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Abstract

Since its first release the system level language
SystemC had a significant impact on various areas in
VLSI-CAD. One remarkable benefit of SystemC lies in the
support of abstraction levels beyond RTL. But being able
to implement complex System-on-Chip (SoC) designs in
SystemC raises the necessity of new techniques to support
debugging, system exploration, and verification.

We present an integrated debugging environment that
facilitates designers in simulating, debugging, and visual-
izing their SystemC models combining high-level debug-
ging with visualization features1. Our work mainly fo-
cuses on developing an easy to handle interface which
supports debugging and system exploration of SystemC
designs.

1 Introduction

SystemC is a C++ based system level description lan-
guage that facilitates system architects to specify their de-
signs using a broader spectrum of abstraction levels than
traditional hardware description languages (HDL), like
VHDL or Verilog, do. Equivalently to HDLs, cycle ac-
curate operations as well as word and bit level data types
are supported. But also untimed algorithmic descriptions
can be included into a model raising the abstraction level
e.g. to transaction level modelling (TLM). Thus, pure
functional and even object-oriented code can be used for
specifications where the compiled model can be executed
with higher performance than a HDL simulation can do.
All these features make SystemC an excellent approach
for modelling SoCs and allow to implement HW/SW co-
designs at various abstraction levels. For more details con-
cerning SystemC see [14].

Currently, the SystemC standard does not define a so-
phisticated debugging interface, nor it provide any visual-
ization support. Even though the simulation kernel offers
an interface to access signal values and interconnection
structure, a direct communication with the kernel requires

1Partial funding provided by SAB-10563/1559 and European Re-
gional Development Fund (ERDF).

additional C++ code in the model. This forces a designer
to gain advanced knowledge of many details regarding the
system and SystemC itself. Another point is that with
growing integration of SW components in HW designs,
also size and complexity of the considered system tend
to increase. Thus it becomes less obvious where to start
and which blocks to observe in a debugging process. Fur-
thermore, language features such as multi-threading and
event-based communication increase the program com-
plexity and introduce nondeterminism in the system be-
havior. Consequently, many of the features mentioned
above potentially complicate debugging SystemC models.

In this paper we introduce an integrated debugging en-
vironment (IDE) for SystemC. Besides simulation control
and data hiding our approach extends the data introspec-
tion capabilities of SystemC. It is non-intrusive and does
not alter the simulated model, nor the simulation kernel,
or additional libraries (C++ STL, SCV). Our solution sup-
ports SystemC aware debugging [15] with visualization
capabilities [9]. The user debugs and visualizes a de-
sign at arbitrary levels of abstraction working at the func-
tional level (e.g. finite-state machines, algorithms, data-
flow graphs) or the system level that means at the level
of SystemC concepts (e.g. signals, ports, events, pro-
cesses, modules). The debugger kernel is based on the
Open Source debugger GDB [10] while the visualization
makes use of the visualization engine from Concept Engi-
neering [4]. The visualization engine generates different
views of the model, supporting crossprobing and anno-
tation of the visualized context. During a debug session
the user has various possibilities to explore dynamic and
static debugging information, and to control the simula-
tion. Thus, he gets a fast and concise insight into the ob-
served SystemC model which accelerates and eases defect
(also colloquial bug) detection, understanding, localiza-
tion and correction.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related approaches and tools which allow
to debug SystemC designs. In Section 3 the general archi-
tecture of our IDE is described in more detail while Sec-
tion 4 considers the provided debugging interface and the
graphical frontend and its debugging support. In Section 5
we illustrate some IDE features exemplarily and demon-
strate their feasibility using a short example. Finally, Sec-



tion 6 concludes the paper and gives a perspective on fu-
ture work.

2 Related Work

Debugging SystemC models requires hybrid tech-
niques that grant access to design components quickly but
also allow to evaluate ordinary C++ code. Unfortunately,
C++ fragments cannot be reached by using SystemC data
introspection techniques. And even though there are com-
mercial and academical tools, supporting SystemC debug-
ging, only few of them offer an advanced visual inter-
face to the designer that has features like data hiding and
crossprobing to the source code level.

RealView Debugger Suite[1] comprises a complete in-
tegrated development suite that allows to implement, to
simulate, to debug, and to analyze SystemC/C++ designs.
It addresses architectural analysis as well as SystemC
component debugging at low level and at transactional
level where especially the debugging of embedded appli-
cations (running on remote targets such as ARM proces-
sors) is supported.Platform Architect[5] targets system-
level design and verification based on the Eclipse devel-
opment framework [6]. It utilizes a native simulation
environment which is specially adopted to fit SystemC
needs. The integrated debugger offers specific commands
supporting source-level and simulation breakpoints and
QThread debugging. Additionally, the user can initiate a
graphical transaction tracing of SystemC events, threads,
and interface method calls activations. Contrary to our
approach both commercial solutions come with their own
vendor-specific SystemC kernel which prevents the easy
integration into an already existing design flow.

The GRACE++ system [16] uses SystemC simulation
results to create Message Sequence Charts in order to vi-
sualize and analyze inter-process communication. Vari-
ous filters help to reduce information complexity. The ap-
proach presented in [3] applies the observer pattern [8] to
connect external software to the SystemC simulation ker-
nel. This general method facilitates loose coupling but
requires possibly undesired modifications of the kernel.

One of the first approaches that accomplishes SystemC
design visualization has been introduced in [11]. The im-
plementation uses the SystemC kernel to analyze models
during execution. An interactive graphical backend facil-
itates the design visualization. Even though models can
be specified using C++ features, but analysis and visu-
alization are limited to SystemC objects. Only the data
flow can be viewed, no behavioral information is avail-
able. Since this approach has to execute the model without
further information of declarations, it is not aware of de-
tailed positional information regarding the objects. Hence,
crossprobing facilities are very restricted.

Another approach that facilitates designers in visualiz-
ing SystemC models is [7]. Since it is based on data in-
trospection too, it shares many restrictions with [11]. One
major difference to [11] is the usage of an own graphical
user interface that has been especially designed for this

approach but does not support features like crossprobing
or path fragment navigation.

Contrary to the works described above,
SystemCXML [2] and LusSy [12] do not use data
introspection for the purpose of analysis. While the
extraction of the hierarchy in SystemCXML is done via
Doxygen, LusSy uses PINAPA [13]. The visualization is
realized as graph structures. But while LusSy generates
a graphical output showing the control flow graph of
processes only, SystemCXML limits the visualization to
data flow graphs.

None of the listed tools and approaches includes the
following set of features:

• work with the OSCI SystemC kernel,

• support high-level debugging, and

• offer a highly developed visualization of SystemC
designs.

From this a small set of requirements can be derived,
to support high-level SystemC debugging:

• non-intrusiveness to prevent the model, the SystemC
kernel and additional libraries from being altered,

• advanced commands implementing a high-level de-
bugging interface, and

• a visualization that allows for abstraction, with direct
linkage to all lower abstraction levels defined in the
design.

All mentioned works do not meet the requirements in
terms of non-intrusive debugging and visualization facili-
ties.

3 Debugging Environment

Our IDE consists of three components. Each of these
components realizes a particular task. As sketched in Fig-
ure 1 our debugging flow starts at the original system de-
scription which is being compiled to an executable.

Figure 1. Architecture of the IDE

The executable can be run in the debugger. In parallel
the system description is statically analyzed by the visu-
alizer. The intermediate representation (IR) that is gener-
ated after analysis can be used to render the model inside



the graphical back-end. RTLVision from Concept Engi-
neering is used for this purpose. After passing the Sys-
temC elaboration phase successfully the debugger waits
for user commands. Those commands can be used to show
or to hide details inside the visualization back-end, as well
as to control the simulation of the executed model. All
commands that influence the graphical view are directly
propagated to the visualizer. Being aware of the model
structure the visualizer assembles commands and maps
SystemC components to the appropriate graphical sym-
bols. Thus, RTLVision can be instructed to switch to spe-
cific parts of the design and to update signal values during
execution.

The communication between the visualizer of our en-
vironment and RTLVision is realized using TCP/IP. Thus
a system engineer has a comfortable and secure way shar-
ing his knowledge with other colleagues far away. The
exchange of data among the visualizer and the debugger
kernel is done using a protocol based on socket communi-
cation.

4 Debugging Features

4.1 Debugging Interface

System level debugging requires various kinds of high-
level information that should be fast and easy retrievable.
There, defects occur at different abstraction levels that in-
fluence the appropriate debugging procedure and the used
tools.

At functional level the defect is located at the source
code level that means mainly in low-level program details
such as an erroneous implemented algorithm or a faulty
memory management. Because of SystemC C++ confor-
mance due to a class library, each standard C++ debugger
can be applied at this level. For that reason, our debug-
ger kernel is based on the Open Source debugger GDB.
GDB provides various features which include for exam-
ple stopping and continuing the simulation, or examining
the actual program stack, local variables, the memory, or
source files.

At the more abstractsystem level the architecture
and/or the interaction between the different parts of a
SystemC design are responsible for defects such as a
wrong communication between components (e.g. a spe-
cific protocol) or the faulty integration of an (third-party)
IP block. C++ debugging features are not sufficient to re-
trieve such defects quickly. Hence, the IDE enables the
user to debug a SystemC design at system level. Here,
high-level breakpoints (e.g. breakpoints on events or pro-
cesses), the retrieval of static and dynamic simulation
information (e.g. signal paths, or state of scheduling
queues), and the graphical design representation provide
comprehensive debugging support. A number of com-
mands allow to interactively control the visualization of
a SystemC design and its simulation state. This additional
abstraction further simplifies and thus accelerates debug-
ging. To explore the static system structure as well as the

dynamic behavior, the IDE offers two command types:

• Examining commands. These commands allow get-
ting a fast insight into the parts of a design relevant
for the actual debug session while non-relevant data
are explicitly excluded.

• Monitoring commands. Commands of this type
support the user in obtaining different data about the
simulation state (such as signal values, or process ac-
tivations) logged over a specified simulation time.

Examining and monitoring commands do not only have
a direct impact on the execution of the model. They also
alter the visualization of the design. The given set of com-
mands can be used to follow critical paths being observed
for incorrect behavior. But since these commands do not
rely on the stimuli generated by a certain test bench, they
can be used for system exploration as well. Table 1 assem-
bles a list of visualized high-level debugging commands.

Examining commands
vlsb Visualize the specified channel and all

connected modules.
vlsio_rx Highlight I/O ports matching the given

regular expression of the specified module.
vlsm Highlight all SystemC modules in the given

hierarchy.
vzp Visualize the given process and all its

driving and driven signals.
Monitoring commands
vlsv Label the specified signal or port with the

current value that it holds at a specific
time stamp.

vrmv Remove the label of the specified signal
or port.

vtrace Trace the given signal or port and record its
value at each simulation time step until
the specified time is reached, then
tracked values are attached as label.

vtrace_at Trace the given signal or port and record its
value at the specified simulation time, then
the tracked value is attached as label.

vpt Visualize the trigger events for the given
process.

Table 1. Visualized debugging commands

An important requirement for all monitoring com-
mands is a fast tracing of requested values where the
impact on the simulation performance should be mini-
mized. Retrieving current values directly by patching sev-
eral SystemC kernel methods would be the fastest, eas-
iest, and most obvious approach. But to meet the re-
quirement of a non-intrusive solution, we use library in-
terposition and preload a shared library (libscpatch.so
in Figure 2). This library overwrites the corresponding
kernel methods with methods using callbacks to forward
needed debugging information. To activate preloading the



LD_PRELOAD environment variable has to be set. Thus,
the dynamic linker is instructed to search our library first,
thus using the patched methods.

Figure 2. Preloading kernel methods

4.2 Graphical Interface

The graphical interface for what RTLVision is used,
bridges different abstraction levels. Since our approach
bases on the GDB debugger, text return messages propos-
ing changes regarding the system state can be very de-
tailed. The graphical interface bypasses this problem by
rendering the structure of the simulated model to three dif-
ferent views, as can be seen in Figure 3. The schematic
view shows modules as functional blocks that can be col-
lapsed and signals as interconnecting wires. The cone
view limits the set of currently displayed objects to a crit-
ical path. Both views are bidirectionally connected to a
source code view. The advantages of these visualization
features in our approach are:

• annotation of SystemC names and declaration names,

• hierarchical visualization,

• crossprobing,

• path fragment navigation, and

• module exploration.

All these features are controlled by the IDE observing the
simulator that proposes each state change to RTLVision.
A state change alters the current display by:

• highlighting signals, modules or ports,

• expanding or collapsing module hierarchies, and

• annotating values to signals and ports.

5 Practical Application

5.1 Feature Illustration

To illustrate the utilization of our IDE we used
the RISC-CPU design that is provided with the OSCI
SystemC v2.0.1 library package [14]. Figure 3 shows an
example debug session simulating this design. The differ-
ent views allow to explore the RISC-CPU design at vari-
ous abstraction levels. Static and dynamic debugging in-
formation are presented by different colorings, info boxes,

labels, and dedicated displays in the GUI, and as text out-
put in the debugger console. Thus, the developer gets
a quick and concise insight into the overall CPU design
structure and its behavior.

Figure 3. Example debug session

The following two commands illustrate the provided
visualized debugging functionality exemplarily.

The vlsb command (Table 1) visualizes the specified
channel and all connected modules in the cone view of
RTLVision. In case of a failure related to a specific sig-
nal the user gets a quick overview about all its connec-
tions. Thus, architects can focus on error search to the
relevant modules only which helps accelerating debug-
ging. Figure 4 sketches the visualization output after call-
ingvlsb with two signals of the RISC-CPU design in order
to check their bindings to the right ports:

(gdb) vlsb "ram_cs"
(gdb) vlsb "next_pc"

Figure 4. Debug command vlsb

The vtrace_at command (Table 1) is a typical repre-
sentative of the monitoring command type. It traces the
given signal or port and records the actual value at the
specified simulation time stamp. The logged value is at-
tached as label text in RTLVision and can be displayed in
an info box additionally. Monitoring dedicated signal val-
ues during simulation is very helpful when the user does
not exactly know what is going wrong and when the de-
fect infection occurs. Figure 5 illustrates the visualized



tracing of the top-level signaladdr in the RISC-CPU de-
sign at different time stamps to check whether the right
addresses are forwarded to the RAM:

(gdb) vtrace_at "addr" 42000
(gdb) vtrace_at "addr" 46000
(gdb) vtrace_at "addr" 50000
(gdb) c
...

(gdb) vlsb "addr"

Figure 5. Debug command vtrace_at

Table 2 underlines the efficiency of our non-intrusive,
patch-free approach using library interposition (Sec-
tion 4.1) while illustrating the performance of thevtrace
command (Table 1). So, the observation of 750000 data
sets over 125 signals leads to a slow down of factor 4 com-
pared to a trace-free simulation while the tracing of 50
signals increases the simulation time about 80%.

# of traced Slow down over simulation time
signals (# of observed data sets)

1000 ns 2000 ns 3000 ns
0 1.0 1.0 1.0
5 1.3 1.3 1.4

(10000) (20000) (30000)
50 1.8 1.8 1.8

(100000) (200000) (300000)
75 2.3 2.6 3.0

(150000) (300000) (450000)
100 3.0 3.2 3.6

(200000) (400000) (600000)
125 3.2 3.9 4.0

(250000) (500000) (750000)

Table 2. Exemplary performance slow down

5.2 Example Debug Session

To show the efficiency and feasibility of our solution
we want to investigate why a small program works faulty
on the RISC-CPU design. Therefor, we use several explo-
ration and visualization features (Section 4.1) to locate the
defect quickly. First, the following program is simulated
on the RISC-CPU which indicates its incorrect process-
ing.

1: ldpid 0
2: movi R5, 10
3: movi R6, 6
4: movi R7, 2
5: add R4, R5, R6
6: mul R4, R7, R4

After the initialization statement the three registers R5,
R6, and R7 are loaded with the integer values 10, 6, and 2,
respectively. Then, R5 and R6 register contents are added
and the result is multiplied with the register content of R7,
subsequently. Thus, after program execution the value 32
has to be stored in register R4. Instead, the register dump
shows that R4 contains the value 8:

REG DUMP ==============================
R4(0x00000008) R5(0x0000000a)
R6(0x00000006) R7(0x00000002)

We start a debug session to find the failure cause. For
simplification reasons we suppose that the ALU works
correctly. Furthermore, the right integer values seem to
be loaded into the registers, as seen in the register dump
above. So, we assume that the defect has to be searched in
the controlling of the ALU where the ALU is implemented
by the module instanceIEU. To get the right control sig-
nal thevlsio_rx command (Table 1) is applied at first. We
suppose that the name of the attached control port includes
the stringcode:

(gdb) vlsio_rx "IEU" "code"

Using the path fragment navigation feature in RTLVi-
sion shows subsequently that the only port reported by
vlsio_rx is connected to the signalalu_op (Figure 6).

Figure 6. Tracking down the op-code signal

Besides, we should trace the program counter repre-
sented by the signalprogram_counter to observe the pro-
gram execution. Consequently, we initiate a monitoring of
the two interesting signals using thevtrace command (Ta-
ble 1) and continue simulation:

(gdb) vtrace "program_counter" 110000
(gdb) vtrace "alu_op" 110000
(gdb) c

After simulation has stopped we investigate the traced
behavior. To focus the error search onto the relevant de-
sign parts only, thevlsb command (Table 1) is applied
(Figure 7):



Figure 7. Exploring traced signals

(gdb) vlsb "program_counter"
(gdb) vlsb "alu_op"

Knowing that the reset phase ends after 30 ns the first
operation code of interest is transferred from the decoder
unit (module instanceIDU) to the ALU at 35.5 ns. The
reported value0x0 corresponds to theldpid command in
our example program. From 49.5 ns til 91 ns the operation
code holds0x3. The traced values of the program counter
indicate that this code corresponds to the threemovi com-
mands (line 2 to 4) loading registers R5, R6, and R7 with
integer values. The next operation code0x4 is transferred
at 91.5 ns which should notify theadd command. But as
we know from the processor specification the operation
code for additions has to be indicated by0x3. Looking
into the source code of the instruction decoder using the
source code view in RTLVision shows the wrong opera-
tion code in line 161 causing the error:

153 case 0x01: // add R1, R2, R3
...
161 alu_op.write(4); // WRONG CODE!

Fixing this statement and a subsequent simulation re-
ports the correct result in register R4.

A conventional debug procedure would set several
breakpoints on the right positions into the instruction de-
coder and the ALU. On any stop of this breakpoints we
then had to print out the transferred operation code and
the actual program counter. This can turn out to be a time
consuming task where the printed values are split over and
merged with the usual trace output in the debugger con-
sole. Thus, a fast and simple observation of interesting
program details is made very difficult which complicates
debugging.

6 Conclusion

In this work we introduced an integrated debugging en-
vironment (IDE) where the debugger kernel is based on
the Open Source debugger GDB and the visual interface
utilizes an available visualization tool. The special fea-
ture of our environment is its non-intrusive usability that
means it does not alter any code (SystemC kernel, exist-
ing models, additional libraries) to enable using arbitrary

SystemC designs in the IDE. We demonstrated the ad-
vantages of our debugging features applying them to the
RISC-CPU design of the SystemC library.

Future work will improve the provided debugging and
exploration functionality especially regarding an explicit
TLM support. One of the main goals is to fit the debug-
ging environment to the specific needs of the application
being developed (e.g. CPU design).
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