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Abstract—A bottleneck during hardware design is the lo-
calization and the correction of faults – so-called debugging.
Several approaches for automation of debugging have been
proposed. This paper describes a methodology for evaluation
and comparison of automated debugging algorithms. A fault
model for faults occurring in SystemC descriptions at design
time or during implementation is an essential part of this
methodology. Each type of fault is characterized by mutations on
the program dependence graph. The presented methodology is
applied to evaluate the capability of a simulation based debugging
procedure.

I. INTRODUCTION

During design of Very Large Scale Integrated (VLSI) cir-
cuits often functional mismatches between a given specifica-
tion and the final implementation occur. When an implemented
design produces erroneous output due to the presence of one
or more faults, debugging begins. First sophisticated automatic
approaches for debugging exist [1], [2], [3], [4] and several
further diagnosis techniques have been developed, e.g. [5], [6].

So far the work on comparing these approaches and on
understanding which types of design bugs can be efficiently
handled by a certain approach is very limited. In [7], [8] differ-
ent debugging approaches were compared. In [8] a procedure
based on explanation is compared to a model-based diagnosis
technique. The comparison is mainly done on the basis of
a case study. In [7] a simulation-based diagnosis technique
and a diagnosis technique based on Boolean Satisfiability
(SAT) are compared. There the quality of the two techniques
is quantitatively assessed and compared by measuring the
distance between gate level fault candidates and actual faults.
No generalization to the source level, e.g. in a Hardware
Description Language (HDL) has been done. Also the work
in [3] quantitatively assesses a debugging algorithm by mea-
suring the distance between actual fault sites and candidate
fault sites determined by the algorithm. By this, all of these
approaches and the conclusions drawn are restricted to the
respective benchmarks considered. Generalizing the results is
difficult.

One way towards generalizing the result is the use of fault
models to assess the performance of an algorithm for certain
types of design bugs. No appropriate fault model has been
introduced so far.
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Previous fault models have been developed for other pur-
poses. Fault models known from testing integrated circuits for
production faults, like e.g. the stuck-at fault model [9] are
efficient in modeling physical failures. They are not applicable
when considering design bugs. A fault model on the netlist
level has been proposed in [10] to capture faults introduced
after synthesizing HDL. Additionally, high-level fault models
have been introduced. For example, in [11] a fault model is
described for determining bit coverage information. The fault
model for SystemC presented in [12] describes transient and
permanent faults. These previous fault models cannot be used
for describing bugs at the HDL level.

In this paper a methodology is presented to evaluate de-
bugging algorithms from a qualitative perspective. As a basis
we use an extensible fault model that describes different types
of bugs in SystemC descriptions. Some parts of the model
are inspired by previous work from Abadir, Ferguson, and
Kirkland [10]. We lift this fault model originally defined
for gate level netlists to higher level descriptions. Based on
this fault model, debugging algorithms can be assessed to
understand their capabilities with respect to different types of
bugs.

In a first case study we show that some types of bugs can
be handled using a simulation based algorithm while other
types of bugs cannot be handled. By this, our methodology
qualitatively classifies the debugging algorithm. Knowing such
restrictions is important from two points of view: i) the results
returned by the debugging algorithm may be misleading for
those bugs that cannot be handled, ii) a comparison to other
debugging algorithms becomes possible. We will also discuss
why using a quantitative approach like in [3], [7] is difficult
and requires further research before a generalization of the
results is possible.

The contributions of the presented work are
• a methodology for evaluating debugging algorithms,
• a fault model on the HDL level to classify design bugs,

and
• a discussion and evaluation of a quantitative approach to

assess debugging algorithms.
This paper is structured as follows. In Section II a short

introduction to source code analysis and simulation-based
debugging is given. The general idea underlying this paper
is described in more detail in Section III. The section also



vo id main ( i n t n ) {
i n t i = 1 ;
i n t sum = 0 ;
w h i l e ( i <n ) {

sum = sum + i ;
i ++;

}
p r i n t ( sum ) ;

}

Fig. 1. Program Fig. 2. Program dependency graph

discusses the problems of quantitative approaches when eval-
uating debugging algorithms. Section IV explains the fault
model for bugs in SystemC designs offering a possibility for
evaluation and comparison of debugging methods. In Section
V the applicability and accuracy of the debugging procedure
for SystemC designs is evaluated using the formerly described
fault model. In Section VI we give a conclusion.

II. PRELIMINARIES

In this section some essentials of source code analysis are
briefly reviewed. In particular, terminology used in this paper,
program dependency graphs (PDGs), and simulation-based
debugging are considered.

A. Faults, Bugs, and Errors

Throughout this paper we consider a bug to be contained
in some design description. An error is the observation of
the effect of a bug that contradicts the specification. The
input stimuli leading to an error are called a counterexample
(wrt. the specification). A fault is part of a fault model and, by
this, a generalized description of a bug. Note, that the errors
caused by a certain bug may be of various types. For example,
having a wrong operator – an addition instead of a subtraction
– in a computation is a typical bug. One potential error caused
by this bug is an erroneous outcome of a computation. An
alternative error due to the same bug in some other context
may be a deadlock of concurrent processes because some
resource is never released.

B. Computation of CFG and PDG

A Control Flow Graph (CFG) is a directed graph where the
nodes represent the statements and the edges depict the control
flow. The annotation at each node describes the variables
defined, written or read.

Out of the CFG the Data Dependency Graph (DDG) can be
computed. The DDG is a directed graph where the nodes indi-
cate the statements of the program and the edges represent the
dependencies between variable usages by different statements.

Further the Control Dependency Graph (CDG) can be
computed out of the CFG. This is a directed graph where

Fig. 3. Principle of the algorithm

the nodes are statements and the edges depict dependencies
between the statements. The PDG is obtained by merging the
DDG and the CDG. A PDG is a directed graph G = (V,E) in
which a node v ∈ V is a statement or a predicate expression
and the edges e∈ E incident to a node represent both, the data
values the operation of the node depends on and the control
condition the execution of the operation depends on. In Fig. 1
an example program is depicted and the corresponding PDG
is shown in Fig. 2. Solid lines reflect control edges and dashed
lines data flow.

C. Simulation-Based Debugging

Simulation-based debugging is intended to investigate the
effect of statements on a variable or the influence of a
variable on other statements. Simulation-based procedures are
used in different areas of application, e.g. debugging, testing,
compiling. In this work the simulation-based algorithm is used
as a case study for the proposed methodology for assessing
debugging algorithms.

The objective of the procedure is to reduce the debugging
effort by focussing the attention of the user on a subset of
program statements called traces which are expected to contain
faulty code [7]. The principle of the algorithm is shown in
Fig. 3. For a given SystemC specification counterexamples are
simulated to generate traces. The intersection of these traces
includes and localizes the faulty statement.
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III. GENERAL IDEA AND DISCUSSION

The debugging process is comprised of collecting informa-
tion from the failed simulation trace or counterexample and
analyzing the design until the error source is identified. In the
meanwhile several debugging algorithms and strategies exist
but comparing the algorithms is difficult. Typically, even the
types of bugs that can be detected by a certain algorithm
are not clearly known. Thus, interpreting the output of the
algorithm is hard and may even be misleading. The idea of
this paper is to use a qualitative methodology for evaluating
debugging algorithms based on a fault model. This fault
model induces a classification of design bugs into different
types. Using the fault model, the applicability of debugging
algorithms for certain bugs can be evaluated.

Figure 4 outlines the relation between the faults and the
design. A fault described by the fault model is a generalized
description of actual bugs in a specified design. Each type of
fault in our fault model characterizes a set of mutations of the
PDG. Applying the reverse mutation of the PDG to the actual
source code is equivalent to the correction of the bug in the
design.

a) Qualitative Assessment: The fault model is used to
inject different types of faults in a system description. After
that debugging algorithms can be assessed by the types of
faults they detect and the fault candidates they return. Note
that different bugs may be functionally equivalent.

Example 1: Consider an operation a+b where b is faulty
and the result is assigned to a variable temp further used in
a condition. In this case we have a data operation fault. If
the operation a+b is directly inserted in the condition without
using temp we have a control operation fault.

This implies that a fault A may be transformed to a fault B
without changing the functionality of the underlying design.

The debugging algorithms may only be able to help in one of
these cases. The use of a fault model helps to identify such
restrictions of a debugging algorithm.

b) Limits of Quantitative Assessments: Extending the
proposed qualitative assessment of debugging algorithms by
a quantitative aspect is possible. For example, the works in
[3] and [7] used distance measures between the actual fault
sites and the candidate fault sites returned by the algorithms.
But such a quantitative analysis directly depends on the bench-
marks considered. The same debugging algorithm may yield
very different results for the same type of bug if the bench-
mark is changed. For example, consider one data-dominated
design performing a computation like a filter operation and a
second control-dominated design containing many conditional
branches. In the data-dominated design changing an operator
always influences the output. In the control-dominated design,
the output only becomes erroneous under certain conditions
on the control path. The cause of the error (the bug) can be
pinpointed much better in the control-dominated design. We
will also show this in the evaluation of our methodology in
Section V. We measure the number of lines of code between
the actual buggy statement and the fault candidates obtained
by the simulation-based algorithm.

IV. FAULT MODEL

In this section different types of faults are described and cat-
egorized. Faults are usually caused by specification changes,
bugs in automated tools, and the human factor [13]. In the
presented model local code transformations are considered
as programming faults whereas global code transformations
are considered to be design faults. Syntactical bugs are not
classified within the proposed fault model, e.g. a missing
declaration or forbidden use of a certain data type. This kind
of bugs is assumed to be discovered by a compiler. This means
that only semantic and conceptual faults are taken into account.
The proposed fault model is not claimed to be complete but
maintains a list of typical faults. Moreover, the fault model
can be extended to encompass additional types of bugs not
covered so far. A fault corresponds to certain modifications of
the PDG.

In Fig. 5 we give a hierarchical overview of the fault model
described in the following sections.



Fig. 6. Correcting an assignment

A. Programming Faults

Programming faults inside of SystemC specifications are as-
sumed to be injected during the coding phase. In the following
subsections possible programming faults are described. The
effect of a single fault on the PDG for the design is usually
small. This is exemplarily shown for some types of faults.

1) Assignment Fault: Suppose that a wrong value is as-
signed to a variable. This could be done by assigning a wrong
constant or a wrong variable. As a result calculations in data
dependent nodes are carried out with incorrect values which
may lead to erroneous output data. Only one node of the PDG
for the SystemC description has to be changed to fix the bug.

In Fig. 6 it is assumed that the programmer has inadvertently
assigned the value 0 to sum but should assign 10. The effect
of the correction on the PDG is indicated by bold lines.

2) Operation Fault: A fault is considered as an operation
fault if either an incorrect operator or incorrect operands are
used in an operation. Each type of operation fault can be
further partitioned in an operand fault and an operator fault.
Depending on which type of operation fault is present, the
correction of the fault has a different effect on the PDG. If
only an operator fault exists, the correction corresponds to the
modification of a single node in the PDG. If the operands are
wrong, also data edges have to be reconnected.

a) Data Operation: A data operation fault within a state-
ment occurs if a data operator is replaced by another operator
or incorrect operand values are used within the operation. All
operators defined in SystemC (+, -, *, /, %, &, |, etc.) are
considered as data operators. Bugs corresponding to this fault
are, e.g. using multiplication instead of division. Operands
could be either variables or constants.

b) Control Operation: Suppose that a programmer inad-
vertently writes an incorrect control condition. This could be
done by using incorrect operators or operands in the expression
specifying the condition. There are several types of predicate
faults possible affecting the execution of a design. Writing a
faulty predicate in a simple if-statement either leads to not
executing the then-branch while it is required, or executing it,
while it is not required. Additionally predicate faults can be
injected in loop-statements or in function calls. A faulty loop-
statement is leading to unspecified executions of the loop. A
fault in a function call implies erroneous data.

3) Incorrect Data/Port Type: Suppose that the programmer
has declared a variable with a wrong data type. For example,
the variable is of type unsigned integer instead of integer
or integer instead of double and so on. This would create
wrong results in computations.

A similar fault is declaring an incorrect port type (in,
inout, out) to a port of the system specification and binding
the correct signal to the port. This would coincidently lead
to missing (extra) inputs (outputs) or vice versa. Note, a
fault of this type is a SystemC specific fault and is typically
not reproducible in other hardware description languages like
Verilog, where the compiler detects the mismatch.

The correction of these faults would have little effect on
the corresponding PDG because only the content of the nodes
concerned has to be changed.

B. Design Faults

Design faults inside a given SystemC specification are
expected to be introduced during the conceptual design phase.
In the following subsections possible design faults of SystemC
designs are described and the effect on the corresponding PDG
is explained.

1) Missing Code: Similar to a missing gate or inverter in
gate level design [10], there could be omitted code in SystemC
descriptions. Here missing simple code and missing complex
code are distinguished.

a) Missing Simple Code: Suppose that the designer has
inadvertently omitted an operation corresponding to a simple
missing data operation in the SystemC implementation. The
correction of this fault is more sophisticated than the correction
of programming faults because it implies adding a node to
the PDG and accompanying control and data edges to or
from other nodes. Also already existing edges may have to
be changed.

In Fig. 7 it is assumed that the designer omitted the state-
ment i=n/2. The insertion of this statement implies adding
a new node and a new control edge as well as adding and
removing several data edges. All parts concerned are marked
in bold in the figure.

b) Missing Complex Code: Similar to the previous de-
sign fault a designer could omit more complex code. This can
be examplarily a function call, an else-branch or a missing
control statement in terms of an if-condition or a loop-
condition, embracing a block of statements. The correction of
such a fault would have a large effect on the PDG. Conceivably
many nodes and edges have to be added to the existing PDG
restructuring it.

2) Extra Code: Assume that the designer has inserted
extra simple or complex code complementary to the missing
code described in the previous section. This would lead to
unnecessary computations or wrong control and data paths
distorting the results.

The correction involves removing the extra code from the
specification resulting in removing nodes and edges from the
PDG. Assume that the designer inadvertently added the extra



Fig. 7. Inserting additional code

statement sum=sum+i to the initial PDG in Fig. 2. In Fig. 8
the PDG is shown after removing the extra statement.

3) Misplaced Code: Similarly to missing or extra code,
suppose that code within a specification is misplaced. This
means that some statements, function calls, loops etc. will
be executed before others so that we may have a faulty data
or control flow within the PDG. A correction would imply
reconnecting nodes in the PDG because of correcting the data
or control flow.

4) Signal Binding Faults: Data transfer between modules
is reflected by signal bindings. Each port should be bound
to a certain signal. Signal binding faults may occur during
design phase. In the PDG, a correction often can be done by
reconnecting data edges.

a) Incorrect/Interchanged Signal Binding: Suppose that
the designer has specified a wrong data transfer behavior
between modules leading to a wrong signal binding at a port
or interchanged signals between ports. This implies incorrect
data at inputs or outputs of a certain module in the system
design. In the PDG we typically would have incorrect data
flow.

b) Missing Signal Binding: A missing signal binding
means that on some arbitrary module a signal binding to
a port has been omitted. That means there exists an input
(output) reading (writing) no data although the data of the
ports are used in further computation steps. Note, this fault is
comparable to missing simple code.

V. EVALUATION: SIMULATION-BASED DEBUGGING

To evaluate our methodology, the simulation-based debug-
ging algorithm described in Section II has been implemented.
In the experiments, first the limitations of a quantitative anal-
ysis are evaluated. Then we show the results of the qualitative
assessment.

Out of the SystemC library [14] a simple FIFO, a pipe,
an RSA algorithm and a simple bus implementation have
been taken as benchmark. Per design 4-7 fault types of the
fault model have been evaluated. Each type of fault has been
injected randomly on 3-5 different positions in a design and
for each faulty version of the design 3-4 traces leading to
erroneous output have been applied.

Fig. 8. Removing extra code

Table I shows the benchmarks used. In column LOC the
lines of code of the investigated designs are listed excluding
the comments. The percentage of the obtained intersected sets
of fault candidates is calculated in relation to the size of the
design. Also the size of the minimal and the maximal trace
are denoted in percent. The percentage of control statements
roughly indicates whether the design is control flow or data
flow dominated.

For the first two benchmark designs on average a fourth
of the design has to be analyzed for detecting the faulty
statement. In the third benchmark the percentage of control
statements increased and coincidently the average size of the
traces decreased compared to the size of the design. However,
the blocks that are surrounded by control statements are
relatively small while large sequences without any control
operations exist. For this reason, the reduction of the traces is
not as significant as for the simple_bus benchmark. Although
the simple_bus is larger, the average number of statements
in a trace to analyze is of moderate size.

A. Limitations of Quantitative Analysis

Table II shows the average distance of the fault candidates to
the faulty statement in lines of code as explained in Section III.
Only traces have been considered where the faulty statement is
within a trace. Distance measurements to missing code are not
considered. The experiments show that the distance strongly
depends on the structure of the investigated design and the
place where a fault has been injected. The fault candidates for
the simple_fifo benchmark have a large average distance to
the faulty statement because the design is mainly sequential
where code is carried out successively. The same holds true for
the rsa benchmark. The average distance of fault candidates
for pipe is relatively small because the pipeline is partitioned
in several functions. For the same reason the distance of the
fault candidates to a faulty statement is moderate compared
to the size of the SystemC description of the simple_bus.
The average distance of the fault candidates is decreasing if a
predicate fault is injected such that often the following control-
block is carried out. Thus, quantitative analysis significantly
varies with the benchmarks.



TABLE I
BENCHMARK DESIGNS

design description LOC control intersected trace(%)
statements (%) min max ∅

simple_fifo simple FIFO 120 0.5 21.7 26.7 25.0
pipe pipeline 220 1.3 24.5 25.5 25.0
rsa RSA cipher 480 6.5 19.8 24.0 21.3
simple_bus abstract bus model 1240 6.6 6.4 8.2 6.9

TABLE II
AVERAGE DISTANCE OF FAULT CANDIDATES

Fault simple_fifo pipe rsa simple_bus

Assignment 52 27.6 129.8 98.8
Operator 48.9 24.4 170.8 106.7
Predicate 43.6 22.1 147.6 98.9
Data/port type - 26.3 - 114.8
Extra code 38.8 23.7 134 101.8
Misplaced code 47.7 23.9 181.8 101.4
Signal binding - 26.7 - 104.7

B. Qualitative Assessment

In Table III the applicability of the debugging procedure
is evaluated. Column detection denotes whether the algorithm
is able to detect the specified fault or not. In all cases all
types of faults with a checkmark are detectable. This means
that the procedure creates a trace which contains the faulty
statement causing an unexpected behavior. Vice versa, the
other types of faults are not detectable with regard to any trace.
Obvious is that the simulation-based algorithm has weaknesses
in localization of design faults. Missing code or signal bindings
are not detectable because there are no executed statements
that are faulty, i.e. there are no faulty statements in the trace.

VI. CONCLUSION

Debugging is a process of localization and correction of
faults in designs. The problem of evaluating debugging meth-
ods has been studied in this paper and a fault model has
been proposed that is suitable to analyze the applicability of
debugging algorithms. Each type of fault is linked to certain
mutations of the PDG. The fault model presented in this paper
is extensible and generalizable to other high-level description
languages.

A debugging algorithm has been implemented and evaluated
with respect to the fault model. The analysis has shown that
the algorithm is well applicable to detect programming faults
while it has weaknesses in detecting certain design faults.
Results of a quantitative analysis strongly depend on the
structure of the investigated designs.

In further work, additional algorithms will be evaluated
and compared. Also quantitative approaches that are less
dependent on individual benchmarks will be addressed by
taking the structure of the source code into account.

TABLE III
EVALUATION OF SIMULATION-BASED DEBUGGING

Fault Detection
Assignment fault X
Data operation fault X
Control operation fault X
Data/port type fault X
Missing simple code x
Missing complex code x
Extra code X
Misplaced code X
Incorrect/interchanged signal binding X
Missing signal binding x
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