
Adaptive Simulation with Virtual Prototypes for RISC-V:
Switching Between Fast and Accurate at Runtime

Vladimir Herdt1 Daniel Große1,2 Sören Tempel3 Rolf Drechsler1,3
1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2Chair of Complex Systems, Johannes Kepler University Linz, Austria
3Institute of Computer Science, University of Bremen, Bremen, Germany

Vladimir.Herdt@dfki.de, daniel.grosse@jku.at, tempel@uni-bremen.de, drechsle@informatik.uni-bremen.de

Abstract—Recently, Virtual Prototypes (VPs) were introduced
for the emerging RISC-V Instruction Set Architecture (ISA) and
become an important part of the growing RISC-V ecosystem.
A central component of the VP is the Instruction Set Simulator
(ISS). VPs should provide a high performance and at the same
time yield accurate results, which are conflicting requirements.

To tackle this problem, we present an efficient VP-based
adaptive simulation that is tailored for the RISC-V ISA and
allows to seamlessly switch the accuracy setting in the ISS at
runtime. This enables to selectively simulate the application as
fast as possible and as accurate as necessary. In this paper we
focus on the performance impact of different accuracy settings
and leave the evaluation of accuracy results for future work. Our
RISC-V experiments demonstrate that up-to 543x speed-up is
possible with a JIT-based setting in the ISS.

I. INTRODUCTION

R ISC-V is an open and royalty-free Instruction Set Architec-
ture (ISA) that features an extremely modular design and

gained enormous momentum in recent years. RISC-V became a
game changer for embedded systems in several applications such
as Internet-of-Things (IoT) to build highly specialized solutions.
Beside a thorough functional validation, performance evaluations and
optimizations are crucial to meet the application specific demands.

Therefore, mainly simulation-based methods are employed. The
RISC-V ecosystem provides several simulators that enable SW execu-
tion early in design flow. In particular, Virtual Prototypes (VPs) play a
very important role here [1], [2]. VPs are essentially abstract models
of the entire HW platform and predominantly created in SystemC
TLM (Transaction Level Modeling) [3], [4]. A central component of
the VP is the Instruction Set Simulator (ISS), which is an abstract
model of the processor (and hence responsible to fetch, decode and
execute instructions one after another). By integrating appropriate
timing models, VPs can be used for performance evaluations.

In general, VPs should provide a high simulation performance
(to deal with complex SW) and at the same time yield accurate
results (to do performance evaluations and optimizations), which are
two conflicting requirements. In order to deal with this problem, a
common approach is to build two (or more) separate VP models
with different accuracy settings and use them accordingly. A fast VP
model to perform functional validation and an accurate VP model to
do performance evaluations. However, this approach becomes highly
inefficient when only (a small) part(s) of the SW needs to be analyzed
accurately, e.g. the execution of a specific kernel module in the
Linux Operating System (OS), or a particular recurring interaction
with a peripheral. Furthermore, due to the rising (SW) complexity
this problem is further amplified. Thus, it is crucial to build efficient
solutions that can adapt the accuracy in the VP on demand at runtime.
Contribution: We present an efficient VP-based adaptive simulation
tailored for RISC-V that allows to seamlessly switch the accuracy set-
ting in the ISS at runtime. The configuration for switching, i.e. when to

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerSys under con-
tract no. 01IW19001, and within the project Scale4Edge under contract
no. 16ME0127.

perform a particular switching, is user-provided. Our approach allows
to scale between a high-speed Just-in-Time (JIT) compilation-based
setting down to a Cycle-Accurate (CA) interpreter-based setting in
the ISS and is tailored for SystemC-based VPs. Carefully designed
interfaces allow to regularly synchronize with the SystemC kernel
and to collect required timing information in the ISS. In addition,
the ISS is designed to work on a single execution state that stays
consistent between switching. Thus, switching is a very lightweight
operation that can be executed with a minimal performance overhead.
In this paper we focus on the performance impact of different accuracy
settings and leave evaluation of accuracy results for future work. Our
RISC-V experiments demonstrate that up-to 543x speed-up is possible
with a JIT-based setting in the ISS. To the best of our knowledge, our
solution is the only freely available SystemC-based VP that is capable
of booting Linux1.

II. RELATED WORK

Considering RISC-V, there exist a number of simulators such
as the reference simulator SPIKE [5], RISCV-QEMU [6], RV8 [7],
DBT-RISE [8] or Renode [9]. They differ in their implementation
techniques and intended use-case which range from mainly pure CPU
simulation (SPIKE, RV8) to full-system simulation (QEMU, DBT-
RISE) and even support for multi-node networks of embedded systems
(Renode). However, they are mainly designed to simulate as fast as
possible and thus do not offer a CA performance evaluation. A full-
system simulator that can provide accurate performance evaluation
results, and recently got RISC-V support, is gem5 [10], [11]. Another
viable option is the open source RISC-V VP [12], which is imple-
mented in SystemC TLM. However, neither gem5 nor RISC-V VP
support JIT-based techniques and hence the performance is signif-
icantly reduced compared to the high-speed simulators. In addition,
none of the RISC-V simulators supports switching the timing accuracy
setting at runtime. Commercial VP tools, e.g. Synopsys Virtualizer or
Mentor Vista, might also support RISC-V in combination with fast
and accurate timing models but their implementation is proprietary.
Finally, there are approaches to formalize the RISC-V ISA semantics,
e.g. SAIL [13] and GRIFT [14], which also provide or can generate
simulator backends. However, they only offer limited performance
and are not designed for timing accurate simulations.

Looking beyond RISC-V, the general idea of using a configurable
simulator is not new. For example, [15] present a (full-system)
simulator for the PowerPC architecture that can be extensively con-
figured through compile time flags and command line arguments.
In [16] a JIT-based re-implementation is described to speed-up pure-
functional simulations. Fine-grained configuration of simulators (via
generation of different models) to meet application specific demands
is discussed in [17]. [18] present an adaptive simulation that can
learn an approximate timing model (in combination with a JIT-based
execution) to deliver approximate timing results. However, a VP-
based runtime adaptive simulation that scales between CA and high-
performance JIT-based execution tailored for RISC-V is not available
to the best of our knowledge.

1Visit http://www.systemc-verification.org/risc-v to find our open source
RISC-V VP and also our most recent RISC-V related approaches.

http://www.systemc-verification.org/risc-v


There have been proposed some approaches for runtime adaptive
simulations in the context of VPs. [19] proposes to create TLM (bus)
models at different levels of abstraction and switch between them at
runtime (based on a user-provided configuration) to obtain fast and
accurate results. [20] is conceptually similar but also considers power
modeling in addition to performance evaluations. These methods are
complementary to our approach, since they consider the accuracy
of TLM transactions while we focus on the ISS. Other approaches
leverage runtime adaptive simulations to switch between an ISS-based
and RTL-based [21] as well as gate-level simulation [22] for the
purpose of fast and accurate fault injection. These approaches operate
on a different abstraction level than ours.

III. BACKGROUND: SYSTEMC AND TLM
SystemC TLM is an industry-proven modeling standard to create

VPs [1]. SystemC is not a new language, rather a C++ class library
which includes an event-driven simulation kernel [3]. The structure
of a SystemC design is described with ports and modules, whereas
the behavior is modeled in processes which are triggered by events.
Communication between SystemC modules is abstracted using TLM
transactions at the cost of timing accuracy, but significant improve-
ments in simulation speed, i.e. up to a factor of 1,000 in comparison
to an RTL simulation. Transactions are routed on a bus system based
on their address from an initiator to a target socket as defined in the
SystemC TLM-2.0 standard.

Two optimization techniques are commonly utilized to improve the
SystemC simulation performance: Direct Memory Interface (DMI)
and Time Quantum (TQ). DMI allows to bypass the bus system for
specific address ranges to directly and very efficiently access the
memory through a pointer (instead of routing a TLM transaction).
TQ allows to (locally) postpone the synchronization with the Sys-
temC kernel by running ahead of the (global) simulation time for
a configurable TQ value (e.g. to avoid synchronization after every
executed instruction in the ISS).

IV. ADAPTIVE VP-BASED SIMULATION

Here we present our VP-based adaptive simulation approach. We
start with an overview (Section IV-A), then present the implementation
of JIT (Section IV-B) and switching (Section IV-C).

A. Core Architecture
Fig. 1 shows an architecture overview with the most relevant

components and relations between them. At the center is the ISS.
The ISS essentially consists of three parts: state, interpreter and JIT.
The state includes the (RISC-V) ISA state, i.e. Program Counter
(PC) and register values, as well as interpreter and JIT related data
structures. The interpreter fetches, decodes and executes instructions
one after another. JIT enables to speed-up execution by translating
instructions directly into host assembler instructions (alongside the
interpreter execution), and re-using them henceforth.

The memory interface (Fig. 1 center) is leveraged by the ISS
for instruction fetching as well as processing of load and store
instructions. It works as follows: First the memory access address
is translated from a virtual to a physical (v2p) address by using the
Memory Management Unit (MMU). In systems without MMU or if
the MMU is currently disabled, v2p is a no-op (since the system
already works with physical addresses). Then the resulting physical
address is compared against the available DMI address ranges, i.e. list
of (start,end) address pairs. If it does match, the memory access is
directly processed via DMI, thus bypassing the TLM bus. Otherwise,
the memory access is translated into a TLM transaction and routed
through the bus to the target.

Both the ISS and memory interface can update the core tim-
ing model. It provides a set of interface functions tailored for
the interpreter- and JIT-based execution settings. The timing model
utilizes SystemC quantum keeper to synchronize with the SystemC
kernel after a (configurable) TQ.

JIT 

State 

Interpreter 

JIT 

ISS 

Memory 
Interface 

MMU 

TLM 2.0
Bus 

Load / Store 
v2p Buffer

JIT Compiler 
(RISC-V to x64) 

TLM Quantum 
Keeper 

Core Timing 
Model 

DMI 

Peripherals Memories 

v2p 

PTE load/store 

update 

update 

use 

access 
query sync 

update use 

use 

TLM transaction 

route TLM transaction 

bypass 
bus 

use 

use use 

query 

access 

Fig. 1: Architecture overview

The JIT setting in the ISS leverages a JIT compiler (that in our
case translates RISC-V instructions to x86 x64 assembly). The JIT
compiler has access to the ISS state that is shared with the interpreter-
based setting. It generates x86 x64 assembly instructions that directly
read and write that shared state to ensure that the state stays consistent
between switching. For optimization, the JIT compiler uses DMI.

Depending on the current setting, the main ISS simulation loop
performs either an interpreter-based or JIT-based execution step in
each iteration. In the following we present more details on the JIT
implementation and how switching is implemented.

B. JIT-based Execution Setting
Fig. 2 shows the JIT-based execution step. Compared to the

interpreter, a JIT step operates on Basic Blocks (BBs) instead of single
instructions. A BB is essentially a linear sequence of instructions that
ends with a jump or branch. First, the (virtual) PC is translated into a
Physical PC (PPC) address in Line 3. In case the MMU is disabled
or not available, this is a no-op.

If a JIT BB is already available for PPC, it will be directly executed
(Line 9). Otherwise, the BB will be collected, compiled and stored
for subsequent reference (Line 11). During collection, the readily
available interpreter functions are used to directly execute, the one
after another collected, basic block instructions. For performance
reasons we manage two mappings for the BB lookup (Line 7). A
fixed size (4096) Direct Mapped Cache (DMC) that is queried first
and then a hash map fallback if PPC is not in DMC.

The BB is executed by calling the JIT compiled function (Line 15).
It is compiled to directly operate on the ISS state, in particular the
registers and PC. Hence, after the function returns (Line 15), the
ISS state is fully consistent with the interpreter. Thus, execution can
swap directly and arbitrary between the JIT-based and interpreter-
based setting after each step.

A trap can interrupt the JIT execution (and hence cause a BB to
leave early in Line 15) and will be immediately processed after the
trapped instruction. Please note, a trap can also be caused by the v2p
function of the MMU in Line 3. After each JIT step interrupts are
checked and processed (Line 12).

Finally, we combine trace-based and traditional link optimization
techniques (which are common in optimizing JIT-based compilers) to
link multiple BBs together at runtime. We place exit guards in the JIT
code at backward jumps to ensure a regular synchronization with the
SystemC kernel. Both link optimizations work in-place, i.e. the new
compiled function overwrites the existing BB function (Line 19). We
start the link optimization process once the execution count of a BB
reaches a certain threshold.

C. Switching Settings
A switching configuration essentially provides the initial start

setting as well as settings for specific parts of the application, e.g.



1 function ISS::jit run step()
2 try // PPC: Physical PC, v2p: virtual
3 PPC ← mmu::v2p(PC, FETCH) // to physical

4 catch (SimulationTrap e) // setup jump to
5 process trap(e) // trap handler (sets PC)
6 return // continue with PC at trap handler

7 bb ← BB lookup(PPC) // if JIT compiled BB
8 if bb 6= nil then // is available for PPC
9 BB exec(bb) // then, execute the BB

10 else // otherwise, run the interpreter and
11 BB collect(PPC) // collect the BB alongside

12 process interrupts() // similar to interpreter

13 function ISS::BB exec(bb)
14 // execute compiled bb, return early on trap
15 num cycles ← bb::compiled fn(PC)
16 // update timing, maybe sync. with SystemC
17 timing::add cycles(num cycles)
18 // optional: try to optimize bb in place
19 BB link optimize(bb)

Fig. 2: ISS JIT setting execute single step

functions or PC ranges. This can be implemented by providing
switching commands, which are pairs of (trigger-PC, target-setting).
It means to switch at runtime to the target setting in the ISS, when
PC equals trigger-PC.

In general, switching can be implemented in one of two ways: 1)
either by embedding the switching commands into the SW application,
or 2) by passing/embedding the switching commands into the ISS.
Both approaches can be implemented in different ways and have
certain trade-offs. In general, embedding switching commands into
the SW provides very precise control in combination with a high
performance. However, it requires to re-compile the SW (which also
means that source code must be available) and modifies the SW
(which means the analyzed SW binary is slightly different to the
actual SW binary). On the other hand, passing them to the ISS is
more flexible and does not require to modify the SW application.
However, it can cause additional performance overhead and may not
always be applicable (e.g. when executing an application in Linux, it
may not be clear at which address the application will be loaded).

In this paper we used the embedding approach for switching by
using a custom system call (syscall). In RISC-V a syscall is triggered
by the ECALL instruction and arguments are (typically) passed in
the registers a7 (syscall number) as well as a0 to a3 (arguments for
the syscall to select target setting). The syscall (instruction) is then
intercepted in the ISS and processed accordingly.

V. EXPERIMENTS

We have implemented our approach for adaptive simulation on
top of the open source SystemC-based RISC-V VP [23], [24]. We
used the asmjit [25] library as backend in our JIT compiler. First,
we present a performance evaluation in Section V-A. It shows the
performance impact of the different ISS execution settings in the
SystemC-based VP, and it compares the performance against other
RISC-V simulators. Then (Section V-B), we discuss a Linux-based
case study that demonstrates the applicability and benefits of our
approach. All experiments have been performed on a Linux system
with an Intel i5-7200U processor. Please note, we focus on the
performance impact of different accuracy settings and leave the
evaluation of accuracy results for future work.

A. Performance Evaluation
We consider six different ISS settings in the VP for this evaluation:

Base, +DMI, +TQ, +IA, +JBB, +JL. Base provides the most accurate
simulation setting. It neither uses TQ nor DMI and integrates an
example CA timing model (that considers pipeline, branch prediction

and caching effects [26]). +DMI extends Base with DMI optimization
for instruction fetching and main memory accesses. +TQ extends
+DMI with TQ optimization to synchronize only every 10,000 cycles
with the SystemC kernel. +IA modifies +TQ to replace the CA timing
model with a lightweight Instruction-Accurate (IA) timing model (i.e.
use a fixed number of cycles per instruction). +JBB extends +IA with
a JIT-based ISS that translates single BBs. +JL extends +JBB with
common BB link optimization. We use a JIT quantum of 10,000 cycles
for +JL to match the TQ. In addition to comparing the ISS settings,
we provide a performance comparison to four RISC-V simulators
(designed for different use-cases, see Section II) in order to better
relate the VP performance results: QEMU, SPIKE, gem5 and SAIL.

We use Embench [27], a standard benchmark suite specifically
targeting embedded devices, for the evaluation. It is a collection
of real instead of synthetic programs and the benchmarks have
a varying degree of computational, branching and memory access
complexity.Table I shows the results. The first column shows the
benchmark name. The next four columns show the number of executed
instruction (#X, measured on the RISC-V VP with +IA setting) and
their classification into computational (#C), memory access (#M) and
jump/branch (#J) instructions. The remaining ten columns report the
execution time (in seconds) for the respective simulator and setting.
Please note that we compare the performance difference of each
setting in isolation in this performance evaluation, thus no actual
accuracy switching occurs here (though switching support is available
in the ISS). The last row shows the overall average performance in
MIPS (Million Instructions Per Second).

It can be observed that both +DMI and +TQ optimizations have
a significant impact on the execution performance, between 1.5x and
1.8x as well as 3.0x and 4.6x, depending on the benchmark. The CA
timing model has an overhead of around 58% to the IA timing model
(based on the MIPS). It needs to regularly update (per instruction) and
synchronize the timing effects with the SystemC-based simulation.
+JBB is already up to 37.6x faster than +IA (see the nettle-sha256
benchmark). +JL further boosts performance, it is up to 7.8x and
57.2x faster than +JBB and +IA, respectively (see the nsichneu and
nettle-sha256 benchmark). +JL has an average of around 1040 MIPS.
Overall, this evaluation shows the performance differences between
the ISS settings and demonstrates the high performance of the JIT-
based setting (+JL is up to 543x faster than the CA Base setting, see
the aha-mont64 benchmark).

QEMU is a very mature and highly optimized simulator, specifi-
cally designed for high-speed pure functional simulations. Thus, +JL
is expectedly slower than QEMU (though only around 1.4x, based on
MIPS) due to the performance overhead of the SystemC kernel and
the more accurate SystemC-based simulation timing.

Compared to SPIKE (high-speed interpreter-based reference simu-
lator) and gem5 (designed for architectural exploration and analysis),
the +JL setting is 7.4x and 416.0x faster, respectively (1040 MIPS
compared to 141.4 MIPS and 2.5 MIPS). gem5 is a large and rather
generic platform which aims to support different architectures besides
RISC-V which causes additional overhead.

Compared to SAIL, +JL is consistently much faster (more than
three orders of magnitude), which is not unexpected due to the focus
on formal reasoning of SAIL.

B. Switching Case Study: Linux Application
As a case study, we consider a Linux-based embedded applica-

tion. It consists of two parts: a userland program that contains the
application logic, and a Linux kernel driver which provides access
to the peripherals. The application logic contains a processing loop
that copies data from a sensor peripheral to a UART peripheral. The
processing loop is repeated multiple times and the sensor generates
random data. The userland program accesses the peripherals through
a character device provided by the Linux kernel driver. The character
device in turn enables to interact with the peripherals through memory
mapped I/O. Please note, this embedded application acts as an



TABLE I: Experiment results - all execution times reported in seconds, number of executed instructions (#X) in Billions (B).
#C, #M and #J classify #X into computational, memory access and jump/branch instructions. T.O. = Time Out (2h = 7200s).

Benchmark #X
Instruction Types RISC-V VP Other RISC-V Simulators
#C #M #J Interpreter-based JIT-based

Base +DMI +TQ +IA +JBB +JL QEMU SPIKE gem5 SAIL
aha-mont64 4.53B 90% 0% 10% 1195 818 226 121 9.9 2.2 1.2 18.9 1686 T.O.
crc32 4.18B 75% 13% 12% 1183 796 174 106 9.3 2.4 2.6 18.9 1857 T.O.
cubic 6.80B 71% 17% 12% 2047 1334 412 244 28.6 10.8 5.9 180.2 1711 T.O.
edn 3.56B 61% 29% 10% 1092 704 178 95 7.9 2.7 1.9 17.3 1641 T.O.
huffbench 2.47B 53% 26% 21% 798 493 117 73 9.6 3.3 1.9 12.2 1200 7083
matmult-int 3.18B 50% 38% 12% 1066 622 150 94 7.9 2.5 2.0 16.6 1502 T.O.
minver 5.01B 66% 16% 18% 1458 958 277 183 20.8 5.3 3.8 68.8 2198 T.O.
nbody 3.11B 76% 9% 15% 864 570 171 106 11.3 2.6 1.8 53.7 890 T.O.
nettle-aes 4.45B 78% 20% 2% 1279 813 218 139 4.3 2.5 2.1 21.5 ERR. T.O.
nettle-sha256 4.05B 84% 14% 2% 1146 710 207 143 3.8 2.5 2.0 108.1 1812 T.O.
nsichneu 2.24B 0% 55% 45% 732 423 132 86 58.4 7.5 14.5 75.9 1190 T.O.
picojpeg 3.70B 60% 29% 11% 1134 684 201 121 9.4 3.4 2.3 29.0 1596 T.O.
qrduino 2.87B 64% 20% 16% 869 543 140 90 9.5 3.1 2.6 15.4 1273 T.O.
sglib-combined 2.49B 37% 37% 26% 794 470 136 86 12.0 4.1 2.8 15.2 ERR. T.O.
slre 2.91B 44% 31% 25% 893 523 157 101 13.7 3.2 2.5 16.3 1241 T.O.
st 3.88B 76% 10% 14% 1116 657 211 141 10.6 3.5 2.6 37.3 1090 T.O.
statemate 1.79B 39% 52% 9% 578 326 107 69 4.4 3.0 2.0 10.2 810 6343
ud 3.32B 62% 19% 19% 984 586 176 113 12.9 11.2 2.2 20.5 1414 T.O.
wikisort 1.30B 58% 25% 17% 389 227 69 45 4.3 2.1 1.4 15.0 ERR. 4473

Overall Performance (average MIPS): 3.3 5.4 19.2 30.8 387.3 1040 1486 141.4 2.5 0.3

example that, in addition to the HW and SW, also integrates the OS
and driver layer. It starts after Linux has booted.

The goal in this example scenario is to carry out a performance
analysis of the embedded application, which includes the interaction
with the Linux kernel driver and low-level peripheral access, inside of
the Linux execution environment. Our approach allows to do so very
efficiently by using the high performance +JL setting for the boot
(and shutdown) of Linux and the CA Base setting for executing the
application. Therefore, we instrumented the userland program with
inline assembler instructions, that trigger a specific system call for
switching the execution setting (i.e. choice 1 from Section IV-C).
Upon entry, the Base setting is selected and upon exit, the +JL
setting is restored. By switching settings, our approach reduces the
performance analysis time by a factor of 24.3x while still executing
the application with the CA timing. The overall execution time reduces
from 63.2 to 2.6 seconds. The accuracy tradeoff for the performance
gain is a less accurate timing result for the Linux boot (and shutdown),
though this has no impact on our goal in carrying out a performance
analysis of the actual application.

Please note, the general idea of this case-study is applicable
independent of the actual employed CA timing model (which is
highly platform dependent due to its non-functional nature). Finally,
switching settings is a very lightweight operation with essentially
negligible performance overhead that can be placed on a very fine
granular basis for precise control.

VI. CONCLUSION AND FUTURE WORK

We presented an efficient VP-based adaptive simulation for RISC-
V that allows to seamlessly switch the accuracy setting in the ISS
at runtime. We demonstrated the high performance of our JIT-based
setting and the efficacy in reducing the performance evaluation time
on a Linux case study. Next, we plan to:

• Provide complete accuracy results and evaluate the VP-based
accuracy against other RISC-V simulators.

• Use a more extensive benchmark set for the performance eval-
uation that also considers sophisticated OS benchmarks.

• Consider advanced JIT optimizations for further speed-up, keep-
ing a regular synchronization with the SystemC kernel.

• Integration of adaptive TLM models (beside the ISS) to enable
adaptive simulations with full platform settings.

• Support for easy specification and integration of custom RISC-V
instruction set extensions with the JIT engine.

REFERENCES
[1] T. De Schutter, Better Software. Faster!: Best Practices in Virtual Prototyping.

Synopsys Press, March 2014.
[2] V. Herdt, D. Große, and R. Drechsler, Enhanced Virtual Prototyping: Featuring

RISC-V Case Studies. Springer, 2020.
[3] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666, 2011.
[4] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer, 2010.
[5] “SPIKE RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.
[6] “RISCV-QEMU,” https://github.com/riscv/riscv-qemu.
[7] “RV8,” https://rv8.io, accessed: 2018-05-13.
[8] “DBT-RISE,” https://github.com/Minres/DBT-RISE-Core.
[9] “Renode,” https://renode.io/.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, pp. 1–7, 2011.

[11] “gem5,” https://github.com/gem5/gem5.
[12] “RISC-V virtual prototype,” https://github.com/agra-uni-bremen/riscv-vp.
[13] “Riscv sail model,” https://github.com/rems-project/sail-riscv.
[14] “GRIFT - galois RISC-V ISA formal tools,” https://github.com/GaloisInc/grift.
[15] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rock-

hold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight, K. Sudeep,
E. Van Hensbergen, and L. Zhang, “Mambo: A full system simulator for the
powerpc architecture,” SIGMETRICS Perform. Eval. Rev., 2004.

[16] A. Kumar, A. Gheith, and M. Kistler, “Experiences with dynamic binary
translation in a full system simulator,” in IPDPS, 2013, pp. 2168–2175.

[17] G. Martin, N. Nedeljkovic, and D. Heine, Configurable, Extensible Processor
System Simulation. Springer US, 2010, pp. 293–308.

[18] N. Topham, B. Franke, D. Jones, and D. Powell, Adaptive High-Speed Proces-
sor Simulation. Springer US, 2010, pp. 145–159.

[19] M. Radetzki and R. S. Khaligh, “Accuracy-adaptive simulation of transaction
level models,” in DATE, 2008, pp. 788–791.

[20] G. Beltrame, D. Sciuto, and C. Silvano, “Multi-accuracy power and perfor-
mance transaction-level modeling,” TCAD, vol. 26, 2007.

[21] D. Mueller-Gritschneder, U. Sharif, and U. Schlichtmann, “Performance and
accuracy in soft-error resilience evaluation using the multi-level processor
simulator ETISS-ML,” in ICCAD, 2018, pp. 1–8.

[22] M. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari, and S. V. Adve,
“Accurate microarchitecture-level fault modeling for studying hardware faults,”
in HPCA, 2009, pp. 105–116.

[23] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and configurable
RISC-V based virtual prototype,” in FDL, 2018, pp. 5–16.

[24] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-V based virtual
prototype: An extensible and configurable platform for the system-level,” JSA,
2020.

[25] “Complete x86/x64 JIT and AOT assembler for C++,” https://github.com/
asmjit/asmjit.

[26] V. Herdt, D. Große, and R. Drechsler, “Fast and accurate performance evalua-
tion for RISC-V using virtual prototypes,” in DATE, 2020, pp. 618–621.

[27] “Embench: A modern embedded benchmark suite,” https://www.embench.org/.

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-qemu
https://rv8.io
https://github.com/Minres/DBT-RISE-Core
https://renode.io/
https://github.com/gem5/gem5
https://github.com/agra-uni-bremen/riscv-vp
https://github.com/rems-project/sail-riscv
https://github.com/GaloisInc/grift
https://github.com/asmjit/asmjit
https://github.com/asmjit/asmjit
https://www.embench.org/

	Introduction
	Related Work
	Background: SystemC and TLM
	Adaptive VP-based Simulation
	Core Architecture
	JIT-based Execution Setting
	Switching Settings

	Experiments
	Performance Evaluation
	Switching Case Study: Linux Application

	Conclusion and Future Work
	References-0.1cm

