An Integrated SystemC Debugging Environment

Frank Rogiri Christian Geng Rolf Drechslef Steffen Rulke

* Fraunhofer Institute for Integrated Circuits, Divisiondign Automation, 01069 Dresden, Germany
{frank.rogin, steffen.ruelkeg@eas.iis.fraunhofer.de

 University of Bremen, Institute of Computer Science, 28B8men, Germany
{genz, drechslg@informatik.uni-bremen.de

Abstract additional C++ code in the model. This forces a designer

to gain advanced knowledge of many details regarding the

Since its first release the system level language system and SystemC itself. Another point is that with

SystemC had a significant impact on various areas in growing integration of SW components in HW designs,
VLSI-CAD. One remarkable benefit of SystemC lies in thealso size and complexity of the considered system tend
support of abstraction levels beyond RTL. But being able to increase. Thus it becomes less obvious where to start
to implement complex System-on-Chip (SoC) designs inand which blocks to observe in a debugging process. Fur-
SystemC raises the necessity of new techniques to suppothermore, language features such as multi-threading and
debugging, system exploration, and verification. event-based communication increase the program com-
We present an integrated debugging environment thatplexity and introduce nondeterminism in the system be-
facilitates designers in simulating, debugging, and visua havior. Consequently, many of the features mentioned
izing their SystemC models combining high-level debug-above potentially complicate debugging SystemC models.
ging with visualization features Our work mainly fo- In this paper we introduce an integrated debugging en-

cuses on developing an easy to handle interface whichvironment (IDE) for SystemC. Besides simulation control
supports debugging and system exploration of SystemCand data hiding our approach extends the data introspec-

designs. tion capabilities of SystemC. It is non-intrusive and does

not alter the simulated model, nor the simulation kernel,

or additional libraries (C++ STL, SCV). Our solution sup-

1 Introduction ports SystemC aware debugging [15] with visualization
capabilities [9]. The user debugs and visualizes a de-

_ . sign at arbitrary levels of abstraction working at the func-
SystemC is a C++ based system level description [an-gq 5| jeyel (e.g. finite-state machines, algorithms, data

guage that facilitates system architects to specify their d flow graphs) or the system level that means at the level
signs using a broader spectrum of abstraction levels thanof SystemC concepts (e.g. signals, ports, events, pro-
traditional hqrdware descr_iption languages (HDL), like cesses, modules). The debugger kernel is based on the
VHDL or Verl_log, do. Equivalently to HPLS’ cycle ac- Open Source debugger GDB [10] while the visualization
curate operations as well as word and.b|t Igvel datq YPESmakes use of the visualization engine from Concept Engi-
are supported. But also untimed algorithmic descriptions neering [4]. The visualization engine generates different
can be included into a model raising the abstraction level views of the model, supporting crossprobing and anno-
e.g. to transaction level modelling (TLM). Thus, puré (44i5n of the visualized context. During a debug session
funct_lt_)nal_ and even object-one_nted code can be used fory, o ger has various possibilities to explore dynamic and
spemfl_catlons where the compiled mod_el can_be eXeCutecjstatic debugging information, and to control the simula-
with higher performance than a HDL simulation can do. {5, Thys he gets a fast and concise insight into the ob-
All these features make SystemC an excellent approachyeeq systemC model which accelerates and eases defect

for modelling SoCs and allow to implement HW/SW co- 154 colloquial bug) detection, understanding, localiza
designs at various abstraction levels. For more details con tion and correction

cerning SystemC see [14].

The rest of this paper is organized as follows. Sec-
Currently, the SystemC standard does not define a SO+ pap g

S o) : - ion 2 discusses related approaches and tools which allow
ph|§t|cated debugging interface, nor it P“?V'de any visual debug SystemC designs. In Section 3 the general archi-
|zat!on support. Even thqugh the S'm“'a“of‘ kernel Oﬁefs tecture of our IDE is described in more detail while Sec-
an mterfaced'Fo access S|gnal _value_sharr:d kmterclonne_ctlorhon 4 considers the provided debugging interface and the
structure, a direct communication with the kernel requires graphical frontend and its debugging support. In Section 5
Ipartial funding provided by SAB-10563/1559 and European Re W€ '”USUE_‘te Som_e_lDE Teatures exemplarily a_nd demon-
gional Development Fund (ERDF). strate their feasibility using a short example. FinallycSe

tion 6 concludes the paper and gives a perspective on fu-approach but does not support features like crossprobing

ture work. or path fragment navigation.
Contrary to the works described above,
2 Reated Work SystemCXML [2] and LusSy [12] do not use data

introspection for the purpose of analysis. While the
extraction of the hierarchy in SystemCXML is done via

niques that grant access to design components quickl buPoxygen, LusSy uses PINAPA [13]. The visualization is
q 9 9 b q Y QU ealized as graph structures. But while LusSy generates

also allow to evaluate ordinary C++ code. Unfortunately, a arachical outout showing the control flow araph of
C++ fragments cannot be reached by using SystemC datag grap P 9 grap

introspection techniques. And even though there are com-Processes only, SystemCXML limits the visualization to
data flow graphs.

mercial and academical tools, supporting SystemC debug- None of the listed tools and approaches includes the
ging, only few of them offer an advanced visual inter- dfollowing set of features:

face to the designer that has features like data hiding an
crossprobing to the source code level. e work with the OSCI SystemC kernel,
RealView Debugger Suifé] comprises a complete in-
tegrated development suite that allows to implement, to
simulate, to debug, and to analyze SystemC/C++ designs. e offer a highly developed visualization of SystemC
It addresses architectural analysis as well as SystemC designs.
component debugging at low level and at transactional
level where especially the debugging of embedded appli-
cations (running on remote targets such as ARM proces-
sors) is supportedPlatform Architec5] targets system- e non-intrusiveness to prevent the model, the SystemC
level design and verification based on the Eclipse devel- kernel and additional libraries from being altered,
opment framework [6]. It utilizes a native simulation
environment which is specially adopted to fit SystemC
needs. The integrated debugger offers specific commands
supporting source-level and simulation breakpoints and e a visualization that allows for abstraction, with direct
QThread debugging. Additionally, the user can initiate a linkage to all lower abstraction levels defined in the
graphical transaction tracing of SystemC events, threads, design.
and interface method calls activations. Contrary to our _) _
All mentioned works do not meet the requirements in

approach both commercial solutions come with their own X) X X S .
vendor-specific SystemC kernel which prevents the eaSyterms of non-intrusive debugging and visualization facili

integration into an already existing design flow. ties
The GRACE++ system [16] uses SystemC simulation]]
results to create Message Sequence Charts in order to vi3 Debugging Environment
sualize and analyze inter-process communication. Vari-
ous filters help to reduce information complexity. The ap- Our IDE consists of three components. Each of these
proach presented in [3] applies the observer pattern [8] tocomponents realizes a particular task. As sketched in Fig-
connect external software to the SystemC simulation ker-ure 1 our debugging flow starts at the original system de-
nel. This general method facilitates loose coupling but scription which is being compiled to an executable.
requires possibly undesired modifications of the kernel.
One of the first approaches that accomplishes SystemC ;-
design visualization has been introduced in [11]. The im- i SystemC-Model 5_’ ‘ '
plementation uses the SystemC kernel to analyze models

Debugging SystemC models requires hybrid tech-

e support high-level debugging, and

From this a small set of requirements can be derived,
to support high-level SystemC debugging:

e advanced commands implementing a high-level de-
bugging interface, and

..

during execution. An interactive graphical backend facil- — (i’

itates the design visualization. Even though models can [Visuslizer J N | Debugger]
be specified using C++ features, but analysis and visu- Y ‘ *
alization are limited to SystemC objects. Only the data IR _.. i User Command !
flow can be viewed, no behavioral information is avail- ;"""""""311::1}_._, T
able. Since this approach has to execute the model without| | command IDE
further information of declarations, it is not aware of de-

tailed positional information regarding the objects. Henc Figure 1. Architecture of the IDE

crossprobing facilities are very restricted.

Another approach that facilitates designers in visualiz-
ing SystemC models is [7]. Since it is based on data in- The executable can be run in the debugger. In parallel
trospection too, it shares many restrictions with [11]. One the system description is statically analyzed by the visu-
major difference to [11] is the usage of an own graphical alizer. The intermediate representation (IR) that is gener
user interface that has been especially designed for thisated after analysis can be used to render the model inside

the graphical back-end. RTLVision from Concept Engi- dynamic behavior, the IDE offers two command types:
neering is used for this purpose. After passing the Sys-

temC elaboration phase successfully the debugger waits ® Examiningcommands. These commands allow get-
for user commands. Those commands can be used toshow ting a fast insight into the parts of a design relevant
or to hide details inside the visualization back-end, a$ wel for the actual debug session while non-relevant data
as to control the simulation of the executed model. All are explicitly excluded.

commands that influence the graphical view are directly
propagated to the visualizer. Being aware of the model
structure the visualizer assembles commands and maps
SystemC components to the appropriate graphical sym-
bols. Thus, RTLVision can be instructed to switch to spe-
cific parts of the design and to update signal values during
execution.

e Monitoring commands. Commands of this type
support the user in obtaining different data about the
simulation state (such as signal values, or process ac-
tivations) logged over a specified simulation time.

Examining and monitoring commands do not only have
L . . a direct impact on the execution of the model. They also
The communication between the visualizer of our en- . o .)

alter the visualization of the design. The given set of com-

vironment and RTLVision is realized using TCP/IP. Thus L .
. mands can be used to follow critical paths being observed
a system engineer has a comfortable and secure way shat-

) . . for incorrect behavior. But since these commands do not
ing his knowledge with other colleagues far away. The o .

: X rely on the stimuli generated by a certain test bench, they
exchange of data among the visualizer and the debugger

. i . can be used for system exploration as well. Table 1 assem-
kernel is done using a protocol based on socket communi- ;
bles a list of visualized high-level debugging commands.

cation.
) Examining commands
4 Debugging Features vish Visualize the specified channel and all
connected modules.
4.1 Debugging Interface visio_rx Highlight I/O ports matching the given
regular expression of the specified module.
System level debugging requires various kinds of high- vism Highlight all SystemC modules in the given
level information that should be fast and easy retrievable. hierarchy.
There, defects occur at different abstraction levels thati vzp Visualize the given process and all its
fluence the appropriate debugging procedure and the used driving and driven signals.
tools. Monitoring commands
At functional level the defect is located at the source ~ysv Label the specified signal or port with the
code level that means mainly in low-level program details current value that it holds at a specific
such as an erroneous implemented algorithm or a faulty time stamp.
memory management. Because of SystemC C++ confor-"yrmy Remove the label of the specified signal
mance due to a class library, each standard C++ debugger or port.
can be applied at this level. For that reason, our debug-"yirace Trace the given signal or port and record its
ger kernel is based on the Open Source debugger GDB. value at each simulation time step until
GDB provides various features which include for exam- the specified time is reached, then
ple stopping and continuing the simulation, or examining tracked values are attached as label.
the actu_al program stack, local variables, the memory, or virace_at Trace the given signal or port and record its
source files. value at the specified simulation time, then
At the more abstracsystem level the architecture the tracked value is attached as label.
and/or the interaction between the different parts of a vpt Visualize the trigger events for the given
SystemC design are responsible for defects such as a process.
wrong communication between components (e.g. a spe-
cific protocol) or the faulty integration of an (third-payty Table 1. Visualized debugging commands

IP block. C++ debugging features are not sufficient to re-

trieve such defects quickly. Hence, the IDE enables the An important requirement for all monitoring com-
user to debug a SystemC design at system level. Heremands is a fast tracing of requested values where the
high-level breakpoints (e.g. breakpoints on events or pro-impact on the simulation performance should be mini-
cesses), the retrieval of static and dynamic simulation mized. Retrieving current values directly by patching sev-
information (e.g. signal paths, or state of scheduling eral SystemC kernel methods would be the fastest, eas-
gueues), and the graphical design representation provideest, and most obvious approach. But to meet the re-
comprehensive debugging support. A number of com- quirement of a non-intrusive solution, we use library in-
mands allow to interactively control the visualization of terposition and preload a shared libratjb$cpatch.so

a SystemC design and its simulation state. This additionalin Figure 2). This library overwrites the corresponding
abstraction further simplifies and thus accelerates debugkernel methods with methods using callbacks to forward
ging. To explore the static system structure as well as theneeded debugging information. To activate preloading the

LD_PRELOAD environment variable has to be set. Thus, labels, and dedicated displays in the GUI, and as text out-

the dynamic linker is instructed to search our library first, put in the debugger console. Thus, the developer gets

thus using the patched methods. a quick and concise insight into the overall CPU design
structure and its behavior.

sc_simcontext::crunch —>
=Tl

9 e o e

Schematic

View

libscpatch.so

—
N

link order

—

IDE

Figure 2. Preloading kernel methods

4.2 Graphical Interface Info Box

o3 |

The graphical interface for what RTLVision is used,
bridges different abstraction levels. Since our approach
bases on the GDB debugger, text return messages propos
ing changes regarding the system state can be very de-
tailed. The graphical interface bypasses this problem by Figure 3. Example debug session
rendering the structure of the simulated model to three dif-
ferent views, as can be seen in Figure 3. The schematic
view shows modules as functional blocks that can be col- The following two commands illustrate the provided
lapsed and signals as interconnecting wires. The conevisualized debugging functionality exemplarily.
view limits the set of currently displayed objects to a crit- The visb command (Table 1) visualizes the specified
ical path. Both views are bidirectionally connected to a channel and all connected modules in the cone view of
source code view. The advantages of these visualizationRTLVision. In case of a failure related to a specific sig-
features in our approach are: nal the user gets a quick overview about all its connec-
tions. Thus, architects can focus on error search to the
felevant modules only which helps accelerating debug-

Debugger Console

e annotation of SystemC names and declaration names

e hierarchical visualization, ging. Figure 4 sketches the visualization output aftercall
) ing vlsb with two signals of the RISC-CPU designin order
e crossprobing, to check their bindings to the right ports:

e path fragment navigation, and (gdb) vlsb "ram cs"

e module exploration. (gdb) vlsb "next_pc"
All these features are controlled by the IDE observing the
simulator that proposes each state change to RTLVision. __ibu IFU BIOS
A state change alters the current display by: nextpe Pedpo _famos e

bios
PAGING

decode fetch

next_pc

¢ highlighting signals, modules or ports,

e expanding or collapsing module hierarchies, and , paging

e annotating values to signals and ports.

. N Figure 4. Debug command visb
5 Practical Application

5.1 Feature Illustration Thevtrace at command (Table 1) is a typical repre-
sentative of the monitoring command type. It traces the
To illustrate the utilization of our IDE we used given signal or port and records the actual value at the
the RISC-CPU design that is provided with the OSCI specified simulation time stamp. The logged value is at-
SystemC v2.0.1 library package [14]. Figure 3 shows an tached as label text in RTLVision and can be displayed in

example debug session simulating this design. The differ-an info box additionally. Monitoring dedicated signal val-
ent views allow to explore the RISC-CPU design at vari- ues during simulation is very helpful when the user does
ous abstraction levels. Static and dynamic debugging in-not exactly know what is going wrong and when the de-
formation are presented by different colorings, info boxes fect infection occurs. Figure 5 illustrates the visualized

tracing of the top-level sighaddr in the RISC-CPU de- 1: Idpid 0
sign at different time stamps to check whether the right 2: novi R5, 10

addresses are forwarded to the RAM: 3: novi R6, 6
4: novi R7, 2
(gdb) vtrace_at "addr" 42000 5: add R4, R5, R6
(gdb) vtrace_at "addr" 46000 6: rmul R4, R7, R4
(gdb) vtrace_at "addr" 50000
(gdb) ¢ After the initialization statement the three registers R5,
o R6, and R7 are loaded with the integer values 10, 6, and 2,
(gdb) vlsb "addr" respectively. Then, R5 and R6 register contents are added

and the result is multiplied with the register content of R7,
subsequently. Thus, after program execution the value 32

IFU BIOS has to be stored in register R4. Instead, the register dump
address addr shows that R4 contains the value 8:
Met: addr "
@42 ns=6 (0x6)
fetch ggg ns=7 §3§§§ PAb(I_;i]G REG DUVWP ==========—======—==—=—=—==========
_ R4(0x00000008) R5(0x0000000a)
'edical address _ R6(0x00000006) R7(0x00000002)
3 paging

We start a debug session to find the failure cause. For
Figure 5. Debug command vtrace_at simplification reasons we suppose that the ALU works
- correctly. Furthermore, the right integer values seem to
be loaded into the registers, as seen in the register dump
Table 2 underlines the efficiency of our non-intrusive, 8Pove. So, we assume that the defect has to be searched in
patch-free approach using library interposition (Sec- the controlling ofthe ALU where the ALU is implemented
tion 4.1) while illustrating the performance of therace Py the module instanckEU. To get the right control sig-
command (Table 1). So, the observation of 750000 datah@! thevisio_rx command (Table 1) is applied at first. We
sets over 125 signals leads to a slow down of factor 4 com-SUPPOSe that the name of the attached control portincludes
pared to a trace-free simulation while the tracing of 50 the stringcode:

signals increases the simulation time about 80%.]
(gdb) vlsio rx "I EU' "code"

#of traced Slow down over smulation time

signals (# of observed data sets) . Using the path fragment navigation feature in RTLVi-
1000ns 2000 ns 3000 ns sion shows subsequently that the only port reported by
0 1.0 1.0 1.0 vlsio_rx is connected to the signalu_op (Figure 6).
5 1.3 1.3 1.4 EU
(10000) (20000) (30000) IDU
50 1.8 1.8 1.8 alu_op opcode
(100000) (200000) (300000) Socods %I
75 2.3 2.6 3.0 = e
(150000) (300000) (450000)
100 3.0 3.2 3.6 Figure 6. Tracking down the op-code signal
(200000) (400000) (600000)
125 3.2 3.9 4.0
(250000) (500000) (750000) Besides, we should trace the program counter repre-

sented by the sign@kogram_counter to observe the pro-
gram execution. Consequently, we initiate a monitoring of
the two interesting signals using thig acecommand (Ta-
ble 1) and continue simulation:

Table 2. Exemplary performance slow down

5.2 Example Debug Session

(gdb) vtrace "program counter" 110000

To show the efficiency and feasibility of our solution (gdb) vtrace "al u_op" 110000
we want to investigate why a small program works faulty (gdb) c
on the RISC-CPU design. Therefor, we use several explo-
ration and visualization features (Section 4.1) to locia¢e t After simulation has stopped we investigate the traced
defect quickly. First, the following program is simulated behavior. To focus the error search onto the relevant de-
on the RISC-CPU which indicates its incorrect process- sign parts only, the/lsb command (Table 1) is applied
ing. (Figure 7):

L.] E, L
MNet: program_counter @500 ps=0 (0x0)
@7500 ps=3 (0%3)
Attrioutes: @35500 ps=0 (0X0)
floutes DU @43500 ps=3 (03) o))
@26500 ps=4 (0x4) @31500 ps=4 (1)
@33500 ps=5 (0x5) @105500 ps=5 (0x5
BATND hacts (08) courter pe all_op pa= (0=
@47500 ps=7 (0%7) o =
@54500 pe= (0x8) = decode floating
@61500 ps=3 (0xd) =]
@EE500 ps=10 (0xa) 8 IEU
@75500 ps=11 (0xh) |
@62500 ps=12 (Bxc) c opcods
@89500 ps=13 (0xd) =
@56500 ps=14 (0xe) I exec
@103500 ps=15 (04) |}] MMXU
(=3
Flags:
lgi opcode
o
In Module sc_main °| mmxu
3
Done | =

Figure 7. Exploring traced signals

(gdb) vlsb "program counter"
(gdb) vlsb "alu_op"

Knowing that the reset phase ends after 30 ns the first
operation code of interest is transferred from the decoder
unit (module instancéDU) to the ALU at 35.5 ns. The
reported valu®x0 corresponds to thielpid command in
our example program. From 49.5 ns til 91 ns the operation
code hold9x3. The traced values of the program counter
indicate that this code corresponds to the thmegi com-
mands (line 2 to 4) loading registers R5, R6, and R7 with
integer values. The next operation cdé is transferred
at 91.5 ns which should notify theedd command. But as
we know from the processor specification the operation
code for additions has to be indicated @y3. Looking
into the source code of the instruction decoder using the
source code view in RTLVision shows the wrong opera-
tion code in line 161 causing the error:

153 case 0xO01: // add Rl, R2, R3
161 alu op.wite(4); [// WRONG CODE!

Fixing this statement and a subsequent simulation re-
ports the correct result in register R4.

A conventional debug procedure would set several
breakpoints on the right positions into the instruction de-
coder and the ALU. On any stop of this breakpoints we
then had to print out the transferred operation code and
the actual program counter. This can turn out to be a time

consuming task where the printed values are split over and

merged with the usual trace output in the debugger con-
sole. Thus, a fast and simple observation of interesting
program details is made very difficult which complicates
debugging.

6 Conclusion

In this work we introduced an integrated debugging en-
vironment (IDE) where the debugger kernel is based on
the Open Source debugger GDB and the visual interface
utilizes an available visualization tool. The special fea-
ture of our environment is its non-intrusive usability that
means it does not alter any code (SystemC kernel, exist-
ing models, additional libraries) to enable using arbjtrar

SystemC designs in the IDE. We demonstrated the ad-
vantages of our debugging features applying them to the
RISC-CPU design of the SystemC library.

Future work will improve the provided debugging and
exploration functionality especially regarding an exiplic
TLM support. One of the main goals is to fit the debug-
ging environment to the specific needs of the application
being developed (e.g. CPU design).

Acknowledgement

The authors would like to thank Lothar Linhard and Gerhard
Angst from Concept Engineering, who supported this work.

References

[1] ARM Ltd. MaxSim Developer home. www.arm.com.

[2] D. Berner, H. Patel, D. Mathaikutty, J.-P. Talpin, and
S. Shukla. SystemCXML: An extensible SystemC
front end using XML. Technical Report 06, FER-
MAT @Virginia Tech, Apr. 2005.

L. Charest, M. Reid, E. Aboulhamid, and G. Bois. A
Methodology for Interfacing Open Source SystemC with
a Third Party Software. IDesign, Automation and Test in
Europe pages 16-20, 2001.

Concept Engineering. home page. www.concept.de.
CoWare. Platform Architect. www.coware.com.

Eclipse Foundation. project home. www.eclipse.org.

C. Eibl, C. Albrecht, and R. Hagenau. gSysC: A graph-
ical front end for SystemC. I&European Conference on
Modelling and Simulationpages 257—262, 2005. Source
available at www.iti.uni-luebeck.de/ albrecht/gSysC/.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
pattern - elements of reusable object-oriented software. |
Addison Wesley Professional Computing Ser€99.

C. Genz, R. Drechsler, G. Angst, and L. Linhard. Visual-
ization of SystemC Designs. IEEE International Sym-
posium on Circuits and Systenmages 413-416, 2007.
GNU debugger. home. www.gnu.org/software/gdb.

D. GroRRe, R. Drechsler, L. Linhard, and G. Angst. Effi-
cient automatic visualization of SystemC designs.Fon
rum on Specification and Design Languagpages 646—
657, 2003.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: A
toolbox for the analysis of systems-on-a-chip at the trans-
actional level. InFifth International Conference on Ap-
plication of Concurrency to System Desigrages 2635,
2005.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. PINAPA:
An extraction tool for SystemC descriptions of systems-
on-a-chip. INPACM international conference on Embedded
software (EMSOFT '05)ages 317-324, 2005.

OSCI. SystemC home page. www.systemc.org.

F. Rogin, E. Fehlauer, S. Rilke, S. Ohnewald, and
T. Berndt. Non-Intrusive High-level SystemC Debugging.
In Advances in Design and Specification Languages for
Embedded SystenfSpringer, July 2007.

A. Wieferink, M. Doerper, T. Kogel, G. Braun, A. Nohl,
R. Leupers, G. Ascheid, and H. Meyr. A System Level
Processor/Communication Co-Exploration Methodology
for Multi-Processor System-on-Chip Platforms. |BE
Proceedings: Computers & Digital Technigyeslume
152, pages 3-11, Jan. 2005.

(3]

(8]
9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

