
CheckSyC: An Efficient Property Checker for RTL
SystemC Designs

Daniel Große Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

{grosse, drechsle}@informatik.uni-bremen.de

Abstract— To cope with the increasing complexity of today’s
circuits and systems new design methodologies are needed.
Modeling at higher levels of abstraction and hardware/software
integration become more and more important. A language that
offers this features is SystemC. But besides efficient modeling,
the correct functional behavior has to be ensured.

In this paper we present the property checker CheckSyC for
SystemC descriptions on the Resigter Transfer Level (RTL). A
SystemC design and a temporal property are converted into a
satisfiability (SAT) problem. If the SAT problem is unsatisfiable
the property holds. To demonstrate the efficiency of CheckSyC
different designs are studied.

I. INTRODUCTION

The steadily increasing complexity of modern circuits and
systems creates many new challenges for today’s design
process. While classical circuit design approaches are based
on dedicated hardware description languages, like e.g. Verilog
or VHDL, modeling on a higher level of abstraction on the
one hand and easier integration of software on the other hand
becomes more and more important.

A language that addresses these issues is SystemC [1], [2].
As a C++ class library SystemC enables modeling of systems
at different levels of abstraction starting at the functional
level and ending at a cycle-accurate model. For hardware
modeling the SystemC library adds concepts like e.g. timing
and concurrency. This allows hardware/software co-design in
the same environment. Furthermore fast simulation at an early
stage of the design process becomes possible.

In the meantime it has been observed that assuring the
correct functional behavior becomes the dominating factor of
a successful design. Today in many circuit design projects
already up to 80% of the overall design costs are due to veri-
fication. As alternatives to classical simulation formal methods
have been proposed [3]. The main idea of formal approaches
is to prove the functional correctness instead of simulating
some vectors. In equivalence checking formal tools are state-
of-the-art [4]. In case of SystemC, examples of simulation
based techniques are [5], [6]. First formal approaches to check
the behavior of a circuit description in SystemC have been
reported in [7], [8]. But these approaches only covered a
small fraction of the SystemC language and suffered from
complexity issues.

In this paper we propose an efficient property checking ap-
proach for SystemC designs described on the register-transfer
level (RTL). The property checker has been implemented as

the tool CheckSyC1. In contrast to previous approaches (see
e.g. [8]), where a gate level based description was required,
our approach works on a higher level of abstraction and can
also process complex statements. This is due to a new generic
front-end [9]. The front-end reads in a SystemC description
and builds a representation of the design in form of an
Abstract Syntax Tree (AST). The AST is then transformed
in consecutive translation steps into a Finite State Machine
(FSM) representation. The FSM representation of the SystemC
design together with the property to be proven is translated to
a Boolean decision problem, which is then solved using a SAT
solver. The technique we use is a variant of Bounded Model
Checking (BMC) [10]. Experimental results demonstrate that
the new approach is very efficient and compared to the BDD-
based approach from [8] gives speed-ups of several orders of
magnitude.

II. PRELIMINARIES

In the following circuits and systems are modeled in Sys-
temC. Therefore, first, a short overview on SystemC is given.
Then the formalism for specification of temporal properties is
described.

A. SystemC
The main features of SystemC for modeling a system are

based on the following:
• Modules are the basic building blocks for partitioning a

design. A module can contain processes, ports, channels
and other modules. Thus, a hierarchical design descrip-
tion becomes possible.

• Communication is realized with the concept of interfaces,
ports and channels. An interface defines a set of methods
to access channels. Through ports a module can send or
receive data and access channel interfaces. A channel
serves as a container for communication functionality,
e.g. to hide communication protocols from modules.

• Processes are used to describe the functionality of the
system, and allow expressing concurrency in the system.
They are declared as special functions of modules and can
be sensitive to events, e.g. an event on an input signal.

• Hardware specific objects are supplied, like e.g. signals,
which represent physical wires, clocks, and a set of data-
types useful for hardware modeling.

1CheckSyC is a complete verification environment that beside property
checking (PC) also supports equivalence checking and simulation based
verification. In the following we restrict ourselves to the description of the
PC component.

Besides this, SystemC provides a simulation kernel. The
functionality is similar to traditional event-based simulators.
Note that a SystemC description can be compiled with a
standard C++ compiler to produce an executable specification.

B. Property Language

Describing temporal properties for verification can be done
in many different ways, since there exist several languages
and temporal logics. In the following we use a notation
similar to the property checker from Infineon Technologies
AG (see e.g. [11], [12] for more details). A property consists
of two parts: a list of assumptions (assume part) and a list
of commitments (proof part). An assumption/commitment has
the form

at t+a: expression;
or during[t+a,t+b]: expression;
or within[t+a,t+b]: expression;

where t is a time point, and a, b ∈ N are offsets. If all
assumptions hold, all commitments in the proof part have to
hold as well. Since a and b are finite a property argues only
over a finite interval which is called observation window.

Example 1: The property test says that whenever signal
x becomes 1, two clock cycles later signal y has to be 2.
theorem test is
assume:

at t: x = 1;
prove:

at t+2: y = 2;
end theorem;

In general a property states that whenever some signals have a
given value, some other (or the same) signals assume specified
values. Of course it is also possible to describe symbolic
relations of signals. Furthermore the property language allows
to argue over time intervals, e.g. that a signal has to hold
in a specified interval. This is expressed by using the key-
words during and within, whereas during states that
the expression has to hold all the times in the interval and
with within the expression has to hold at least once in
the specified interval. Also a set of advanced operators and
constructs is provided to express complex constraints more
easily.

III. PROPERTY CHECKING

In this section we present the property checker CheckSyC.
For a SystemC design and a set of properties the proposed
approach works as follows (see also Figure 1):

1) The design is transformed into an internal FSM repre-
sentation.

2) A single property and the FSM representation is trans-
lated into a BMC problem.

3) The BMC problem is checked for satisfiability to decide
if the property holds or not.

These steps are now discussed in more detail.

Bounded model checking problem

Counter-example

PropertySystemC
Design

SystemC

Satisfiable ?
no yes

Property holds

Frontend

Property Checker

Fig. 1. Property checking work flow

A. SystemC Frontend

The frontend is based on a parser for SystemC [9] which has
been developed to be generic in order to allow an application
in different areas, like e.g. verification or visualization.

The parser produces an easy-to-process representation of a
SystemC design in form of an Abstract Syntax Tree (AST).
The tool PCCTS (Purdue Compiler Construction Tool Set)
[13] was used to build the parser. PCCTS enables the de-
scription of the syntax of SystemC by a grammar, provides
facilities for AST construction and finally generates a parser.
In consecutive translation steps the AST of a SystemC design
is transformed into a FSM representation.

For the transformation of an RTL SystemC description into
the corresponding FSM representation SystemC is restricted
to a synthesizable subset of possible C++ and SystemC
constructs (see e.g. [14]). To prevent difficulties already known
from high-level-synthesis C++ features like dynamic memory
allocation, pointers, recursions or loops with variable bounds
are not allowed. In the same way some SystemC constructs
have no direct correspondence on the RTL and are excluded,
like e.g. SystemC channels. For channels that obey certain
restrictions the FSM transformation can be extended by pro-
viding a library of RTL realizations.

Supported are all other constructs that are known from
traditional hardware description languages. This comprises dif-
ferent operators for SystemC-datatypes, hierarchical modeling
or concurrent processes in a module. Additionally, the new-
operator is allowed for instantiation of submodules to allow
e.g. for a compact description of scalable designs.

B. SAT Formulation of Property Checking

We now describe how a property checking problem for-
mulated on top of the property language introduced in the
previous section can be translated into a satisfiability problem.
The initial sequential property checking problem is converted
into a combinational one by unrolling the design, i.e. by
identifying the current state variables with the previous next
state variables of the circuit.

A BMC instance of a property p arguing over the finite
interval [t, t + c] for a design D is given by:

b =
c−1∧
j=0

Tδ(i(t + j), s(t + j), s(t + j + 1)) ∧

¬ p(i(t), s(t), o(t), . . . , i(t + c), s(t + c), o(t + c))

with
• i(t) = (it1, . . . , i

t
m) inputs at time point t,

• s(t) = (st
1, . . . , s

t
n) states at time point t,

• o(t) = λ(i(t), s(t)) outputs at time point t and
• Tδ the transition relation.

The BMC instance b depends only on the states s(t) and the
inputs i(t), . . . , i(t + c). It is unsatisfiable if for all states s(t)
and all input sequences i(t), . . . , i(t + c) the property p over
the interval [t, t + c] holds for the design D. If b is satisfiable
a counter-example for the property p has been found.

In the rest of this section we explain the realization of
the presented techniques for the property checker. CheckSyC
takes the FSM representation of the SystemC design and
a property as input. Then the property is translated into
an expression using only inputs, states and outputs of the
SystemC design annotated with time points. The unrolled FSM
representation and the property expression are converted into a
bit-level representation. Here hashing and merging techniques
for minimization are used. The bit-level representation is given
to the SAT solver zChaff [15] which has been integrated into
CheckSyC. In case of a counter-example a waveform in VCD
format is generated to allow for an easy debugging.

IV. EXPERIMENTS

All experiments have been carried out in the same system
environment on a Athlon XP 2800 with 1 GByte of main
memory. A run time limit of 1 CPU hour has been set. In the
following all given run times do not include the time needed
for generation of the FSM representation from a SystemC
description, since this has to be done only once for each
design. Thus, the resulting FSM representation of a design
is stored in a file.

In a first example we studied a FIR-filter of scalable
width. Scalable are the number of coefficients and the bit-
width of data. A block-level diagram of the FIR-filter is
shown in Figure 2. Incoming data is stored in a shift register
(d[0],...,d[n-1]), coefficients (c[0],...,c[n-1])
are stored in a register array. The result is provided at the
output dout. The SystemC description contains one process
to create the shift-register and another process that carries out
the calculations. The FIR-filter uses a saturation arithmetic,
when the size of the output exceeds a maximum. The coeffi-
cients are provided by an array of constants. In Figure 3 the
most complex property calc for the FIR-filter is shown. With
calc the correctness of the calculation of a FIR-filter instance
with n = 8 and an input/output bit-width of 8 is proven.
The exact calculation is assigned to the variable exact. With
the prev operator values of variables of previous time points
can be accessed. In total it is proven that the data output is
set to the maximum or computes the exact value under the
assumption of no reset. In Table I the results for three different

+

d[1] d[2] d[n]

c[1] c[2] c[n]

x x x

+

din

dout

reset

Fig. 2. FIR-filter: Block level diagram

theorem calc is
freeze:

exact = (
c[0]*prev(din,2) + c[1]*prev(din,3) +
c[2]*prev(din,4) + c[3]*prev(din,5) +
c[4]*prev(din,6) + c[5]*prev(din,7) +
c[6]*prev(din,8) + c[7]*prev(din,9))@t+9;

assume:
during[t,t+8]: reset = 0;

prove:
at t+9: if (exact > MAX) then

dout = MAX
else

dout = exact
end if;

end theorem;

Fig. 3. Property calc for FIR-filter

properties of the FIR-filter are given. Besides calc a property
for the reset and the shifting of data have been formulated.
In the first column the name of the property is given. The
next two columns provide information about the SAT instance,
i.e. the number of clauses and literals, respectively. In the last
column the overall CPU time needed is reported. As can be
seen the reset and shift property can be proven very fast. Even
the complex property calc can be proven in less than 500
CPU seconds.

As a second example we studied a scalable hardware real-
ization of the bubble sort algorithm. The SystemC description
is shown in Figure 4. This module implements the sort
algorithm for eight data words. The bit size of each data
word is determined by a typedef (line 1). Notice that the
approach from [8] did not support constructs, like e.g. typedefs
or for-loops. The formulated property sorted states that the
resulting sequence is ordered correctly, i.e. that the value of
an output is greater or equal compared to values at outputs
with smaller indices. In Table II the results are given for this
property and increasing bit sizes of data words (column Bit
size). The next two columns again provide information about
the SAT instance. In the last column the overall CPU time

TABLE I
RESULTS FOR FIR-FILTER

Property Clauses Literals Time(sec)
reset 3382 7600 0.84
shift 3941 8903 0.89
calc 29373 66175 467.19

1 t y p e d e f s c u i n t <4> T ;
2 SC MODULE(bu bb l e) {
3 s c i n <T> i n [8] ;
4 s c o u t <T> o u t [8] ;
5 T buf [8] ;
6 void d o i t () {
7 f o r (i n t i =0 ; i <8; i ++) buf [i]= i n [i] ;
8 f o r (i n t i =0 ; i <8−1; i ++) {
9 f o r (i n t j =0 ; j <(8− i) −1; j ++) {

10 i f (buf [j]>buf [j +1]) {
11 T tmp ;
12 tmp = buf [j] ;
13 buf [j] = buf [j + 1] ;
14 buf [j +1] = tmp ;
15 }
16 }
17 }
18 f o r (i n t i =0 ; i <8; i ++) o u t [i]= buf [i] ;
19 }
20 SC CTOR (bu bb l e) {
21 SC METHOD(d o i t) ; s e n s i t i v e << i n ;
22 }
23 } ;

Fig. 4. Bubble sort module

TABLE II
RESULTS FOR DIFFERENT INPUT SIZES OF MODULE bubble

Bit size Clauses Literals Time(sec)
4 6390 14458 17.18
8 12754 28894 286.93

16 25482 57766 125.25
32 50938 115510 560.48

needed is shown. Due to the heuristic nature of the SAT solver
the proof time might slightly vary as can be seen in case of
bit size 8. But in general the run time needed increases with
the bit size and is moderate even for larger bit sizes.

In a third series of experiments a scalable arbiter circuit
has been studied that is frequently used in formal hardware
verification (see e.g. [5]). This example has already been
considered for SystemC designs in [8], where properties for
mutual exclusion, liveness and conservativeness have been
studied. While mutual exclusion and conservativeness could
easily be solved based on BDD-based property checking in [8],
the approach failed on larger designs for the property liveness,
since in this case a large number of time frames has to be
considered2. The new approach was also applied to all three
properties and could clearly outperform the earlier technique.
Due to page limitation only the results for the hardest instance
are shown. In Table III the results are given for increasing
number of arbiter cells (column Cells). In the second column
the run times for the approach from [8] are given. The next
two columns provide information on the SAT instance. In the
last column the overall CPU time needed is reported. As can
be seen, the new approach can prove the properties very fast,
even for large instances, while the previous approach can only
be applied for less than 10 cells.

2The property liveness states, that each request has to be confirmed by an
acknowledge within 2 ·n time frames, where n is the number of arbiter cells.

TABLE III
RESULTS FOR ARBITER AND PROPERTY liveness

Cells BDD-PC CheckSyC
Time(sec) Clauses Literals Time(sec)

5 2.14 6808 15728 0.15
6 38.71 9899 22873 0.17
7 315.92 13566 31350 0.25
8 2667.76 17809 41159 0.30
9 - 22628 52300 0.37

10 - 28023 64773 0.49
20 - 113653 262763 2.11
50 - 716143 1655933 27.21

V. CONCLUSIONS

In this paper the efficient property checker CheckSyC has
been presented. In contrast to previous approaches, CheckSyC
supports a larger set of SystemC constructs and due to its high
capacity can also be applied in cases where properties argue
over large observation windows - as this is typically the case
on the system level.

It is focus of current work to integrate word-level informa-
tion in the proof process to speed up property checking.

REFERENCES

[1] S. Liao, S. Tjiang, and R. Gupta, “An efficient implementation of
reactivity for modeling hardware in the scenic design environment,” in
Design Automation Conf., 1997, pp. 70–75.

[2] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer Academic Publishers, 2002.

[3] R. Drechsler, Advanced Formal Verification. Kluwer Academic Pub-
lishers, 2004.

[4] R. Drechsler and S. Höreth, “Gatecomp: Equivalence checking of digital
circuits in an industrial environment,” in Int’l Workshop on Boolean
Problems, 2002, pp. 195–200.

[5] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel, “Simulation-
guided property checking based on multi-valued ar-automata,” in Design,
Automation and Test in Europe, 2001, pp. 742–748.

[6] F. Ferrandi, M. Rendine, and D. Scuito, “Functional verification for
SystemC descriptions using constraint solving,” in Design, Automation
and Test in Europe, 2002, pp. 744–751.

[7] R. Drechsler and D. Große, “Reachability analysis for formal verification
of SystemC,” in EUROMICRO Symp. on Digital System Design, 2002,
pp. 337–340.

[8] D. Große and R. Drechsler, “Formal verification of LTL formulas for
SystemC designs,” in IEEE International Symposium on Circuits and
Systems, 2003, pp. V:245–V:248.

[9] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechlser,
“ParSyC: An efficient SystemC parser,” in Workshop on Synthesis And
System Integration of Mixed Information technologies (SASIMI), 2004,
pp. 148–154.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999,
pp. 193–207.

[11] P. Johannsen and R. Drechsler, “Formal verification on register transfer
level – utilizing high-level information for hardware verification,” in
IFIP Int’l Conf. on VLSI, 2001, pp. 127–132.

[12] J. Bormann and C. Spalinger, “Formale Verifikation für Nicht-
Formalisten (Formal verification for non-formalists),” Informationstech-
nik und Technische Informatik, vol. 43, pp. 22–28, 2001.

[13] T. Parr, Language Translation using PCCTS and C++: A Reference
Guide. Automata Publishing Co., 1997. [Online]. Available:
citeseer.ist.psu.edu/parr97language.html

[14] Synopsys, Describing Synthesizable RTL in SystemCTM , Vers. 1.1.
Synopsys Inc., 2002, available at http://www.synopsys.com.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conf., 2001,
pp. 530–535.

