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ABSTRACT
As VLSI designs grow in complexity and size, errors become more
frequent and difficult to track. Recent developments have automated
most of the verification tasks but debugging still remains a resource-
intensive, manually conducted procedure. This paper bridges this
gap as it develops robust automated debugging methodologies that
complement verification processes. Unlike prior debugging tech-
niques, the proposed one exploits the hierarchical nature of modern
designs to improve the performance and quality of debugging. It
also formulates the problem in terms of Quantified Boolean For-
mula Satisfiability to obtain dramatic reduction in memory require-
ments which allows for debugging of large designs. Extensive ex-
periments conducted on industrial and benchmark designs confirm
the efficiency and practicality of the proposed approach.

1. Introduction
As today’s VLSI designs grow in complexity and size, design er-

rors become more frequent and difficult to track. These errors are
usually caused by an incorrect interpretation of the specification,
the human factor, and bugs in CAD tools. Although advancements
in verification methodologies have helped reduce the time required
to identify an erroneous design [5, 8], engineers are still left with
the burdensome task of isolating the source(s) of errors manually.
To reduce costs and expedite the debugging effort, efficient auto-
mated debugging techniques are necessary to complement and en-
hance contemporary verification processes [9].

Today, designs are often initially described at high abstraction
levels. For example, implementations at the Register Transfer Level
(RTL) using Hardware Description Languages (HDL) such as Ver-
ilog or VHDL are popular in the industry [14]. Most HDL-based
development methodologies make use of hierarchical and modu-
lar design concepts to simplify implementation, increase reuse, and
facilitate verification [14]. These concepts are especially useful
in complex microprocessors, ASICs and Systems-on-Chip that use
various Intellectual Property (IP) cores. In this design style, every
circuit is a collection of modules. Each such module contains a
varying number of more basic modules and/or primitive gates. At
the lowest level of this hierarchy, a module can contain only prim-
itive logic gates. Most existing debugging techniques do not take
the design’s hierarchy information into account and operate on a
“flattened” gate-level representation. A thorough review of these
techniques is presented in [9] and is not discussed here due to space
limitations. Since single errors that originate at the RTL level may
“translate” into many errors in the flattened gate-level netlist and
because debugging is a problem with a complexity that increases
exponentially to the number of errors [6], these techniques may not
retain a solution due to the increased difficulty of the problem.

Motivated by the above observations, this paper proposes a novel
debugging technique for multiple errors in combinational circuits

1University of Toronto, Department of Electrical and Com-
puter Engineering, Toronto, ON M5S 3G4 ({moayad, veneris,
sean}@eecg.toronto.edu)
2University of Toronto, Department of Computer Science, Toronto,
ON M5S 3G4
3Freescale Semiconductor, Inc., Austin, TX 78729
(m.abadir@freescale.com)
4University of Bremen, Department of Computer Science, 28359
Bremen, Germany (drechsle@informatik.uni-bremen.de)

that exploits the design hierarchy. Unlike other approaches, the de-
bugging problem is viewed in terms of erroneous modules rather
than erroneous gates. Under this formulation, debugging is per-
formed by traversing the design hierarchy from the highest level to
the lowest one while identifying erroneous modules along this path.

Another important characteristic of this method is its use of a
Quantified Boolean Formula (QBF) Satisfiability (SAT) solver as
the underlying engine that powers debugging. In contrast to other
techniques, the QBF formulation avoids any explicit replication of
the circuit, providing significant reduction in memory usage. An
added benefit is that its performance automatically benefits from
rapid advancements in the fields of QBF and SAT solvers [3, 11, 16],
especially considering that SAT today provides an attractive proof
engine for many formal verification methods [2, 10]. In this respect,
the proposed technique encourages further research into QBF eval-
uation and demonstrates its practicality for logic debugging.

Experiments conducted on a broad range of industrial designs
such as microprocessor datapath cores confirm the efficiency and
competitive nature of the proposed technique. The hierarchical ap-
proach provides a quick way of identifying erroneous modules while
the QBF formulation reduces the memory requirements dramati-
cally. As demonstrated empirically, the combination of the hierar-
chical approach along with the QBF-based operational framework
results in a time- and space-efficient debugging framework.

The rest of this paper provides notational conventions and the
problem formulation in Section 2. Section 3 presents the basic
QBF-based debugging formulation. Section 4 extends this tech-
nique to hierarchical designs. Section 5 shows experimental results
and Section 6 concludes this work.

2. Preliminaries
In a hierarchical debugging framework, the problem is formu-

lated around the concept of erroneous design modules rather than
that of erroneous primitive gates [1]. We assume that the combina-
tional gate-level circuit contains n primary inputs X = {x1, . . . ,xn},
m primary outputs Y = {y1, . . . ,ym} and k internal circuit lines L =
{l1, . . . , lk}. To simplify the presentation, we assume that primary
inputs and primary outputs are error-free. We also use the same no-
tation for a line and the QBF variable that corresponds to that line.

A hierarchical design is composed of several interconnected mod-
ules, each of which is comprised of smaller submodules and/or
primitive gates (glue logic). In this work we treat glue logic as
a module composed of only primitive gates. For a given module
Mi, depth(Mi) specifies its level in the hierarchy. For instance,
the top-level modules have a depth of 1 ( depth(Mi) = 1 ) and
their submodules have a depth of 2, etc. SM(Mi) refers to the
set of Mi’s immediate submodules, that is, for any M j ∈ SM(Mi),
depth(M j) = depth(Mi)+ 1. The notation OUT (Mi) refers to the
outputs of module Mi, where OUT (Mi) ⊂ L. We call the collection
of the above information the hierarchy information of the design
and we assume that it is known to the algorithm.

Given an erroneous design, its corresponding hierarchy informa-
tion, a set of counter-examples in terms of q input/output test vectors
T = {t1, . . . ,tq} for which the design fails verification, the approach
returns the modules of largest possible depth that may contain er-
rors. This is accomplished by iteratively constructing and solving
QBF instances that represent the debugging problem at each hierar-
chy level. In general, a QBF instance is defined as follows:

Q1X1,Q2X2, . . . ,QrXr Φ (1)



where Φ is a propositional formula in Conjunctive Normal Form
(CNF) over a set of s binary variables X = {x1, . . . ,xs}. The series
of Qi, i = 1...r, is that of an alternating existential (∃) and universal
(∀) quantifiers. Every variable from the set X appears in one and
only one set Xi, i = 1...r.

3. QBF-based Design Debugging
In this section, we introduce the basics of the QBF-based debug-

ging algorithm. To simplify the discussion, the QBF formulation
is first presented in terms of debugging a flat gate-level netlist. In
the next section, once the basics have been established, we extend
the technique such that it exploits the design hierarchy to handle
complex erroneous modules.

To model the debugging problem as a QBF instance, we first add
appropriate hardware to the original circuitry to model various con-
straints of the problem. This enhanced construction, once translated
to CNF, represents formula Φ in equation (1). The added hardware
contains three components. The first models the ability of different
lines in the circuit to correct the design for the test vector set T . The
second component provides the input/output test vector constraints.
As explained later in this section, this component allows for the
memory-efficient QBF formulation of the debugging problem. The
third component restricts the number of errors in the design for the
purpose of debugging. In the following, each of these components
is described in more detail.

The first component models the ability of a candidate error line
to correct the circuit for all test vectors in T . To do this, we fol-
low the approach from [6] and introduce a multiplexer with select
line si on every line li (i = 1...k) of the circuit. The multiplexer’s 0-
input is connected to li and its 1-input is connected to a new pseudo
primary input wi. The output of the multiplexer is attached to the
original fanout of li. We use the notation S to denote the set of all
multiplexer select lines {s1, . . . ,sk}. Clearly, when si = 0 the cir-
cuit remains unchanged but when si = 1 the candidate error line li is
“disconnected” from the circuit and replaced with the new pseudo
primary input wi. As we will see, if the error on line li is excited
for test vector t j, the pseudo primary input wi will assume the cor-
rect/expected logic value of li for t j during QBF-based debugging.
A more thorough discussion about the functionality of this hardware
in the context of debugging is found in [6].

The second component adds circuitry to the multiplexer-enriched
circuit to allow the QBF solver to constrain the design for all test
vectors. The objective here is to model input/output constraints that
force the erroneous circuit to produce a correct primary output re-
sponse for every test vector in the counter-example set T . Intu-
itively, the multiplexer-enriched circuit can produce a correct pri-
mary output response only if a subset of multiplexer select lines
from S are set to a logic 1, allowing the corresponding pseudo pri-
mary inputs to assume logic values that agree with the ones in the
correct implementation.

To implement this component, we place a q-to-1 multiplexer at
each primary input of the circuit and a 1-to-q demultiplexer at each
primary output where q is the number of test vectors in T . This
construction is shown in Fig. 1(a). All of these new multiplex-
ers and demultiplexers share the same dlog(q)e set of select lines
V = {v1, . . . ,vdlog(q)e}. When the enhanced circuit is later translated
to CNF, logic input (output) values that indicate the correct behavior
for test vector ti are placed on the ith input (output) of the appropri-
ate multiplexer (demultiplexer) with the use of unit-literal clauses.
Observe, when the select lines of the primary input (output) mul-
tiplexer (demultiplexer) assume a binary value of i− 1, 1 ≤ i ≤ q,
then the correct input/output constraints of the ith vector are en-
forced on the erroneous netlist. For primary input xi, we use the
set Xi = {xt1

i ,xt2
i , . . . ,x

tq
i } to denote the inputs of the respective mul-

tiplexer. In this notation, the subscript corresponds to the name of
the circuit primary input and the superscript denotes the appropriate
test vector. Equivalently, the outputs of the demultiplexer attached
at primary output yi are labeled as Yi = {yt1

i ,yt2
i , . . . ,y

tq
i }.
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Figure 1: Second and third hardware components

Example 1: Consider the circuit in Fig. 2(a) and the erroneous im-
plementation in Fig. 2(b) where an inversion is added on line l1.
The counter-example set contains two vectors T = {t1,t2} where
t1 = (x1,x2,y) = (1,0,0) and t2 = (0,0,1). In other words, simula-
tion of the correct circuit for t1 (t2) yields 1(0) at y.

The first component places a multiplexer on every internal cir-
cuit line li (i = 1,2). For the second component, a multiplexer is
connected to each primary input x1 and x2, and a demultiplexer is
added to the single primary output y of the circuit. The primary in-
puts/outputs multiplexers/demultiplexers share the common select
line v. The enhanced circuit following the addition of these two
components is shown in Fig. 2(c).

When the circuit is later translated in CNF, respective logic values
that correspond to test vector t j, j ∈ {1,2}, are placed on every xi

t j

input of every multiplexer and the yi
t j output of the demultiplexer

using unit-literal clauses. For example, vector t1 applies logic values
1 and 0 to x1 and x2, respectively. To enforce the constraint of t1 that
“simulates” a logic 1 on line x1

t1 of the multiplexer, we apply a unit-
literal clause (x1

t1 ) to the CNF Φ. Similarly, we add a unit literal
clause (x2

t1) to represent that input x2
t1 “simulates” a logic 0 and

finally a unit literal clause (yt1 ) to indicate that the correct simulation
value (of the correct implementation) of y for t1 is 1. We let the
reader verify that the required unit-literal clauses for all test vectors
in T are (x1

t1 )(x2
t1 )(yt1) (x1

t2 )(x2
t2 )(yt2 ). Observe in Fig. 2(c), when

the value of the select line v = 0(1), test vector t1(t2) constrains
the (erroneous) enhanced circuit to the correct primary input/output
values for that vector.

�

The third component restricts the number of select lines that can
be set to a logic 1 simultaneously. Intuitively, this component in-
dicates that exactly N errors are present in the circuit. Since N is
unknown, the debugger will first try to return a solution for N = 1.
If it fails, the value of N is incremented (N = 2), etc, until a solution
is found. This process is described in greater detail in Section 4.
These requirements are coded using the error cardinality circuitry
from [6]. That circuitry performs a bitwise addition of the select
lines in S and forces the sum to be equal to N, as shown in Fig. 1(b).
Its effects, when translated in CNF, is that when more or less than
N select lines are set to 1, it automatically causes the formula to
become unsatisfiable and the solver to backtrack. This component
is not depicted in the figures and examples that follow for easier
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illustration.
Once all three hardware components are added, the enhanced cir-

cuit is translated to CNF which is then padded with input/output val-
ues of the test vectors in the form of unit-literal clauses, as demon-
strated in Example 1. Once formula Φ is available, the problem of
debugging is equivalent to the following statement: Does there ex-
ist a set of exactly N select lines si1 ,si2 , . . . ,siN that can be set to a
logic 1 such that for each input test vector there exist logic values
for pseudo primary inputs wi1 ,wi2 , . . . ,wiN that justify the (correct)
primary output behavior of the circuit? Formally, this statement is
expressed by the following QBF problem:

∃ s1, . . . ,sk ∀ v1, . . . ,vdlog(q)e Φ (2)

In the above formula, any variables not explicitly included in the
first level (∃) or second level (∀) quantifier are implicitly included in
a third level (∃) quantifier. Any satisfying assignment to this prob-
lem will contain exactly N select lines si1 ,si2 , . . . ,siN set to a logic
1, corresponding to the candidate error gates. If no such satisfying
assignment exists, the design contains more than N errors and the
debugger increments the value of N to solve the QBF again. When
the algorithm fails for a particular value of N, the QBF instance can
be reused by simply changing the unit-literal clauses that enforce
the value of N.

Observe, under this problem formulation, the set of select lines
that are set to a logic 1 must be common to all test vectors. However,
logic values on the respective wi1 ,wi2 , . . . ,wiN multiplexer inputs are
allowed to be different for each test vector since the variables cor-
responding to these lines are at a higher quantification level than of
those that correspond to V . In modern QBF solvers, these values can
be maintained for each test vector to aid the correction effort [6].

Example 2: To generate the QBF instance for the enhanced circuit
in Example 1, we first add the error cardinality hardware to the en-
hanced circuit shown in Fig. 2(c) and we translate the new circuitry
to CNF. Then, input/output {t1,t2} test vector behavior and N = 1
are enforced with unit-literal clauses to get the final Φ. The debug-
ging problem can now be expressed as

∃ s1,s2 ∀ v Φ

where a QBF solver returns the solution {s1, s2} = {1, 0} to indicate
that line l1 is a candidate error line.

�

This QBF-based debugging methodology can be extended to han-
dle sequential circuits by applying a similar technique to the one
in [6]. However, sequential logic debugging is not the topic of this
work and is not addressed here.

3.1 Analysis and Comparison
The memory requirements for the QBF instance of the debugging

problem as expressed in equation (2) are O(k + q(n + m)) where k

is the number of circuit lines, n is the number of primary inputs,
m is the number of primary outputs and q is the number of test
vectors. To see this, the multiplexer-enriched circuit and the error
cardinality hardware require O(k) number of clauses [6]. For each
primary input, the q-to-1 multiplexer can be implemented using at
most number q−1 of 2-to-1 multiplexers organized in a binary tree
fashion. Since a 2-to-1 multiplexer requires four CNF clauses, the
multiplexers that express the input test vector constraints require
O(qn) clauses. Similarly, the demultiplexers that enforce the output
test vector constraints can be implemented with O(qm) clauses.

The above analysis shows why our methodology is space-efficient
when contrasted to existing SAT-based debugging approaches, more
notably the one in [6]. That Boolean SAT debugging methodol-
ogy “duplicates” the circuit for each input test vector for a total of
O(q(k + n + m)) clauses. Since the number of lines k is the domi-
nating factor and because the debugging resolution depends on the
number q of test vectors used [9, 6], that approach trades memory
for run-time performance in large designs. The QBF modeling of
the debugging problem provides a time/space trade-off, reducing the
memory requirements through universal quantification of the test
vectors. In other words, the proposed QBF problem representation
allows the solver to explore all vector constraints “on the fly”, while
solving the formula, and it does not require these constraints to be
enforced explicitly, that is, when the formula is built.

Another major advantage of the QBF debugging formulation is
that conflict clauses found for one test vector are automatically reused
for all other test vectors as well. Conflict clauses often improve the
performance of SAT and QBF solvers by pruning sections of non-
solution space [12, 16]. When a circuit is replicated for each test
vector, conflict clauses cannot be reused since each instance of the
circuit contains different CNF variables for the same circuit line.

4. Hierarchical Debugging
Modern designs are usually captured in a hierarchical and mod-

ular manner. Once a design fails verification, information about
the erroneous modules is of great interest to the designer. This is
partly because automated synthesis environments do not require the
designers to work on the gate-level. As a result, few designers are
familiar with the gate-level details of the design and interaction with
higher-level representations is preferred.

Another reason why debugging flattened gate-level netlists may
not be ideal is because simple errors introduced at higher abstraction
levels of the design flow may manifest themselves into numerous
gate-level errors. A debugging technique that targets simple gate
primitives may have trouble identifying all such erroneous gates.
This is due to the large search space that grows exponentially to the
number of erroneous gates [6]. Debugging for erroneous modules,
where each module may contain many erroneous gates, does not
only reduce the problem complexity but also provides more aid to
the engineer through better error localization.

In light of the above, this section generalizes the gate-level de-
bugging methodology from Section 3 to hierarchical designs. The
proposed approach exploits the design hierarchy and operates in a
top-down debugging fashion. Starting at the top-level (depth = 1)
of the hierarchy and progressing towards the lowest levels, erro-
neous modules are examined in an iterative manner along this path.

Clearly, if the effects of an error within module Mi propagate to
the primary outputs, then they also propagate to one or more out-
puts in OUT (Mi) of module Mi. Consequently, instead of using the
multiplexers in the first component (Section 3) to model potential
error sites on every circuit line, we can use them to model poten-
tial erroneous modules at all output lines lo ∈ OUT (Mi) of module
Mi. Under this scenario, all multiplexers placed on the outputs of
a module Mi must share a common select line sMi to indicate the
potential of this individual module to correct the design.

The iterative algorithm starts by first placing multiplexers at the
outputs of all top-level modules Mi such that depth(Mi) = 1. The
QBF instance of the debugging problem is then formed as described
in Section 3. A solution to this instance results in a set of erroneous
modules denoted as M1

err. In the next iteration, multiplexers are



x2

x1

HA

x1
x2

cout

cout

y1

2y
x1
x2
x3
x4

cin

wa

wb

wd

1s

2s

wc

v

FA1

FA2

s1

aw

2s

w c

wd

3s

wewb

v

FA1

1

2

HA

HA

in

1−bit FA

yc

1HA
2HA y

c

FA2

FA1

Input C
onstraints

O
ut

pu
t C

on
st

ra
in

ts

(d) Debugging in first iteration

1

0

0

1
1

0

0

1

Input C
onstraints

O
ut

pu
t C

on
st

ra
in

ts

0

1

1

0

1

0

1

0

0

1

(e) Debugging in second iteration

(b) One−bit full−adder (c) Half−adder

(a) Two−bit full−adder

Figure 3: Hierarchical debugging of a full-adder

placed at the outputs of all modules M j such that depth(M j) = 2,
M j ∈ SM(Mi), and Mi ∈M1

err to form a new QBF instance and have
the solver search for candidate error modules in the second hierar-
chy level. This process is repeated until the lowest hierarchy level
when an erroneous module (for fixed value of N) is reached.

In the first iteration, the QBF instance is solved with N = 1. If in
the ith iteration the solver fails to return a set of candidate erroneous
modules, N is incremented and the ith iteration is repeated. For the
(i+1)th iteration, N is not reset to 1 but it maintains its value from
the ith iteration because the solver has already deduced that at least
N erroneous modules exist in the circuit. Example 3 demonstrates
this hierarchical debugging methodology.

Example 3: Consider the hierarchical design of a two-bit full-adder
in Fig. 3(a). This full-adder is comprised of two one-bit full-adders
(Fig. 3(b)) each of which contains two half-adders shown in Fig. 3(c).
Assume that the design error is an added inversion on the AND gate in
the first half-adder of FA2. A verification tool provides the counter-
example set T = {t1,t2} where t1 = (ci,x1,x2,x3,x4,y1,y2,cout) =
(00011000) and t2 = (00100101).

Fig. 3 (d) illustrates the hardware construction during the first hi-
erarchical debugging iteration when the depth of the error modules
explored is 1. Note that all multiplexers placed at the output lines
of each full-adder share a common select line. Let Φ1 denote the
corresponding CNF for this hardware, including the error cardinal-
ity circuitry (not shown here), and the set of unit-literal clauses used
to apply the test vector constraints for the second component. Then,
the QBF problem for this iteration is stated as follows:

∃{s1,s2} ∀{v} Φ1

For N = 1, the solver returns the solution {s1,s2} = {0,1}, indi-
cating that the set of candidate erroneous modules at this hierarchy
level is M1

err = {FA2}.
In the second iteration, multiplexers are placed at the outputs of

the half adders HA1 and HA2 of the candidate error module FA2
and that of the OR gate (glue logic) since a gate, by default, is the
simplest instance of a module (recall that we treat glue logic as a
module comprised of primitive gates). Each set of these multiplex-
ers share a common select line. No multiplexers are placed at the
outputs of FA1 or any of its submodules since it has been recognized
as error-free during the first iteration. Fig. 3(e) illustrates the con-
struction behind this iteration where the resulting QBF instance is:

∃{s1,s2,s3} ∀{v} Φ2

where Φ2 is the CNF formula that corresponds to the circuit in
Fig. 3(e). This QBF instance has two distinct solutions. The first
is {s1,s2,s3} = {1,0,0} to indicate that an error exists in module
HA1, while the other is {s1,s2,s3} = {0,0,1} to suggest an error at
the glue logic of module FA2. At this point, the hierarchical debug-
ging algorithm terminates with the above solution since no module
in M2

err contains any submodules. However, it is important to note
that this technique is flexible and can obtain improved resolution by
debugging one level of hierarchy deeper. In an optional final iter-
ation, the algorithm considers each primitive gate in the erroneous
HA1 as a single output module. This identifies the AND gate as the
source of the error.

�

Algorithms 1 and 2 illustrate the main procedures of the QBF hi-
erarchical debugging methodology. QBF HIER DEBUG compiles
the set of modules to be debugged at each iteration. This set is then
passed to DEBUG ITER for the actual debugging. The input to
QBF HIER DEBUG is the circuit C, the set of top level modules
Mtop, the maximum number of errors maxN to search for, and the
counter-example set T . Line 4 initializes the current set of modules
to be debugged, Mcur iter, for the first iteration. The while loop in
line 5 is executed once per debugging iteration and f lag becomes
false only when the lowest level of the hierarchy is reached.

The loop in lines 7-12 executes repeatedly as long as procedure
DEBUG ITER fails to return a solution for the current value of N,
upon which N is incremented. When N exceeds the user defined
maxN, the procedure terminates with no solution. In lines 15-20,
the set of modules to be debugged in the next iteration, Mnxt iter,
is compiled based on Merr of the current iteration. In the case that
erroneous module Mi ∈ Merr contains submodules, f lag is set to
true and Mi’s submodules are added to Mnxt iter. Otherwise, Mi
itself is added to Mnxt iter. This is necessary when debugging for
multiple erroneous modules.

Algorithm 2 illustrates the procedure DEBUG ITER which per-
forms debugging for one iteration. Lines 3-11 convert the enhanced
circuit and compile the QBF instance as explained earlier in this
paper. In line 12, the formula is passed to the QBF solver which
seeks all solutions. If a satisfying solution is found, the algorithm
identifies the active select lines (or modules) and adds a clause that
“blocks” this solution as in [6]. This provides an all-solution de-
bugging engine that reuses past computation for efficiency. The
modules corresponding to the active select lines are also added to
the set of erroneous modules. This process is repeated to identify
all possible solutions, until the QBF solver returns with no solution.

4.1 Multiple Erroneous Modules
In the case of multiple erroneous modules, a situation may arise

where error effects from one module mask the error effects of an-
other. This may result in the solver identifying only a subset of the
failing modules. Consider Fig. 4, for example, where modules Q
and R are erroneous and assume that N = 1. In the first iteration,
B is identified as a single-module solution because OUT (B) domi-
nates OUT (R) (and OUT (Q)). Since a solution was found, N will
not be incremented and the solver will move to the next hierarchy
level by attaching multiplexers only on all submodules of B but not



Algorithm 1 QBF-based Hierarchical Debugging

1 QBF HIER DEBUG(C,Mtop,maxN,T )
2 begin
3 N := 1
4 Mcur iter := Mtop
5 while ( f lag = true)
6 f lag := f alse
7 while (Merr = /0)
8 Merr = DEBUG ITER(C,Mcur iter,N,T )
9 if (Merr = /0)

10 N := N +1
11 if (N > maxN)
12 return /0
13
14 foreach (Mi ∈ Merr)
15 if (SM(Mi) ! = /0)
16 Mnxt iter := Mnxt iter ∪ SM(Mi)
17 f lag := true
18 if (SM(Mi) = /0)
19 Mnxt iter := Mnxt iter ∪ Mi
20 Mcur iter := Mnxt iter
21 return Merr// At this point, Merr = Mcur iter
22 end

the ones of A. In this case, the solver will not be able to satisfy the
problem and it will return with failure.

To tackle this problem, a preprocessing step is required before de-
bugging can commence. For each erroneous primary output yi, we
compile the set of modules FI(yi) in the fan-in cone of yi. Using
this information, in the next iteration the algorithm does not only
debug the contents of modules in Merr but it also examines the con-
tents of those modules that appear with any M j ∈ Merr in the same
FI(yi) for any erroneous primary output yi. Clearly, those modules
must also have the same depth as module M j . Revisiting Fig. 4, in
the first iteration we debug A, B, and C. When B is returned by the
solver, R and S (along with Q) are automatically included in the next
iteration since A and B lie in the same fan-in cone of erroneous pri-
mary output y1. The module masking information can be obtained
once in a fast, linear-time, preprocessing step. This step guarantees
the completeness of the debugging process where all possible erro-
neous modules will be identified for a given set of counter-examples
regardless of the effects of error masking.
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Figure 4: Error masking in multiple erroneous modules

5. Empirical Results
This section presents empirical results from a broad range of in-

dustrial designs. Table 1 contains information about the circuit char-
acteristics. In this table, the first and second columns show the de-
sign name and description, respectively. The total number of syn-
thesized gates in the circuit is shown in column three. Column four
presents the total number of design modules accumulated over all
levels of the hierarchy, while the fifth column shows the maximum
depth of the design hierarchy. Circuits c3, c5, c6, and c7 are indus-
trial commercial microprocessor datapath core designs, while the
remaining circuits are available as open source cores/designs [13].

The QBF-based hierarchical debugging algorithm is implemented
in C++ using the QBF solver Quaffle as the underlying engine [16].
The technique is independent of the QBF solver type and other

Algorithm 2 Hierarchical Debugging of a Single Iteration

1 DEBUG ITER(C,Mcur iter,N,T )
2 begin
3 foreach (Mi ∈ Mcur iter)
4 associate select line si with Mi
5 foreach (l j ∈ OUT (Mi)
6 insert MUX on l j with select line si
7 generate second hardware component
8 generate third hardware component
9 translate structure into CNF instance Φ

10 apply test vectors using unit-literal clauses
11 generate ∃ and ∀ quantifiers and QBF instance
12 while (qb f solve() = SAT)
13 let sol : Set of active select lines
14 let c : Clause := /0
15 foreach (si ∈ sol)
16 c := c+ s̄i
17 Φ := Φ · c // Disable sol so that it is not found again
19 foreach (si ∈ sol)
20 let Mi : module associated with si
21 Merr := Merr ∪ Mi
22 return Merr// Erroneous modules
23 end

DPLL or resolution-based solvers [4, 7] can be utilized. The exper-
iments are run under a Linux platform on an Intel Pentium 2.7GHz
workstation with 1GB of RAM. For each circuit, ten experiments
are conducted with the reported results averaged out. For each such
experiment, thirty counter-examples are used and run-times are re-
ported in seconds.

Two sets of different experiments are performed. In the first set,
the interconnection of one module with the design is randomly per-
turbed to generate an error. This may result in more than one er-
ror between the erroneous module and other modules. Such type
of errors are common when system integrators are interconnecting
embedded cores in large SoCs [15]. In the second set, we arbitrarily
change the functionality of one, two or three modules at the RTL
level. When the design is later synthesized, these errors usually
translate into many erroneous primitive gates in the final netlist. In
both cases, the errors are inserted at deep hierarchy levels which
makes the debugging process harder.

Results for the first set of experiments for module interconnec-
tion errors are shown in Table 1. Column six contains the average
depth of the erroneous module found. Column seven shows the to-
tal runtime in seconds which includes all module-level debugging
iterations but excluding the final gate-level iteration discussed in
Example 3. We observe that the runtime increases with deeper er-
roneous modules because more debugging iterations are required
before a solution is identified. In column eight, the average number
of clauses in the compiled QBF is shown, while column nine shows
the memory requirements in MB. In all experiment, the method re-
turns with the erroneous module. From these results it is clear that
the memory requirement remains small even for large designs.

Table 2 presents experiments for the second set of experiments
that relates to functional changes in random modules at the HDL
level. Again, the approach is able to return the erroneous modules
in all cases. Debugging results are presented in a similar manner as
in Table 1 with the exception of columns 2, 7 and 12, which show
the average number of primitive gate errors resulting from errors in-
troduced at the RTL. These numbers demonstrate the practicality of
debugging approaches that can handle hierarchy information. This
information helps the designer localize the source of error irrespec-
tive of the number of erroneous primitive gates which may be large
and misguiding to a traditional debugging approach. In addition,
Table 2 shows that the proposed technique scales well for N > 1.
This is due to the iterative debugging methodology which prunes
large sections of the nonsolution space in each step, leaving fewer
modules to be examined in the subsequent iterations.



Table 1: QBF-based hierarchical debugging results for module interconnection errors

Ckt Circuit Description # of # of Max. Avg. Time # of Mem.
gates mods depth depth (sec) clauses (MB)

c1 Reaction timer circuitry 278 8 3 2.0 0.05 3,589 18.6
c2 Fibonacci number generator 723 69 3 2.8 0.12 5,396 19.0
c3 Microprocessor Datapath 2,159 11 3 2.7 0.85 29,737 22.2
c4 8-bit RISC Processor 3,141 21 3 2.0 0.65 35,465 26.8
c5 Microprocessor Datapath 5,484 50 5 4.4 3.56 62,319 28.7
c6 Microprocessor Datapath 10,205 46 4 3.2 2.88 102,401 33.5
c7 Microprocessor Datapath 11,265 155 4 3.1 2.61 71,754 33.2
c8 32-bit Pipelined RISC Processor 25,262 30 4 2.2 2.56 168,450 57.2
Avg. 7,360 48.8 3.6 2.8 1.66 59,888 29.9

Table 2: QBF-based hierarchical debugging results for module design errors

Single Erroneous Module (N = 1) Double Erroneous Modules (N = 2) Triple Erroneous Modules (N = 3)
Ckt # of Avg. Time # of Mem. # of Avg. Time # of Mem. # of Avg. Time # of Mem.

errors depth (sec) clauses (MB) errors depth (sec) clauses (MB) errors depth (sec) clauses (MB)
c1 2.6 2.1 0.06 3,132 18.6 8.7 2.0 0.07 3,868 19.2 12.0 2.2 0.08 3,952 19.8
c2 2.9 2.9 0.13 5,396 19.8 5.7 2.9 0.28 5,627 19.9 9.0 2.0 0.40 5,544 19.0
c3 6.9 2.9 0.69 29,573 22.3 12.2 2.0 0.93 31,993 22.3 40.0 2.1 0.94 30,441 22.2
c4 6.4 2.2 0.76 40,096 23.1 10.8 2.1 1.56 41,078 26.2 40.3 2.0 1.95 38,055 26.3
c5 5.4 4.1 3.08 63,805 28.7 14.4 3.1 4.02 65,750 28.7 35.5 4.0 5.30 69,972 28.9
c6 6.2 3.1 2.64 103,201 33.5 10.8 3.3 3.46 104,476 33.5 39.8 2.0 4.05 106,799 33.6
c7 6.5 3.0 2.66 71,766 32.9 13.6 3.1 3.21 72,449 33.1 42.0 3.0 3.62 74,625 33.2
c8 3.0 3.0 4.63 167,198 57.2 14.0 2.0 3.62 172,195 57.2 50.0 2.3 4.57 172,195 57.3
Avg. 5.0 2.9 1.83 60,520 29.5 11.3 2.6 2.14 62,179 30.0 33.6 2.45 2.61 62,697 30.0
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Figure 5: Memory requirements

To analyze the memory benefits from the QBF formulation, Fig. 5
depicts a comparison with a SAT-based flat gate-level netlist de-
bugging technique that replicates the circuit for each test vector.
The memory requirements are shown for experiments when a single
module is corrupt. For the two smallest circuits, the QBF formula-
tion requires slightly more memory due to the dominant size of the
test vector constraint hardware when q = 30. However, for all other
circuits where the size of the circuit dominates the problem, the
QBF formulation provides a clear advantage with up to 5.7 times re-
duction in memory. This confirms the linear memory requirements
of the approach as shown in subsection 3.1. It also demonstrates
the viability of the approach in a real-life industrial environment.
It should be noted, memory requirements of the method for higher
values of N are very similar to those in Fig. 5, as Tables 1 and 2 and
the analysis in subsection 3.1 also suggest.

6. Conclusion
Although most verification tasks have been automated, debug-

ging remains a manual resource-intensive procedure. This paper
proposes a debugging technique for multiple design errors in combi-
national circuits. It reduces the debugging problem into an instance
of QBF satisfiability where solvers can be utilized to guarantee per-
formance yet minimize memory requirements. Another advantage
is that it uses the design’s hierarchy information to expedite the pro-

cess of debugging. A comprehensive suite of experiments on real-
life designs confirm its effectiveness as a complementary process to
formal verification and promotes further work in the field.
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