.2.2. Coverage Analysis

If a counter-example occurs it has to be analyzed. Finding a
solution is well supported, since a counter-example directly
corresponds to an uncovered scenario. There are two possi-
ble solutions to close this verification gap:

1. Adding properties
2. Excluding states

There are two different situations where one of these two
solutions are applied. The first solution is always used, if
the analysis of the counter-example indicates that the set
of properties was incomplete, i.e. a real scenario has been
discovered in which the behavior of the considered signal
was not specified. The second solution is applied, if the
specification did not specify the behavior of a signal in a
special situation, e.g. this situation is excluded by reason
from the very beginning.

State transitions For the coverage proof of the state tran-
sitions (line 3 of Table 1) states had to be excluded. After
trying to prove the coverage property an counter-example
was provided. The source for this counter-example was an
overflow situation of counters of single axles, which was
not covered in the properties.

As can be seen in the property in Figure 7 (line 4), the
counters for single axles are assumed to be less than 65535
to prevent an overflow. This is valid because the counters
for single axles are assumed to have low values, e.g. a regu-
lar passing of an axle would result in eitherr = 4orl =
4. Hence, there is no overflow handling in the underlying
model. But this is exactly the scenario which the cover-
age approach detects as uncovered. As already said in Sec-
tion 4.1.1 the CHs are used in an environment which ensures
that the counters have got reasonable (low) values. Hence,

reset
state 1
state_old | 1 U S

teoll_signal ~~|

tstat_signal (N

ttrail_signal |

gelect \

evaluation

Figure 11. Trace for a Counter-Example for
evaluation

these scenarios can be excluded, by adding the assumptions
shown in Figure 10 to the coverage property.

Timeouts and evaluation Since a triggered timeout re-
sults in the beginning of the evaluation phase, the timeouts
and evaluation are proven and analyzed together. The
properties for the timeout signals covered all scenarios, thus
they are not considered in the following.

Amongst others, the proof of coverage for
evaluation provided the counter-example shown
in Figure 11. The scenario presented here shows a situation
which was not covered by any property before. In the
shown trace it can be seen, that the system is in state
systeml_affected (state = 1) and was in state
both_systems_affected (state_old = 1). The
only timeout, according to the FSM in Figure 4, which
would result in the beginning of the evaluation phase is the
12 ms timeout (ttrail_signal). This signal is O as can
be seen in this trace. But another timeout t stat_signal
is indicated as triggered (100 ms). This timeout, also the
1 s timeout (tcoll_signal), has no influence on the
behavior of the system in this particular substate. So far
there was no property to cover this state. Thus, the property
shown in Figure 12 had to be added to the set of properties
and to the coverage property. In comparison to the property
in Figure 8 this property proves that the evaluation phase
does not start (line 11), if the system was in the following
state:

1. state was in state systeml_affected or
system2_affected (line 5).

2. state_old was in state was_both_systems
(line 6).

3. The timeout ttrail_signal (12 ms) was not trig-
gered (line 9).

4. Any of the two remaining timeouts is triggered (lines
7-238).

The property from Figure 12 closes the gap provided by
the coverage proof. But there are still situations which are
not not described by a property. These are:

1. The system is in state systeml_affected or
system2_affected and the system was in state
unaffected and the 100 ms timeout was not trig-
gered, but one of the two remaining timeouts is trig-
gered.



1 property timer_eval_1 =

2 always (

3 evaluation == 0

4 && reset == 0

5 && (state == 1 || state == 2)
6 && state_old == 1

7 && (tcoll_signal == 1

8 Il tstat_signal ==1)
9 && ttrail_signal == 0

10 ) —> (

11 next[1](evaluation == 0)
12

~

Figure 12. Added property to cover evalua-
tion

2. The system is in state both_systems_affected
and a timeout, except the 100 ms timeout, is triggered.

3. The system is in state unaffected and a timeout,
except the 1 s timeout, is triggered.

4. The evaluation phase begins exclusively if a timeout
was triggered. Otherwise, the evaluation phase does
not begin.

For each of these situations one property similar to the
property in Figure 12 was added to the set of properties.
Therefore, five properties, as indicated in Table 1, were
added to verify evaluation and proving the complete-
ness of the verification.

4.3. Run-Time and Memory Consumption

In Table 2 a summary of run-times and memory con-
sumptions is given. All properties were proven on a com-
puter with an AMD64 3500+ CPU and 1 GB of main mem-
ory running under Linux.

In the first two columns an ID, column #, and the name
of the signals, column Signal, is given. Column BMC is di-
vided into three columns. In column 7ime the overall CPU-
time used to prove all properties for the considered signal
is given. The number of properties is shown once again in
column #p. The maximum memory consumption is pre-
sented in column Memory. Maximum memory consump-
tion means that no single proof needed more memory than
the given number in this column. The 61 BMC properties
have been proven to hold in a total of 432.22 s. CheckSyC
did only need 257 MB of main memory to verify the prop-
erties.

The column Coverage is divided in the same way as col-
umn BMC. For each signal one coverage property is needed.
But for the counters five coverage properties, one for each
single counter, have been necessary, as can be seen in col-
umn Coverage - #p. Thus, the total of coverage properties is
nine. Each coverage property was proven in approximately
9 s on average. All coverage properties have been verified
using less than 300 MB of main memory.

In total, the time to prove all BMC- and all coverage
properties was 510.8 s and the maximum memory con-
sumption was lower than 300 MB. The formal verification
of CHs has been accomplished in a moderate effort with
regard to hardware resources and run-time.

Table 2. Run-Time and Memory Consumption

BMC Coverage

#|Signal #p| Time|Memory||#p| Time|Memory
I[state 6] 43.40s[254MB]J| 1| 7.80s[254 MB
2 |state_old 8| 57.97s|254 MBJ|| 1| 7.83s|255 MB
3|state 171122.69 s| 257 MB|| 1| 8.69 s|257 MB

transitions
4 |counters 15/103.74 s| 216 MB|| 5|45.16 s| 294 MB
5|timeouts &||15{104.42 s| 254 MB|| 1| 9.10s{293 MB

evaluation

overa 22 81257 MB 78.58 s MB

5. Conclusions and Future Work

We have presented the formal verification of the axle
counting system up to the evaluation phase of Counting
Heads for railways. Therefore, the correctness of the system
has been proven using BMC and an inductive proof strategy.
The proofs range from the system initialization to the begin-
ning of the evaluation phase. Afterwards, the completeness
of the presented set of properties was analyzed. Based on an
automatic approach the completeness of the set of proper-
ties was shown. After closing coverage gaps the number of
properties is 61 in total. These proofs have been managed in
a few minutes and a moderate usage of hardware resources.

Thus, we verified the correct behavior of CHs, a real-
time system which is used in a safety-critical environment,
until the beginning of the evaluation phase. Based on the
results of this paper, in future work we will formally verify
the evaluation phase. Thereby, the already verified counters
can be assumed in the necessary proofs. Thus, the verifica-
tion effort for the evaluation phase is reduced.
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