Efficient Machine Learning through Evolving Combined Deep
Neural Networks

Rune Krauss

Marcel Merten Mirco Bockholt

Saman Froehlich Rolf Drechsler

Cyber-Physical Systems, DFKI GmbH and Group of Computer Architecture, University of Bremen, Germany
{krauss, mar_mer, bockholt, froehlich, drechsle}@uni-bremen.de

ABSTRACT

The usage of Artificial Neural Networks (ANNs) with a fixed topol-
ogy is becoming more popular in daily life. However, there are
problems where it is difficult to build an ANN manually. There-
fore, genetic algorithms like NeuroEvolution of Augmented Topolo-
gies (NEAT) have been developed to find topologies and weights.
The downside of NEAT is that it often generates inefficient large
ANN:Ss for different problems.

In this paper, we introduce an approach called Turbo NEAT,
which combines divide and conquer methods with NEAT to allow a
symbiosis of specialised smaller ANNs. In addition, we optimise the
weights of the ANNs through backpropagation in order to better
compare the topologies. Experiments on several problems show
that these approaches allow the handling of complex problems and
lead to efficient ANNS.

CCS CONCEPTS

« Computing methodologies — Genetic algorithms; Neural
networks; Cluster analysis;

KEYWORDS

Genetic Algorithms, Neural Networks, Cluster Analysis, Divide and
Conquer, Backpropagation

1 INTRODUCTION

Machine Learning (ML) is becoming an increasingly important topic
in computer science, especially Artificial Neural Networks (ANNs),
whose topology consists of neurons and weighted connections.
Usually, the topology of an ANN can be specified according to
the problem. However, for some problems it can be difficult to
determine the topology of an ANN.

NeuroEvolution of Augmented Topologies (NEAT) [11] is one of
the most successful genetic algorithms for dynamic evolution of
ANNS represented by genomes within a population. It uses genetic
operations (1) Crossover and (2) Mutation to evolve topologies over
generations so that the population approximates an optimum. A
defined fitness function influences which genomes are allowed to
reproduce after a generation.

However, when approaches like NEAT are used to solve large-
scale problems, the size of ANNs can grow rapidly [10]. Even for
simpler problems NEAT is unstable in performance if the ideal evolu-
tionary parameters have not been found. Although huge research ef-
forts have been made to improve the performance of NEAT to solve

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO 20 Companion, July 8-12, 2020, Canciin, Mexico

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07.

https://doi.org/10.1145/3377929.3390055

problems with large state spaces, existing approaches [5, 7, 8, 13]
can still be improved.

In this work, we introduce Turbo NEAT (TNEAT), a C++ project
that combines Divide & Conquer (D&C) methods with NEAT to re-
alise various specialised ANNSs for improving runtime and memory
usage. Furthermore, we implement Backpropagation (BP) as pro-
posed in [2], an algorithm to adjust the weights of the connections
in order to better compare the resulting topologies and to optimise
the weights for suitable problems. This reduces the runtime of the
evolutionary process.

2 TNEAT AND EXPERIMENTAL RESULTS

The main concept in TNEAT is to divide a problem into subprob-
lems that can be solved by specialised ANNs. For this purpose,
TNEAT provides the possibility to use the clustering algorithm
k-means++ [1] for clustering unlabelled samples, where k is the
number of ANNs in a combination of ANNSs. For each sample used
to evaluate a combination, the distance to the centers of the deter-
mined clusters is calculated. The ANN which is responsible for the
cluster of the nearest center is evaluated. Due to the simpler task
of a specialised ANN, the D&C method will work more efficiently
than an ANN, which has to solve the whole problem by itself [12].

TNEAT pursues the idea of using multiple populations to evolve
ANN combinations. Each population provides an ANN as part of
an ANN combination and is therefore responsible for a cluster.
ML problems can be divided into non-sequential and sequential
problems. While for non-sequential problems each input can be pro-
cessed independently, the output of sequential problems depends
on previous decisions.

If a problem is non-sequential, the populations are trained se-
quentially, i. e. the populations evolve independently one after the
other. However, if a problem is sequential, the training needs to be
interleaved, i. e. all populations of the D&C method are trained to-
gether. Thus, every ANN of each population has to be evaluated in
combination with every ANN of the other populations. Each differ-
ent output can influence the next sample sequence, which can cause
k-means++ to assign the sequences to the individual populations
differently, resulting in different Control Access Points (CAPs). A
CAP means that a population starts to process one or more samples.
If another population is selected by k-means++ for a subsequent
sample, control is handed over to this population and it has the
CAP for this sample. Because of the dynamic CAP behaviour, it
is always necessary to calculate the fitness over the whole com-
bination, resulting in an exponential time expense O(s"g), where
n is the number of populations, s is the number of genomes in a
population and g is the number of generations.

In order to control exponential time expense, TNEAT provides
a sequential training method with time-dependent clustering for
sequential problems. In this method, we cluster the samples in
sequences of equal length and each population is responsible for one


https://doi.org/10.1145/3377929.3390055

Table 1: Comparison between NEAT and TNEAT in runtime and ANN sizes to solve different problems

SMB
Algorithm XOR (with BP) Cart-pole World 1-1 World 1-2 World 2-2
tins #G 4E #V tins #G #E #V  tinm #G #E #V tinm #G #E #V  tinm  #G #E #V
NEAT ~ 37(27) 165(91) 75(42) 37(15 38 13 37 12 1383 356 3456 1042 1116 283 3269 761 1673 455 4087 1375
TNEAT  0.6(04) 25(8) 14(10) 8(4) 164 7 8 14 439 68 391 21 349 58 366 16 570 91 448 23
tins  Time in seconds tinm  Time in minutes
of these sequences. However, this distribution can cause problems - -
with fixed CAPs. A poorly chosen CAP can cause a case where the o -
next population has to fail. Moreover, a population may not be able - 250
to find a solution in the search space in a certain time. To solve 2150 e i:z e
these described problems, TNEAT can dynamically adjusts the fixed 10 mear EAT

CAPs so that a population takes control of the last samples from
previous populations.

To demonstrate the capabilities of TNEAT and to allow a com-
parison with NEAT, we have configured three problems with evolu-
tionary parameters according to their complexity: (1) XOR, (2) cart-
pole [6] and (3) Super Mario Bros. (SMB) [4]. We have adjusted the
fitness threshold accordingly for better comparability. For TNEAT,
we also have collected sufficiently large datasets for clustering and
configured corresponding parameters for D&C. Regarding the pa-
rameters, we first have oriented ourselves on the designs proposed
in [9] and [3]. We then adapted the parameters experimentally
and by observation. Due to the characteristics of the problems,
we have set the sequential training method for XOR, interleaved
training for cart-pole and the sequential training method with fixed
CAPs for SMB. Furthermore, we additionally configured BP for
XOR, whereby less precision is required for the fitness threshold.
Consequently, the topology was evolved with NEAT and TNEAT,
while the weights were subsequently readjusted with BP.

For the sake of clarity, the average number of required gener-
ations (column #G) as well as the sum of the average number of
hidden neurons (column #V) and connections (column #E) of all
(combined) ANNs are shown in Table 1. The results clearly confirm
that the proposed methods satisfy the objectives of this work. For
XOR and SMB, TNEAT requires significantly fewer generations,
hidden neurons and connections to solve these problems. Similar
results can be observed for cart-pole. Regarding the described com-
plexity of the training method used here, it should be noted that
for cart-pole TNEAT needs more time to evolve the ANNs com-
pared to NEAT. However, it can be argued that the time loss is a
reasonable compromise compared to the resulting ANN size. In
addition, the results of NEAT fluctuate quite strongly for certain
parameter settings and a requirement for near-perfect precision,
which is illustrated by XOR in Figure 1a and Figure 1b. It is also
shown that the use of BP has accelerated the evolutionary process
in NEAT and TNEAT.

3 CONCLUSION

In this paper, we presented TNEAT, which is a product of combining
D&C methods with NEAT. Based on various experiments, we have
shown that TNEAT is capable of evolving smaller ANNs in fewer
generations than NEAT. Moreover, the XOR problem has shown
that BP can accelerate the evolutionary process and lead to smaller
generated ANNG.

100
===TNEAT with BP
50 50

. J
110 19 28 37 46 55 64 73 82 91 100
Runs

(b) XOR: Connections/hidden neurons

===TNEAT with BP

0
110 19 28 37 46 55 64 73 82 91 100
Runs

(a) XOR: Generations

Figure 1: Average number of required generations and hid-
den neurons/connections of NEAT/TNEAT to solve XOR

ACKNOWLEDGMENTS

We would like to thank Cornelia Grof3e, Jannis Stoppe and Kenneth
Schmitz for countless helpful discussions that have supported our
reported research.

REFERENCES

[1] Shalove Agarwal, Shashank Yadav, and Kanchan Singh. 2012. K-means versus
k-means ++ clustering technique. (03 2012). https://doi.org/10.1109/SCES.2012.
6199061

Lin Chen and Damminda Alahakoon. 2007. NeuroEvolution of Augmenting
Topologies with Learning for Data Classification. 367 — 371. https://doi.org/10.
1109/ICINFA.2006.374100

Stephen Chen, James Montgomery, and Antonio Bolufé-Rohler. 2015. Measuring
the curse of dimensionality and its effects on particle swarm optimization and
differential evolution. Applied Intelligence 42 (04 2015). https://doi.org/10.1007/
510489-014-0613-2

Erik Demaine, Giovanni Viglietta, and Aaron Williams. 2016. Super Mario Bros.
Is Harder/Easier than We Thought. (06 2016).

Thomas G. van den Berg and Shimon Whiteson. 2013. Critical factors in the
performance of HyperNEAT. GECCO 2013 - Proceedings of the 2013 Genetic and
Evolutionary Computation Conference, 759-766. https://doi.org/10.1145/2463372.
2463460

F Gomez. 2003. Robust Non-Linear Control Through Neuroevolution. PhD thesis.
Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. 2014.
A Neuroevolution Approach to General Atari Game Playing. Computational
Intelligence and Al in Games, IEEE Transactions on 6 (12 2014), 355-366. https:
//doi.org/10.1109/TCIAIG.2013.2294713

Yiming Peng, Gang Chen, Harman Singh, and Mengjie Zhang. 2018. NEAT for
large-scale reinforcement learning through evolutionary feature learning and
policy gradient search. 490-497. https://doi.org/10.1145/3205455.3205536
Kenneth Stanley, Bobby D. Bryant, and Risto Miikkulainen. 2006. Real-Time
Neuroevolution in the NERO Video Game. Evolutionary Computation, IEEE
Transactions on 9 (01 2006), 653 — 668. https://doi.org/10.1109/TEVC.2005.856210
Kenneth Stanley, David D’Ambrosio, and Jason Gauci. 2009. A Hypercube-Based
Encoding for Evolving Large-Scale Neural Networks. Artificial life 15 (02 2009),
185-212. https://doi.org/10.1162/artl.2009.15.2.15202

Kenneth Stanley and Risto Miikkulainen. 2002. Efficient Reinforcement Learning
through Evolving Neural Network Topologies. (04 2002).

Wen Wang, P.H.A.J.M. Gelder, J Vrijling, and Jun Ma. 2006. Forecasting Daily
streamflow using hybrid ANN models. Journal of Hydrology 324 (06 2006), 383~
399. https://doi.org/10.1016/j.jhydrol.2005.09.032

Shimon Whiteson and Peter Stone. 2006. Evolutionary Function Approximation
for Reinforcement Learning. Journal of Machine Learning Research 7 (05 2006),
877-917.

[2]

[10

[11

(12]

[13


https://doi.org/10.1109/SCES.2012.6199061
https://doi.org/10.1109/SCES.2012.6199061
https://doi.org/10.1109/ICINFA.2006.374100
https://doi.org/10.1109/ICINFA.2006.374100
https://doi.org/10.1007/s10489-014-0613-2
https://doi.org/10.1007/s10489-014-0613-2
https://doi.org/10.1145/2463372.2463460
https://doi.org/10.1145/2463372.2463460
https://doi.org/10.1109/TCIAIG.2013.2294713
https://doi.org/10.1109/TCIAIG.2013.2294713
https://doi.org/10.1145/3205455.3205536
https://doi.org/10.1109/TEVC.2005.856210
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1016/j.jhydrol.2005.09.032

	Abstract
	1 INTRODUCTION
	2 TNEAT AND EXPERIMENTAL RESULTS
	3 CONCLUSION
	Acknowledgments
	References

