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Abstract

Heuristic algorithms for coloring the edges of large undi-
rected single-edge graphs with (or very close to) the minimal
number of colors are presented. Compared to simulated an-
nealing and a grouping genetic algorithm for small graphs,
the heuristics were not only faster by orders of magnitude,
but almost all solutions had the optimal color number; the
rest differed by at most two colors.

For large graphs, the heuristics were validated by an evo-
lutionary algorithm. Here, the heuristics often found an op-
timum or a solution very close to it.

1. Introduction

Edge coloring of a graph means that the edge colors at
each node are all different, which means that no two edges
of the same color have a node in common. This is needed in
problems where two or more disjunct sets of pairs of neigh-
boring nodes have to be found to complete a given task. Edge
colorings are used for partitioning, scheduling, timetabling,
and wavelength-routing in optical networks [15, 16], electri-
cal networks [8], and optimal design (especially VLSI cir-
cuits [4]).

Modern electronic circuit designs may consist of millions
of elements. Hence, the algorithmic complexity to solve the
coloring problem has to be as low as possible.

The edge-coloring problem is to color a given graph with
the minimal number of colors necessary. With the excep-
tion of special cases [14], this problem is known to be NP-
complete [12].

Evolutionary algorithms (EAs) have been applied suc-
cessfully to edge coloring of graphs: For graphs with up to
750 nodes a grouping genetic algorithm was employed by
[15] which found optimal or near-optimal solutions. A simu-
lated annealing algorithm was used with graphs of up to 450
nodes in [7]. This method always determined the optimal
number of colors, also in cases where the grouping genetic
algorithm of [15] did not find it. But both methods suffer
from high run-times.

A variety of algorithms, ranging from linear time heuris-
tics to an evolutionary algorithm will be applied to a set of
small and large edge coloring problems. This work will show

more simpler and significantly faster heuristic methods to
find the optimal number of colors for small (< 500) node
numbers. For large node numbers, these heuristics find opti-
mal or near-optimal solutions. To show the quality of these
approaches, these results were compared to an EA.

The paper is structured as follows: Section 2 explains ba-
sic definitions, properties, and notations. The heuristics are
described in Section 3. Section 4 presents the EA that was
used for comparison for large graphs. In Section 5 the bench-
mark selection is explained and results for small and large
graphs are shown. Section 6 concludes and summarizes the
results.

2. Preliminaries

In this section, basic definitions, properties, and notations
concerning the graph edge coloring problem are explained.

• Let G(N, E) be a graph, where its number of edges is
designated by |E|, the number of nodes by |N |.

• Considered are only simple graphs, i.e. undirected
graphs with no multiple edges between any two nodes,
and no edges that have the same node as start and end
(loops).

• The edge multiplicity µ of a graph is the maximum
number of edges between any two nodes. Here only
simple graphs are considered, hence µ = 1 in all cases.

• The number of incident edges of a node is called its de-
gree. For any graph, its maximum degree is symbolized
by ∆.

• An edge-coloring of a graph is called correct, iff the
colors of the edges incident at any node are all differ-
ent.

• The minimal number of colors necessary to color the
edges of a graph G(N, E) correctly is called edge chro-
matic number or alternatively chromatic index, denoted
χ′. Obviously, the lower bound for χ′ is ∆. The upper
bound for χ′ is known from Vizing’s Theorem [11, 17]:

Theorem 1. ∆ ≤ χ′ ≤ ∆ + µ,



• A simple graph in which every node is connected by an
edge with every other node is called a complete graph.
In complete graphs, all nodes have maximum degree,
and this equation holds:

Theorem 2. χ′
complete = ∆ + (|N | mod 2)

Which means that if we add a node to a complete graph
with an odd number of nodes, we need no extra color
(see Example 1 below). Hence, χ′

complete is always odd
(for |N | ≥ 2).

• The number of edges of a complete graph is given by

Theorem 3. |E|complete = |N |·(|N |−1)
2

• The ratio δ is called the density of the graph.

Definition 1. δ := |E|/|N |

The mean degree of a graph is twice the density, since
each edge is incident on two nodes. The density is ≥ 1
in all interesting cases. Note that simple complete
graphs have maximum density.

• In this paper, graphs that have 500 or more nodes are
called large.

Edge-coloring problems can be transformed into node-
coloring problems by replacing each edge by a node and
drawing the new edges according to the graph topology [6].

But this edge-to-node transformation normally comes at
the cost of an enlarged size of the graph: after the transfor-
mation there are as many nodes as there were edges, and
more new edges than before in most cases. Therefore we do
not consider this transformation here because of the rise in
problem size and hence in run-time.

3. Heuristics

A heuristic usually consists of a simple set of carefully
chosen rules that are applied in the search for a desired goal
or optimum. For the edge-coloring application, each color
assigned by a heuristic should be as near to correct as possi-
ble. Moreover, each heuristic should strive to keep the num-
ber of colors low because we search for a minimum.

In the following, six algorithms for the edge-coloring
problem are presented, namely the heuristics random, cyclic,
linE, antN, ant1, and the method symC for the coloring of
complete graphs.

Heuristics can be classified by their focus of attention into
three types: blind, local, and global.

• A blind heuristic disregards its search environment.
Examples are the random and cyclic heuristics below
which do not consider neighboring edges when assign-
ing a color. The method symC (Section 3.6) can also be
put into this class.

• A local heuristic only takes note of its immediate sur-
roundings. The linE, antN, and ant1 heuristics in the
following sections are examples for local heuristics;
they only consider edges in the vicinity of the edge to
be colored.

• Global heuristics do take the total of the search space
into account. For each step in the search they have to
look at all parts of the intermediate solution, often in-
volving sorting.

Six heuristics will now be presented. The best three of
these will be compared to three different evolutionary algo-
rithms in Section 5.

3.1. Heuristic: cyclic

In the cyclic heuristic, the number of colors to be used
is set to the minimal number of necessary colors (∆). Then
the edge with number i in the edge list is colored with color
((i − 1) mod ∆) + 1. (Color and edge numbers start at 1.)
The edge order used is identical to the order given in the
benchmark file.

The cyclic method is the fastest way of coloring used. It
runs in linear time, i.e. O(|E|) (the run-time is proportional
to the number of edges).

A disadvantage of this method is that it tries to distribute
the colors evenly over all edges, which means that some col-
orings (which might be optimal colorings) are impossible to
generate. Moreover, it is not guaranteed to find a correct
solution. The number of colors to be used is fixed to ∆, al-
though the correct χ′ may be ∆ + 1.

3.2. Heuristic: random

In this algorithm, each edge is visited once and assigned
a random color. This color assignment method also runs in
linear time (O(|E|)) but is slower than the cyclic method by a
factor of about two, since the generation of random numbers
by the program takes additional time. It is still faster than
most other heuristics by orders of magnitude.

The random heuristic is not limited to near-evenly dis-
tributed colors like the cyclic heuristic but can generate any
coloring, although very uneven color distributions are less
probable. The random heuristic is not predictable like cyclic,
each solution is different. As in cyclic, the number of colors
is fixed; thus the minimum for χ′ may be missed and incor-
rect solutions are often generated.

3.3. Heuristic: linE

The algorithm visits each edge once (in the order given in
the benchmark file). It starts at an edge that is incident on a
node with maximum degree and proceeds from there towards
increasing edge numbers, continuing at the start after the end
is reached (wraparound). Thus the name linE because the
algorithm linearly visits each edge. The colors of other edges
that are incident at start and end nodes of the current edge are
read. Considering the colors already present at edge start and
end, the current edge is assigned the minimal possible color
number.

In this way, each edge is visited many times, once for its
own coloring, plus the times for coloring of the other edges



at start and end nodes, depending on their degree. Obviously,
the mean number of visits for each edge depends on the den-
sity δ of the graph to be colored.

We now estimate the run-time of this heuristic by assum-
ing that each node has the same degree, namely the mean
degree 2δ. This assumption covers all graphs, even complete
graphs, which have maximally possible δ. Therefore this as-
sumption includes the worst case for the run-time T . Now
the mean number of neighboring edges νmean of any edge
is the sum of the degrees of start and end node of the edge
minus the incidences of the edge itself (using Definition 1):

Lemma 1. νmean = 4δ − 2 = 4( |E| / |N | ) − 2

For the coloring of each edge all neighboring edges must
be observed. Since we have |E| edges, and using Lemma 1
we get

TlinE = |E| · νmean

= |E| · [4(|E|/|N |) − 2]

= 4|E|2/|N | − 2|E|

From this, Theorem 3 for the worst case yields

TlinE = 2 · |N | · (|N | − 1)2 − (|N | · (|N | − 1))

Omitting the terms of lower order, we arrive at

Theorem 4. TlinE = O( |N |3)

The worst case run-time of this heuristic is proportional
to the cube of the node number.

3.4. Heuristic: antN
Contrary to linE, which works edge-by-edge, the antN

heuristic goes node-by-node. The naming metaphor is an
ant that visits each node.

Starting at a node with maximum degree, the antN algo-
rithm visits each node once (following the node numbering
given by the benchmark, with wraparound at the end simi-
lar to linE). Taking into account the colors already present
at the current node, each of the edges incident on that node
is assigned the minimal possible color number. Like in the
linE method, to find this minimally allowable color number
for an edge, the edges incident at the start and end nodes of
that edge must be considered.

Estimating the run-time T of this heuristic, we proceed
similar as in Section 3.3: We assume the same mean degree
2δ for all nodes, and go over all |N | nodes. For each node,
all 2δ incident edges must be considered. Like in linE, all
edges incident at each edge’s start and end nodes must be
checked for their color, which gives a factor of νmean. Thus,
for a single node, 2δ · νmean edge visits must be made. Mul-
tiplying this by |N | we get the estimate, substituting δ and
νmean using Definition 1 together with Lemma 1.

TantN = |N | · 2δ · νmean

= |N | · 2(|E|/|N |) · [4(|E|/|N |) − 2]

= 8|E|2/|N | − 4|E|

≤ 8|E|2 / |N |

Finally, the expression is simplified and Theorem 3 is ap-
plied.

TantN ≤ 2|N | · (|N | − 1)2

Theorem 5. TantN = O(|N |3)

That is, in the worst case the antN heuristic run-times
should vary like the linE heuristic. Although, the order in
which the edges are visited is quite different.

3.5. Heuristic: ant1

This was the first ant algorithm conceived, thus the name.
In the ant1 method, a virtual ant visits all nodes and leaves a
"scent" each time a node is visited, i.e. the number of visits
of the node is increased. The number of allowed colors is
limited to ∆. The ant starts at a node with maximum degree
∆ and colors all edges differently. Then the next neighbor
node is visited. If that node has uncolored edges, these are
colored with the smallest color number that is either correct
or - if that is not possible - is the smallest of the color num-
bers that are present at start and end node. If a dead end
is met (i.e. a fully edge-colored node), the ant jumps to the
next node in the node list that has already been visited and
has uncolored edges.

Remark 1. As a side effect, at the end all nodes not reach-
able from the start node are now identifiable, because they
bear no "scent".

The above heuristic alone does not always yield a cor-
rect solution after its completion. Therefore, linE is invoked
afterward to mend wrong color assignments. This may in-
crease the number of edge colors and guarantees a correct
solution.

The heuristic ant1 differs from antN in the order in which
the nodes are visited. Where antN uses the order given by the
benchmark, ant1 employs the neighboring relations of nodes
and thus uses a more local approach.

Apart from this locally inspired node ordering, the heuris-
tics antN and ant1 differ only in the additions of scent check-
ing and the search for a new node after a dead end is reached.

Hence, an estimate of the run-time of the ant1 heuristic
can be based on the estimate for antN. Only the additions
need to be factored in. The scent checking is done for all
neighbors of each node, yielding a constant factor, since the
neighbor nodes have to be looked at anyhow. The time for
the linear search of a new node after a dead end depends on
|N |. Omitting the constant factor from scent checking, and
using Theorem 5, we get for the worst case

Theorem 6. Tant1 = O( |N |4 )

3.6. Method: symC

This algorithm is designed to color complete graphs. It
results in a symmetric pattern for an odd |N | and in a near-
symmetric form for an even |N |. Thus the name from ’sym-
metric’ and ’complete’. This method runs in O(|N |2) time,
similar to the method described in [3].
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Figure 1. First step in symC coloring
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Figure 2. Third step in symC coloring

The algorithm works by assigning the same color to par-
allel edges. For each color, the start points for the parallels
are rotated by one node.

Here is how the node pairs are generated that define these
parallel edges (assuming |N | is odd): The first pair consists
of the number i of the current start point of the color group
and the number [(i + 1) mod |N |] + 1. For each following
pair of the group, 1 is subtracted from the left node number of
the previous pair, and 1 is added to the right part of that pair.
Both node numbers of the new pair are corrected modulo |N |
as before if necessary. For each color group, (|N | − 1) / 2
edges are drawn.

Note that one node is left out in each group. This node can
be connected to an (|N | + 1)th node with the group color,
yielding the solution for the complete graph with |N | + 1
nodes (an even node number).

Example 1. How does symC color the complete graph with
seven nodes? In symC, the same color is assigned to parallel
edges. In the first step, we start with color 1 at node 1. The
connected node pairs are 1-2, 7-3, and 6-4 (see Figure 1).

In the second step, the start point is node 2. The pairs to
be connected are 2-3, 1-4, and 7-5. The third step starts at
node 3 and the pairs are 3-4, 2-5, and 1-6.

In Figure 2, the first color group of parallels is shown as
straight lines, the second color as dashed lines, and the third
group as dotted lines.

For odd node numbers, symC yields a rotationally sym-
metric solution (Figure 3). Now it is possible to add an eigth
node without using more colors because at each node a dif-
ferent color is ’missing’ (as explained above).

1

2

3

4 5

6

7

Figure 3. Complete graph colored by symC

4. Evolutionary Algorithm

For the larger graph benchmarks no exact values were
available. Thus an EA was employed that the results of the
heuristics could be compared to. We built a new EA for the
edge coloring of large graphs.

The functions of the GAME library [10] were used for
this EA. An object-oriented data structure to represent a large
graph was developed.

4.1. Fitness Function

There are two obvious fitness functions for the coloring.
First, the number of colors used shall be as low as possible
(i.e. χ′). Second, the coloring must be correct, which means
that the number of edge faults shall be minimized (with min-
imum at zero).

The edge faults in the initialization tests below (Section
5.2) were computed in this way: for each node, the number
of wrong incident edges was counted. The overall sum of
the counts at each node is the number of edge faults wce
(= wrong colored edge-ends).

Example 2. At a node of degree 5, the incident edge color
numbers are 1,1,2,2,2. There are only two different colors
- the other three edges are wrong. Hence, the wce for this
node is 3.

Since each edge could cause a fault at each of its two ends,
an upper limit for wce is Λ = 2|E|. The ratio of edge faults
was computed by dividing the number of edge faults by Λ.

The number of edge faults wce was not used as the only
fitness function, although it is a more fine-grained measure
and was successful in finding χ′ for small graphs. But
while wce measures correctness, what is sought is optimal-
ity, which is measured by the number of colors. Both func-
tions have to be minimized simultaneously. Therefore the
sum of wce and the number of colors was chosen as fitness
function.

4.2. Solution Representation

The solution was represented in the EA as the list of all
edge colors in the order of the edge numbering. This cod-
ing does not guarantee correctness of the solution but it can
represent all possible correct solutions. This solution repre-
sentation has been used in [7].



4.3. Operators and Selection

Two standard operators were used, each with a probability
of 50 % during reproduction.

The first operator was mutation which randomly changed
one edge color in the list. Roulette-wheel selection was ap-
plied to choose the parent for mutation. This means, the bet-
ter the fitness of a given solution, the larger the probability
to be chosen as a parent.

The second operator was a one-point crossing-over. Two
different parents were chosen by roulette-wheel selection.
The edge list of the generated child started identical to the
first parent but continued like that of the second parent after
the randomly chosen crossing-over point.

4.4. Reproduction

The population had a size of 35 individuals with 7 chil-
dren in each generation. This size was chosen as a com-
promise between speed (small population, few children) and
search breadth (large population, many children). Of the re-
sulting population of 42 individuals, only the 35 with the
smallest values of the fitness function survived.

If the fitness function of the best solution generated by
the EA had not improved after 500 generations, a correc-
tion attempt was performed. This attempt consisted of a re-
initialization of the worst individual by either the random or
the ant1 heuristic starting at a random node. Each heuristic
had a probability of 50% of occurring. After that the linE
heuristic was applied to assure correctness. This is analo-
gous to the ’kick’ operator in the algorithm of [7] and can
also be described as a big mutation.

This ’lazy’ correction attempts were done for two reasons:

• They were run seldomly to avoid an early cut-off of ex-
ploration.

• But correction can lead the EA out of local minima.

The first population was initialized by the heuristics de-
scribed above to ensure a start population that is better than
random. The heuristics cyclic, linE, antN, and ant1 pro-
duced one parent individual each. The rest of the parents and
the initial children population were generated by the random
heuristic.

The EA stops if a fitness function value of ∆ (the lower
bound for χ′) is reached or if either a run-time or a generation
limit is exceeded.

5. Benchmarks

Benchmarks were selected for largeness and comparabil-
ity. Disconnected graphs were excluded from the tests.

The benchmarks used were taken from a list of 119 graphs
given at CP2002 [13]. This list also included the DIMACS
benchmark graphs [1] which were employed by [7, 15].

Before going into the detailed results of the benchmark
runs, some interesting findings from the initialization tests
are shown that concern the heuristic coloring of complete
graphs.

Figure 4. Edge faults of cyclic

Figure 5. Edge faults of cyclic (enlarged)

5.1. Computing Environment

All tests were run on Linux machines equipped with
AMD Athlon XP2200+ processors (1.8 GHz, 256kB cache)
and 512 MB RAM. The EA is based on the C++ library
for evolutionary algorithms GAME [10]. The graph data
structure and its associated methods (including the heuris-
tics) were implemented as a set of C++ classes. Test control
programs were written in Python.

5.2. Initialization Tests

Three methods for the initialization (random, cyclic, and
ant1) were tested on a wide range of complete graphs with
sizes up to 513 nodes. The heuristics linE and antN were
not tested on the full range of complete graphs because they
needed too much colors in most cases (see Example 4 be-
low).

Although a method to color the edges of a complete
graph in linear time exists [3] (see symC above), complete
graphs were chosen for initialization tests because they pro-
vide maximum density and are easily reproduced.

The edges of these complete graphs can be represented
by pairs of different node numbers i-j, in which the smaller
number appears on the left. These edge pairs are lexically
ordered.

Example 3. For the complete graph of five nodes, the edges
appear in the order 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5,
4-5. Edge number 1 is 1-2, number 2 is 1-3, ... and edge
number 10 is 4-5.

This ordering leads to interesting effects in the plots of
wce versus node number.



Figure 6. Edge faults of uncorrected ant1

The cyclic heuristic’s wce ratio for complete graphs lies in
a range between 15 and 40 percent. This is shown in Figures
4 and 5.

In Figure 4 the percentage of edge faults of the cyclic
heuristic in the initialization of complete graphs is plotted
as a function of node number for the range 3 to 513 nodes.
Above 150 nodes only some graphs have been initialized.

In the similar Figure 5 the region from 3 to 150 nodes is
enlarged. Here, points are connected with a line that shows
the sequence of results for increasing node number.

The percentages show marked horizontal ’bands’ of pre-
ferred values with minima of 15 to 17 percent for node num-
bers 2n + 1 with n ≥ 2.

The ant1 heuristic without the linE correction typically
has less than 15% wce. Figure 6 shows wce in the initializa-
tion of complete graphs as a function of node number for a
range of 3 to 513 nodes.

The regular ordering of the edges leads to repeated ’Pão
de Açúcar’ (sugar loaf) forms, with maxima at graph sizes
of 3, 6, 11, 22, 43, 86, 173, and 345 nodes. Up to 512, each
maximum appears within ±1 of the double node number of
the previous maximum. There are zero faults if the node
number is 5 or a power of 2.

The wce ratio of the random heuristic typically lies at
about 1/e (36.8%).

The heuristics linE and antN have also been tested on
complete graphs. They generate feasible solutions but can
increase the color number up to nearly the double of the min-
imal number. As an effect of the edge ordering, these heuris-
tics find solutions with 2n−1 colors for complete graphs with
node numbers |N | from 2(n−1) + 1 to 2n , where n ≥ 3.

Example 4. Complete simple graphs with 14, 15 or 16 nodes
are colored with 15 colors by linE (n = 4), but graphs with
17 nodes get 31 edge colors (n = 5).

If a randomized order of the edges is used, the number of
used colors normally gets smaller.

5.3. Benchmark Graphs

Table 1 shows the graph qualities for the benchmarks
used. If a benchmark name in any table is set in italics, this
indicates that the graph in question is a multiple-edge graph
that was interpreted as a single-edge graph. For these graphs,
only one of the occurring edges between two nodes was used,

Table 1. Benchmark graph qualities

benchmark graph qualities
name nodes edges δ ∆ χ′

games120 120 638 5.32 13 13
david 87 406 4.67 82 82
anna 138 493 3.57 71 71
miles500 128 1170 9.14 38 38
miles1000 128 3216 25.13 86 86
miles1500 128 5198 40.61 106 106
queen11_11 121 2596 18.03 43 43
queen12_12 144 2596 18.03 43 43
queen13_13 169 3328 19.69 48 48
queen14_14 196 4186 21.36 51 51
queen15_15 225 5180 23.02 56 56
queen16_16 256 6320 24.69 59 59
myciel6 95 755 7.95 47 47
myciel7 191 2360 12.36 95 95
le450_5c 450 9803 21.78 66 66
le450_15a 450 8168 18.15 99 99
le450_15c 450 16680 37.07 139 139
le450_15d 450 16750 37.22 138 138
le450_25c 450 17343 38.54 179 179
le450_25d 450 17425 38.72 157 157

DSJC500.1 500 12458 24.92 68 ≤ 69
ash331GPIA 662 4185 6.32 23 23
ash958GPIA 1916 12506 6.53 24 24
will199GPIA 701 6772 9.66 38 ≤ 39
4-FullIns_4 690 6650 9.64 119 119
5-FullIns_4 1085 11395 10.50 160 160
qg.order30 900 26100 29.00 58 58
qg.order60 3600 212400 59.00 118 118
qg.order100 10000 990000 99.00 198 ≤ 199
wap04a 5231 294902 56.38 351 351
latin_square_10 900 202081 224.53 512 ≤ 513

thus avoiding edge multiplicities greater than one and reduc-
ing the density δ of the original benchmark. The maximum
degree ∆ is the lower bound for an estimate of χ′. If the
minimal color number χ′ is not known, its upper bound is
given. The upper half of Table 1 contains benchmarks used
in [7, 15] that will be used for comparison in Section 5.3.1.
The lower half of Table 1 contains large graphs not consid-
ered in these papers. The coloring of these large graphs by
heuristics compared to the EA of Section 4 will be shown in
Section 5.3.2.

5.3.1 Heuristics Performance for Small Graphs

Table 2 gives the results of the heuristics compared to algo-
rithms of other authors, namely the grouping genetic algo-
rithm (GGA) of [15] and the simulated annealing algorithm
(SA) of [7]. The original results of the SA had to be adapted,
since the SA did not reduce the graphs with edge multiplic-
ity µ ≥ 2. Therefore the color numbers for the SA are set in



Table 2. Benchmarks for small graphs

benchmark GGA SA linE antN ant1 SA / ant1
name colors colors secs colors secs colors secs colors secs secs/secs

games120 13 (13) 2 17 < 0.005 15 < 0.005 15 < 0.005 > 400
david 82 (82) 1 82 < 0.005 82 0.01 82 < 0.005 > 200
anna 71 (71) 2 71 < 0.005 71 < 0.005 71 < 0.005 > 400
miles500 38 (38) 4 38 0.01 38 < 0.005 38 < 0.005 > 800
miles1000 (86) 133 87 0.04 86 0.04 86 0.07 1900
miles1500 (106) 171 108 0.13 112 0.13 108 0.24 712
queen11_11 40 (40) 15 40 0.01 40 0.01 40 0.01 1500
queen12_12 43 (43) 33 44 0.01 44 0.02 44 0.02 1650
queen13_13 (48) 56 48 0.02 48 0.02 48 0.04 1400
queen14_14 (51) 96 53 0.03 53 0.03 51 0.05 1920
queen15_15 (56) 143 57 0.04 57 0.04 56 0.08 1788
queen16_16 (59) 243 60 0.06 60 0.06 60 0.10 2430
myciel6 47 47 2 47 < 0.005 47 < 0.005 47 0.01 200
myciel7 95 3 95 0.02 95 0.01 95 0.03 100
le450_5c 66 93 66 0.08 66 0.08 66 0.15 620
le450_15a 99 35 99 0.06 99 0.07 99 0.12 292
le450_15c 139 234 139 0.40 139 0.42 139 0.76 308
le450_15d 138 231 138 0.42 138 0.42 138 0.78 296
le450_25c 179 243 179 0.52 179 0.52 179 0.96 253
le450_25d 157 440 157 0.53 157 0.51 157 0.96 458

parentheses for certain benchmarks. Optimal colorings are
shown in boldface.

The heuristics perform well but sometimes they do not
find the minimum color number. The algorithms linE and
antN are almost identical in run-time; for certain bench-
marks, however (e.g. games120 and miles1500), they differ
markedly in their color numbers.

Especially ant1 does very well in finding the minimal
color number. Only in three cases (games120, miles1500,
and queen12_12) it is off by at most two colors.

The heuristic ant1 is distinctly faster than the SA of [7].
This will now be discussed in detail.

The SA algorithm run-times were expected to be longer
because of a different hardware. In [7] a 700 MHz machine
was used with Java1, the heuristics of this article were written
in C++ and tested on a 1800 MHz machine.

If the clocking frequency of the processors is consid-
ered as a measure of the processor speed, the run-time ratio
SA / ant1 would be about 2.6, provided SA was as fast as
ant1. Using the SPEC results [2] as run-time ratio, we get
738/230 ≈ 3.2. Thus we expect a run-time ratio of about 3
if the algorithms are comparable.

But the run-time ratio in the last column of Table 2 shows
that ant1 is generally much faster than SA; the run-time ra-
tios for the 20 benchmarks vary between 100 and 2430, with
a median value of 539 and a mean of 881.

Because the results of the heuristics linE, antN, and ant1
were near-optimal (i.e. ≈ ∆) in most cases, the EA was not

1It is known that Java runs slower than C++ by a factor between 3 and
30, depending on the benchmarks used for comparison [5, 9].

run - it could only confirm or improve little on the solutions
found by the heuristics at the cost of high run-times.

5.3.2 Heuristics Compared to EA for Large Graphs

Table 3 gives results for larger graph sizes compared to the
EA described in Section 4. These benchmarks were not
tested in [7, 15] (where only small graphs are considered),
hence the GGA and SA columns are omitted. These bench-
marks were chosen to show the usefulness of the heuristics
for large graphs.

The linE and antN heuristics almost always differ more
from the minimum than ant1. Also obvious are near-
identical run-times of linE ant antN. However, in the
benchmarks with the largest node numbers (qg.order60 and
qg.order100), antN runs significantly longer than linE.

For these large graphs, only the ant1 heuristic really ex-
cels. In two cases (qg.order30 and qg.order60) it finds the
minimum. In these cases the EA was not run, since it uses
ant1 for initialization and hence immediately stops. The EA
was run in cases when there was room for improvement.
Only in three of these benchmarks the EA could improve on
the near-minimal solutions found by the ant1 heuristic. In all
other cases, the color numbers found are identical or come
close to those of the EA. Note the enormous run-times of the
EA compared to the speed of ant1.

Since χ′ was not known for DSJC500.1, the upper bound
found by ant1 and our EA is not set in boldface.



Table 3. Benchmarks for large graphs

benchmark linE antN ant1 EA
name colors secs colors secs colors secs colors secs

DSJC500.1 80 0.13 80 0.14 69 0.25 69 158043.00
ash331GPIA 25 < 0.005 26 0.01 23 0.01
ash958GPIA 24 0.01 24 0.07 24 0.07
will199GPIA 45 0.02 43 0.01 40 0.03 40 119038.00
4-FullIns_4 120 0.03 121 0.04 120 0.07 119 2332.60
5-FullIns_4 161 0.09 163 0.09 161 0.16 160 38117.30
qg.order30 60 0.29 60 0.33 58 0.59
qg.order60 122 9.27 122 10.21 118 17.94
qg.order100 226 134.55 226 140.65 212 248.38 212 143542.00
wap04a 351 24.98 351 26.25 351 46.75
latin_square_10 733 147.15 742 147.28 554 268.85 530 1048789.79

5.4. Complete Graphs

Although the symC heuristic currently runs only in
O(|N |4) time because of implementation details, a complete
graph of 200 nodes and 19900 edges is correctly colored with
the minimal number of colors in 5.05 seconds. That is nearly
three orders of magnitude faster than the simulated anneal-
ing (SA) algorithm of [7] which needed 3341 seconds for
this graph. A complete graph with 512 nodes and 131328
edges is colored in 220 seconds by symC.

6. Conclusions

In this paper, heuristics for the edge coloring of graphs
were explored using a set of standard benchmarks.

From the known benchmarks, 20 small graphs and 11
large graphs plus 175 complete graphs were edge-colored
by five different heuristics. Compared to two EAs of recent
works and a newly designed EA, the speed and small color
numbers of the better heuristics are remarkable.

Below benchmark graph sizes of 500 nodes, the ant1
heuristic yields minimal solutions for graph edge coloring
in almost all cases considered. In the cases where ant1 does
not find the optimum, it differs by at most two colors.

The heuristic ant1 is faster than the SA employed in [7]
by orders of magnitude. Although ant1 is slower than the
heuristics linE and antN, its run-time typically differs only
by a constant factor of 1.8 from antN, even for large graphs.

For 500 or more nodes the ant1 heuristic finds solutions
that are optimal or differ not much from the color numbers
found by our EA.
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