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Abstract. In this paper, a framework for previous and new quasi-exact exten-
sions of the A*-algorithm is presented. In contrast to previous approaches, the
new methods guarantee to expand every state at most once if guided by a so-
called monotone heuristic. By that, they account more effectively for aspects of
run time while still guaranteeing that the cost of the solution will not exceed the
optimal cost by a certain factor. First a general upper bound for this factor is de-
rived. This bound is (1 + €) [ 3] where N is (an upper bound on) the maximum
depth of the search. Next, we look at specific instances of the algorithm class de-
scribed by our framework. For one of the new methods a linear, i.e. much tighter
upper bound is obtained: the cost of the solution will not exceed the optimal cost
by a factor greater than 1 + €. The parameter ¢ > 0 can be chosen by the user.
Within a range of reasonable choices for ¢, all new methods allow the user to trade
off run time for solution quality. Besides that, the formal framework also serves
for a comparison in terms of other algorithmic properties of interest, e.g. in terms
of a necessary condition for state expansion.

The results of experiments targeting the minimization of Binary Decision Dia-
grams (BDDs) demonstrate large reductions in run time when compared to the
best known exact approach for BDD minimization and to previous relaxation
methods. Moreover, the quality of the obtained solutions is often much better
than the quality guaranteed by the theory.

1 Introduction

In many real-world problems, dominating effort is spent on search, often involving
huge state spaces. Therefore in the past many researchers have proposed heuristic and
exact search algorithms. The drawbacks of blind methods are overcome by heuristic
search methods to guide the search on a state space: with every state ¢ a quantity h(q)
is associated which allows to search in the direction of the goal states. A prominent
guided search algorithm is the well-known A*-algorithm [6]. A* can be devised to find
the minimum cost path in a graph describing the possible transitions from one state
to another, i.e. in a state space graph. In its original form, A* guarantees to find an
optimal solution and it is used in many fields of application, including diverse areas
such as robotics [7] and logic synthesis [5]. Hereby, two components of information
are used with every state ¢: one is g(q), which is the information about the cost of the
path already covered. The other is the heuristic function &(q), an estimate of the least



cost of the remaining part. The first information, ¢g(¢), adds a breadth-first component
to the search while the second, i(q), can devise the search to delve deeper into certain
paths when they seem promising, i.e. it adds a depth-first component to the search. A*
searches the state space by systematically expanding the most promising state (i.e., a
best-first search is performed) and generating states until a match to a goal condition
is found. For this purpose a prioritized list OPEN orders the search within the states
that are eligible for expansion, and closed states are maintained on a list CLOSED. If
certain requirements to the heuristic function guiding the search are met, A* will find a
minimum cost path to a goal state [6].

A serious drawback of A* is that, in the worst case, the run time as well as the
amount of memory required to store OPEN and CLOSED is exponential in the depth
of the search. This has led to several extensions of A*, some of which are memory
bounded, e.g. [15], while others mainly target to reduce the run time by allowing for
bounded sub-optimality, i.e. they provide A*-based quasi-exact approximation meth-
ods.

E.g., the idea of Dynamic Weighting (A},) [10] is to start with a high weighting
of the depth first component at the beginning of the search (as this may help to find
a promising direction more quickly) and then dynamically weigh the depth-first com-
ponent less heavily as the search goes deeper (as this may help to prevent too early,
i.e. premature termination). In contrast to that, in [9], the Traveling Salesman Problem
(TSP) has been tackled by an extension of A* called A which relaxes the selection con-
dition of A*. This condition triggers the choice of the next state for expansion (i.e. for
generating all its successors). More recently, a conceptually much simpler idea has been
used in [16]: here, the depth-first component is constantly inflated by a certain factor
1+ ¢, e > 0. It has also been embedded in a so-called Anytime Repairing variant of A*
(ARA™) in [7]. This idea is referred to as A7 throughout the paper.

The contributions of the paper are twofold: On the one hand, a formal analysis aims
at deeper theoretical insight and, based on the formal results, new improved methods
are devised. On the other, the new methods are compared with each other and with pre-
vious methods during an experimental evaluation. First, a formal framework provides
a unifying view that describes all of the above mentioned approaches. With the help
of this framework, all methods can be identified as special instances of one generic
relaxation algorithm. This is of particular interest since the ideas of the methods may
seem very different at first glance. As a next step, several interesting properties that are
shared among all considered methods can be directly deduced. These are the so-called
e-admissibility and a necessary condition for state expansion: the first guarantees that
the deviation of the solution must be bounded by 1 + ¢, the second one is important for
efficiency considerations.

When searching in large state spaces, a potential source of performance loss is the
repeated consideration of the same states, i.e. so-called reopenings. The following ques-
tion is of interest when considering the efficiency of A} or A, : how do the meth-
ods behave in the case that a so-called monotone heuristic function guides the search?
And: in this case, can there exist states that are reopened and expanded (again and
again)? This question is answered in the paper, extending the scope of results given



in [4]: here, the effect of relaxing the selection condition of A* on potential reopenings
of states has been considered.

This is of particular interest since the original A*-algorithm is known to expand
every distinct state at most once in the case of a monotone heuristic function [6]. If the
methods for relaxed best-first search cannot guarantee the same, performance can be
degraded. In a worst-case scenario, the overhead as caused by reopened states could
even exceed the savings provided by the relaxation.

In this paper it is shown by examples that both discussed relaxation methods in
fact can show the above (unwanted) behavior. As a remedy, new revised versions of
the methods are suggested that expand each state at most once. The property of e-
admissibility must be reconsidered for the new approaches. Using the formal frame-
work, first a general upper bound for the deviation of the solution from the optimum is
derived. This upper bound is exponential in the depth of the search. Second, again by
use of the framework, the bound can be tightened to an only linear bound in the case
of a revised version of A7. This result confirms a previous result for this special case,
stated in a formal analysis of ARA™ [7]. As a benefit from the provided formal frame-
work, our proof is kept considerably shorter and more concise, further strengthening
the framework. Experimental results give a comparison of all methods with each other
and with previous methods, showing the efficiency of the suggested approaches.

2 Searchby A*

A g- and an h-component associated with every state ¢ are combined to the so-called
evaluation function ¢(q) = ¢(q) + h(g). The minimal cost of a path from s to ¢ is
denoted ¢g*(¢q). The minimal cost of a path from ¢ to a goal state is denoted ~*(q). To
guarantee a minimal solution cost, it must be h(q) < h*(q) [6]. In this case, A is called
admissible. A* maintains a prioritized queue OPEN which is ordered with respect to
increasing values (q). In the beginning, this queue only contains the initial state s.
At each step, a state g with a minimal p-value is expanded, dequeued and put on a list
called CLOSED. During expansion, the successor states of ¢ are generated and inserted
into the queue OPEN according to their ¢-values. For this, the values g and h of the
successor states are computed dynamically. The component g accumulates transition
costs as the sum of the cost ¢(r, ') of all transitions » — =/ occurring on the cheapest
known path to ¢. If a path between ¢ and ¢’ is optimal, its cost is denoted by &(q, ¢’).

A successor state ¢’ might be generated a second time if ¢’ has more than one
predecessor state. If a cheaper path from s to ¢’ is found in this case, g(¢’) is updated. If
q was on the list CLOSED, ¢ is reopened, i.e. it is put on OPEN again. By that, states get
a second chance during the search for the minimum cost path when new information
about them is available. The algorithm terminates if the next state to expand is a goal
state ¢. The estimate h(t) = h*(t) must be zero. In this case, the path found up to ¢ is
of minimal cost, denoted C*, and it is reported as solution.

A heuristic function A is said to be monotone, if h(q) < k(q,q’) + h(q’) for all de-
scendants ¢’ of ¢. In [6] it is shown that, in the case of a monotone heuristic function A,
A* finds optimal paths to all expanded nodes. This ensures that every state is expanded
at most once.



3 PreviousWork

In this section previous work related to our approach is briefly reviewed.

3.1 Relaxing Best-First Search

To keep the paper self-contained, next a brief review of previous quasi-exact approaches
based on A* follows. All approaches relax some of the conditions used by A* to derive
a faster algorithm with a provable upper bound on sub-optimality. The ideas, how this
is done, vary significantly and in the following three methods are distinguished.

Dynamic Weighting The idea of Dynamic Weighting (Aj) [10] is to relax the fixed
weighting of the breadth- and the depth-first component (i.e., of g and h) used by the
additive evaluation function ¢(¢) = g(q) + h(q) of A*. Algorithm Af, starts with
a high weighting of the depth first component at the beginning of the search (as this
may help to find a promising direction more quickly) and then dynamically weighs
the depth-first component less heavily as the search goes deeper, preventing premature
termination. For e > 0, the evaluation function used by Afy is

©"V(q) = g(q) + h(q) +e- [1 — %} -h(q)

where d(q) denotes the depth of the node representing state ¢ in the search graph, and
N denotes the depth of a goal node, respectively. Often, all paths to a node in this graph
are of equal length, and thus this depth is the number of edges on such a path. If N is
not known in advance, an upper bound or an estimate can be used instead.

It can be shown that Afy is e-admissible, i.e. it always finds a solution whose cost
does not exceed the optimal cost by more than a factor of 1 + .

Constant Inflation More recently, a much simpler idea has been considered in [16] and
also within the framework of a so-called Anytime Repairing A*-algorithm (ARA™) [7]:
the constant inflation of the depth-first component by a fixed factor 1 4 ¢ (¢ > 0). That
is, the evaluation function

©'(q) = g(q) + (1 +¢€) - h(q)

is used instead of the original evalution function ¢ of A*.

In comparison to Afy,, no other precautions against premature termination are
taken here. However, it can be shown that bounding the inflation of ~ by the factor
1+ e already suffices to guarantee the same bounded sub-optimality as with A},. This
method is referred to as A} and it is further analyzed in Section 4.

Search Effort Estimates Experiments have shown the following: during execution of
an A*-algorithm, a large amount of time is spent discriminating among many paths
whose cost do not vary significantly from each other. To assure optimality of the final



solution, A* spends a disproportionately long time to select the best of roughly equal
candidate states as next state to expand. This behavior raises the idea of equipping A*
with the capability of terminating earlier with a sub-optimal but otherwise perfectly
acceptable solution path.

In [9] an extension of A* called A} has been proposed, that addresses the above
problem by adding a second queue FOCAL which maintains a subset of the states on
OPEN. This subset is the set of those states whose cost does not deviate from the mini-
mum cost of a state on OPEN by a factor greater than 1 + e. Formally,

FocaL ={q|w(¢) <(1+€)- min o(r)}). 1)
re OPEN

The operation of AY is identical to that of A* except that A selects a state ¢ from
FocaL with minimal value 4z (q). The function & is a second heuristic estimating the
computational effort required to complete the search. By this the nature of i differs
significantly from that of A since h estimates the solution cost of the remaining path
whereas hp estimates the remaining time needed to find this solution. The choice of
hr puts a high degree of freedom to the approach which will be subject to further
investigation in Section 4. In [9], it has been suggested to use

a) hp=hor
b) to integrate properties of the subgraph emanating from a given state q.

The motivation behind a) is that minimizing the h-component for the states in the set
FocAL means preferring the states with the highest g-component. Such states are least
estimative and a fast completion of the best known path to such a state, i.e., a fast
termination can be expected. As a concrete suggestion for b), hr(q) = N — d(q) will
be used later in the experimental evaluation (see Section 7): to minimize N — d(q)
means to prefer the deeper states in the search graph. This is done with the motivation
that the subgraphs emanating from them tend to be comparatively small and thus the
same can be expected for the remaining run time. Also A* is e-admissible, i.e. we have
the upper bound 1 + € on sub-optimality.

In [4], an example was given that shows that Algorithm A* has a serious drawback:
even when guided by a monotone heuristic », A can be doomed to reopen many states.
This is a source of degradation in run time and contrasts to the behavior of classical A*
which expands every state at most once [6].

The following remedy has been suggested in [4]: instead of maintaining closed
states on a list CLOSED, states are simply marked as closed after expansion and re-
moval from OPEN. If the method finds a better path for a state ¢ marked as closed,
this better path is ignored, i.e. g(q) is not updated. Otherwise, method APP* follows
the usual operation of A*. Although e-admissibility can not be guaranteed for AP in
general, still the following result holds [4].

Theorem 1. Let N be the maximal length of a solution path. When driven by a mono-
tone heuristic, algorithm APP"% always finds a solution not exceeding the optimal cost
by a factor greater than (1 + ¢) L],

For smaller values of ¢, this bound still is useful. Note that during practical operation,
APPX ysually is far off this worst-case, i.e. it may yield much better results.



4 Unifying View

In this section, a framework provides a unifying view of the three approaches of the
previous section. They are characterized as special instances of one generic relaxation
algorithm. As the first step, the next result states a condition that guarantees the confor-
mity of an evaluation function with the strategy described in Section 3.1.

Theorem 2. Let us consider a state space together with an evaluation function ¢ =
g + h and let FocaL be defined as before in Equation (1). For all states ¢ of the state

space, let ©T(q) = (1+¢) - ¢(q) and let o(q) < ¢'(q) < " (q). Let

g=arg min ().
¢ OPEN

Then it must be that ¢ € FocAL.

Proof. See the Appendix.

In Section 3.1 it has been mentioned that the choice of the heuristic function & r which
estimates the remaining search effort leaves a considerable degree of freedom to the
method. Next we go one step further, clarifying that the discussed relaxation methods
can be rediscovered simply by respective choices for i . In detail, Theorem 2 allows to
characterize Afy, and A7 as two instantiations of the generic method given in Section
3.1. In this, Pearl and Kims’ proposal proves to be more than just another relaxation
algorithm: the next result shows that it also serves as a framework for the relaxation of
best-first search in general.

Theorem 3. Let us consider the graph representation of a state space and let g, h be
the breadth-first and the depth-first component of a relaxed best-first search algorithm,
respectively. For all states ¢ of the state space, let ¢'(q) = g(q) + (1 + €) - h(q), let
d(q) denote the depth of the node representing ¢, let V denote the depth of a goal node,
and let 9PV = g(q) + h(q) + € - {1 — %} - h(q). Further, assume that identical
tie-breaking rules are used in the algorithms. Then we have:

— The operation of Algorithm Af; is identical to that of A} with search estimate
hr = "WV, and

— The operation of Algorithm A7 is identical to that of A7 with search estimate
hF = (pT.

Proof. See the Appendix.

In brief, the result states that the choice of the next node to expand as performed by
Afywy and A7 conforms to the relaxation strategy of A7 as stated in Equation (1). Notice
that, despite the fact that Af,y, and A7 are formulated by use of evaluation functions
that are different from that of A* or A* (i.e., different from ¢ = g + h), they provably

! Throughout the paper, the following notation is used: arg min,cs f(x) returns one = € S that
minimizes the function f.



act as if ¢ = g + h would be used. This holds since they are also guided by the second
heuristic h . It is precisely this function i that then must be replaced by the respective
alternative evaluation function.

From now on, it will be distinguished between the new framework provided by
A7 with this result and instantiations as one particular algorithm, e.g. as the algorithm
proposed in [9]. Hence, it is denoted A¥, hr = ... whenever a particular algorithm
is addressed, the introduced framework itself however is referred to as A}, i.e. without
giving a particular second heuristic function A p.

The result of Theorem 3 allows to transfer any provable result for A* directly to
Afyw and A7, as the two methods are special instances of A?. This results in the fol-
lowing theorem which considers under what conditions states are eligible for state ex-
pansion. It generalizes a known result in [9] and is helpful for efficiency considerations
and comparisons.

Theorem 4. Consider a state space with cost function g. Let us assume an admissible
heuristic function &, and consider an optimal path s, ..., ¢ where ¢’ is the first state
that currently also appears on OPEN during a (relaxed) best-first search algorithm A.
Further, let o = g + h.

— A= A*: p(q) < C* for all states expanded.

- A=A p(q) < (1+¢€)- C*for all states expanded.

- A = Aj:for all states expanded, either p(g) < C* holds or we have ¢(q) > C*
and ¢(q) < UB where for h(q) € [0,h(¢")[, UB ranges from (1 + ¢) - C* to C*,
not including C*.

— A = A}, for all states expanded, either ¢ (¢) < C* holds or we have ¢(q) > C*
and ¢(q) < UB where for h(q) € [O, JZVV’_‘fi((qq')) -h(q")|, UB ranges from (1+¢)-C*
to C*, not including C"*.

Proof. See the Appendix.

This result indicates the following: Both for At and for Ay, states ¢ with C* <
©(q) < (14 ¢€)-C* canonly be eligible to expansion if their ¢-value also stays below
the stated upper bound UB. To achieve the value (1 + €) - C* for UB, the h-value of
the eligible state must be much less than /(q") and/or the eligible state must reside at a
significantly deeper level in the search graph.

This contrasts to the situation in A} where no such additional restriction holds for
the eligibility for expansion. Moreover, in many Al problem domains typically a lot
more of breadth-fist search than depth-first search will be performed by an exact or
quasi-exact best-first search method (this also holds for BDD minimization). As a con-
sequence, during a typical algorithm run, often states with equal or similar h-values
and/or depth are expanded in a series of consecutive expansions. Thus, eligible states
that really are far enough “below” ¢’ (in terms of the h-value and/or depth) to be chosen
for expansion, are rare. Hence, for an eligible state ¢, ¢(q) < C* often is much more
typical.

Consequently it can be expected that the total number of states expanded during run
of AT and Afy, typically is at least no more than that for A* (and often much less). This
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Fig. 1. Examples for the behavior with and without reopenings.

number is expected to still remain this low in the situations where A using hrp = h or
hp = N — d(q) runs into problems.

5 Monotonicity

In Section 1 the following question has been raised: provided that Algorithm A =
A3, Afyy 1s guided by a monotone heuristic &, can states be reopened?

Next we give an example which shows that such states may exist for both choices
of A. In Fig. 1(a), the left datum annotated at a node is the g-value, the right one is the
h-value. Edges depict state transitions and the cost of the transition is annotated at each
edge. The heuristic function % is monotone since the series of p-values is monotonic
non-decreasing along every path in the state space graph. Inthe case A = A7, lete = %
In the case A = Ay, let the anticipated depth of a goal state NV = 3 and ¢ = %. Itis
easily verified that ¢ is reopened for these choices.

To further analyze the operation of A7, the following new result states an upper
bound for the deviation of ¢ from g* for an expanded state.

Lemmal. Let e > 0. The paths to expanded states found by an Aj-algorithm that
is guided by a monotone heuristic may be sub-optimal. However, this deviation is
bounded, in detail:

Vg € CLOSED : g(q) — g*(q) < e€-k(¢,q) (2

where ¢’ is the first state on OPEN on an optimal path s,...,q’,...,q at the time of
expansion of g.



Proof. See the Appendix.

6 Preventing to Reopen States

The problem discussed in Section 5 can be addressed by the same strategy as for AP
(see Section 3). The respective approaches that do not reopen any state will be called
AP and AT, respectively. As a consequence of Theorem 3, the exponential upper
bound of Theorem 1 for AP also holds for AY™* and Affiy". However, in the case of
AP, the upper bound can be strongly tightened:

Theorem 5. When driven by a monotone heuristic, algorithm A% always finds a
solution not exceeding the optimal cost by a factor greater than 1 + .

Proof. See the Appendix.

Using the introduced framework, the proof is considerably more concise than that of a
similar previous result in [7]. Basically, the proof follows a similar flow of arguments
as the proof for e-admissibility of A [9], except that, due to the modified behavior of
the algorithm, we have to account for the following consequence. In A%, the g-value
of states on an optimum path may irrecoverably be affected by deviations from the op-
timum g*: by Lemma 1, states might be expanded while the best known path to them is
still sub-optimal and, due to the modified behavior of A", no reopening/improvement
can take place later. This effect increases the maximum deviation on an optimal path.
To what extent, is determined in the worst-case scenario: let N be the maximal length
of a path. Since always two nodes must be involved for a deviation of a g-value to occur
(see the proof of Lemma 1), the deviation of a g-value from g* increases at most L%J
times, see Fig. 1(b): dashed transition are “late” transitions, i.e. the state they lead to
has already been opened along a sub-optimal path different from p. State ¢y, is the last
state that has been prematurely opened along such a sideway and thus is affected by a
deviation of the g-value. We have gj.s; = qL%J’ regardless whether n is odd or even

(see Fig. 1(b)). The proof then is an inductiononi =1,..., | ].

7 Experimental Results

To evaluate the algorithms described by our framework, respective methods targeting
the quasi-exact minimization of reduced ordered Binary Decision Diagrams (BDDs)
have been implemented. BDDs were introduced in [2] and are well known from hard-
ware verification and logic synthesis. They are Directed Acyclic Graphs (DAGS) rep-
resenting Boolean functions where a Shannon decomposition in a Boolean variable is
carried out with each node. Reduced diagrams are considered, derived by removing
redundant nodes and merging isomorphic subgraphs. For more details see [2].
Heuristic BDD minimization is done by thumb rules to reorder the Boolean vari-
ables, e.g. [11]. The results are often far away from the optimum. For some applications,
this is a significant drawback. Especially in applications like logic synthesis targeting



multiplexor design styles, e.g. [8, 14], it is important to determine a good ordering,
since a reduction in the number of BDD nodes directly transfers to a smaller chip area.
For this reason, there is a high demand for faster exact or approximate methods with
bounded sub-optimality.

It has been shown that it is NP-complete to decide whether the number of nodes of
a given BDD can be improved by variable reordering [1]. Moreover, the existence of
a polynomial algorithm to approximate the optimal variable ordering of BDDs implies
P = NP [12]. For this reason, as with exact methods, the run time of an approximate
method to improve the variable ordering is expected to be much higher than that of
heuristics.

All experimental results have been carried out on a machine with a Dual Xeon pro-
cessor running at 3.2 GHz, with a main memory of 12 GByte and a run time limit of
3,600 CPU seconds. The memory requirement of all evaluated methods never exceeds
500 MBytes, hence no memory limit had to be applied. Three previous methods have
been implemented: the first is called APP®* as described in [4], the second is called Dy-
namic Weighting (A7) [10]. An idea of [16] and of the so-called ARA* algorithm [7],
namely the constant inflation of the heuristic function as described in Section 3.1, has
been implemented as the approach A}. Moreover, revised versions of the mentioned
methods have been implemented as the corresponding methods A%’{,ﬁ}x, a revised ver-
sion of Ajyy, and as the method A%™™, a revised version of Ax. To put up a testing
environment, all algorithms have been integrated into the CUDD package [13]. By this
it is guaranteed that they run in the same system environment. In the experiments, the
methods have been applied to BDDs built from a set of standard benchmark circuits of
LGSynth93 [3]. The implementation of all algorithms is based on the implementation
of the A*-based approach to exact BDD minimization of [5].

In a first series of experiments A* and AP have been compared to AY™*. The
results are depicted in Fig. 2. In contrast to the behavior of APP®% the run time of A
is monotonically decreasing. This confirms the result of Theorem 4 and shows that also
the revised version of A7, i.e. AT, behaves according to the upper bounds stated in
Theorem 4. For A®', the degradation of solution quality first increases slowly (e.g.,
for e € [0,0.5]) and later ascends more steeply with increasing e. When comparing the
run time of AP to that of A*, Fig. 3 illustrates how the gain in run time grows mono-
tonically with the degree of relaxation (the curve in the space spanned by the percentual
gain and the degree ¢ is a convex hyperbola). At the higher relaxation degree of ¢ = 3
the reduction in run time is already more than 90% on average. Taking into account that
AP also has much more convenient theoretical properties than APP™* (in particular,
AP guarantees a much tighter upper bound for the deviation of the solution from the
optimum), AT proves to be clearly superior to AP"** both from a theoretical and a
practical standpoint. As Fig. 4 shows, high speed-ups can be obtained at an only small
degradation of solution quality. In fact the average degradation is considerably much
less than the worst-case degradation by a factor of 1 + € as guaranteed by the theory.
Operating at 40% of relaxation, on average the results are only 0.5% larger than the
optimum BDD size. When using a degree of relaxation of 100%, i.e. when theoretically
allowing for solutions that are twice the minimum size, the average degradation still is
only 4.3%. Motivated by these positive results, also very high relaxations have been ex-



amined: Fig. 4 shows that the average degradation stays below 20% for a wide range of
high relaxation degrees, it first reaches 20.5% for e = 20. Moreover, the resulting plot
forms a convex hyperbola where the steepness decreases with ascending degree of re-
laxation. In a second series of experiments, A" has been compared to A" in terms
of quality and run time. Due to space limitation, the results of these experiments have
not been included. Summarized, APi" has significantly higher run times than A"
(20-30%) while at the same time slightly better results can be obtained, i.e. there is a

significant penalty for small improvements in quality (below 3%) provided by AP
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Fig. 2. Trading off run time for solution quality with APP"™ and A5,

8 Conclusions

A new framework for previous and new extensions of the A*-algorithm has been pre-
sented. It describes a class of generic algorithms that tolerate provably bounded worst-
case increases in solution cost. This is achieved by different ideas to relax some of the
conditions of A*, and happens in favour of smaller search efforts required to complete
the algorithm. The user has full control of the degree of relaxation and can trade off run
time for quality of the solution.

Besides the formal contributions of the paper, two new methods are derived from
the framework. They guarantee to expand every state at most once if provided with a
so-called monotone heuristic. This can largely reduce the run time and also strengthens
the robustness of the approaches.
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Experimental results are reported that clearly demonstrate the efficiency of the pre-
sented new approaches. A comparison to the best known exact BDD minimization al-
gorithm (which is based on the generic A* algorithm) and to a previous relaxed method
shows reductions in run time by up to one order of magnitude. This is obtained while
the degradation of solution quality is provably bounded and stays below a few percents
on average.

Appendix

Proof of Theorem 2. Let go = argmin__opgy ¢(q). We have

©(q) < ¢'(q) 3)
< ¢'(qo) (4)
< ¢™(q0) (5)
(1+€)-¢(q)
=(+¢- min ¢(g). (6)
qcOPEN

Equation (3) holds by the definition of ¢’ in the assumption. Next, Equation (4) holds
by definition of §. Then, Equation (5) holds again with the definition of ¢’. By Equation
(6), ¢ € FocaL already follows. O

Proof of Theorem 3. First it is easily verified that ¢(¢) < PV (¢) < ¢'(q) < ¢"(q)
for all states ¢ of the considered state space. By Theorem 2, the respective next state
expanded by A} and A,y must be contained in FOCAL. Second, A7 chooses a state g
from FOCAL with g = argmin_pocar hr(g). As hp is assigned to the respective
evaluation function, and since the same respective tie-breaking rule is used, A* must
act exactly as Af,yy and A7, respectively. O

Proof of Theorem 4. The results for the cases A = A*, A* are already well-known
[6,9]. They are merely opposed here to the new results. Because ¢ is expanded before

q/
©'(q) = ¢(q) + ¢ hig) < o' (¢) (7
in the case A = A', and

@) = pla)+ e |1- GL hia) < V) ®

in the case of A = APW. To derive the stated upper bounds for A = AT, APW it now
suffices to separate ¢(q) on the left side of the two equations (7) and (8), respectively.
The upper bounds range within the stated intervals since

— the term h(q’) can be bounded by h*(¢") because of the admissibility of 4, and
— since an optimal path is considered, we have g(¢') = ¢*(¢’) and finally ¢*(¢') <
c*.



O

Proof of Lemma 1. Consider an optimal path p from s to q. Let ¢’ be the first state on
p=s,...,q,...,qwhichalsoappears on OPEN?. Assume that ¢ # ¢’ and assume that
q is selected for expansion. Since ¢ is expanded before ¢’, we have ¢'(q) < ¢'(¢),
and, with the optimality of p and the monotonicity of i

9(@) + (1 +¢€)-h(q) <g(d) + (L +€)-h(d)
<g(q") + (1 +e) - (k(d,q) + h(q))
=g"(q") +k(d q) +e k(g q) + (1 +€)-h(qg)
=9"(q) + e k(¢ q) + (1 +¢€)-h(q).

Hence, g(q) < g*(¢) + € - k(¢’, ) and Equation (2) follows. O

Proof of Theorem 5. Let IV be the maximal length of a search path. The proof uses

) < 9(d) + (149 Rgha) for1 << | | ©

This follows from the admissibility of & and the fact that ¢; is expanded before ¢/: the

latter implies o' (q:) < ' (g}), thus g(a:) + (1 +¢) - h(ai) < g(q}) + (1 +€) - h(q]) <
9(¢) + (1 +€) - [k(¢, qi) + h(g:)] and Equation (9) follows. We show

9a) — " (a) < e~ 3 k(gloar) for 1 < i < H (10)
=1

by induction on 4. Then, by the optimality of the considered path, the deviation of
9(quast) = g(qL%J) must be less or equal than € - C* and finally also the deviation of

the computed solution from the optimum can not be greater than 1 + .

To start the induction, let ¢ = 1: the claim of Equation (10) holds by Lemma 1. The
lemma can be applied here since the operation of A* and A is identical before the
first state has been reopened. Now let us assume that Equation (10) holds for 4. For the
step ¢ — i + 1 we derive

9(giv1) — 9" (1) < 9(giy1) + A+ €) - k(gir, gir1) — 97 (girr) (11)
= k(qi, gip1) + (L +€) - k(g1 qiv1) + 9(@) — 9" (241 X12)
= e - k(qi11,qiv1) + 9(a) — 9" (@) (13)
= € k(giy1,qit1) +e- Y k(g ) (14)
=1
i+1
=e> k(g a)
=1

2 Note that it is straightforward to prove that, during operation of the algorithm, at least one state
on p must be an open state. The proof is an induction on the length of p which is started by s,
the very first state occuring both on OPEN and p.



Equation (11) holds by Equation (9). Since ¢;_, is traversed via ¢; on an optimal path,
9(gir1) = k(gi,q;41) + 9(qs). Thus, Equation (12) follows. We have g*(gi11) =
9% (q:)+k(qi,4; 1) +k(g/41, gi+1) since an optimal path is considered. Thus, Equation
(13) follows. Using the induction hypothesis, i.e. Equation (10), next Equation (14) is

obtained, completing the proof. O
References
1. B.Bollig and I. Wegener. Improving the variable ordering of OBDDs in NP-complete. |IEEE

10.

11.

12.

13.

14.

15.

16.

Trans. on Comp., 45(9):993-1002, 1996.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on
Comp., 35(8):677-691, 1986.

Collaborative Benchmarking Laboratory. 1993 LGSynth Benchmarks. North Carolina State
University, Department of Computer Science, 1993.

R. Ebendt and R. Drechsler. Quasi-exact BDD minimization using relaxed best-first search.
In IEEE Annual Symp. on VLS, pages 59-64, 2005.

R. Ebendt, W. Giinther, and R. Drechsler. Combining ordered-best first search with branch
and bound for exact BDD minimization. |EEE Trans. on CAD, 24(10):1515-1529, 2005.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini-
mum cost paths. |EEE Trans. Syst. ci. Cybern., 2:100-107, 1968.

M. Likhachev, G. Gordon, and S. Thrun. ARA*: Formal analysis. Technical report of the
Carnegie Mellon University, 2003.

L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout generation for PTL macrocells.

In Design, Automation and Test in Europe, pages 546-551, 2001.

J. Pearl and J. Kim. Studies in semi-admissible heuristics. |EEE Trans. on Pattern Analysis
and Machine Intelligence, PAMI-4(4):392-399, 1982.

I. Pohl. The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic problem solving. In Proc. 3rd Int. Joint
Conf. on Artifi cial Intelligence., pages 12-17, 1973.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Int'l Conf.
on CAD, pages 42-47, 1993.

D. Sieling. Nonapproximability of OBDD minimization. Information and Computation,
172(2):103-138, 2002.

F. Somenzi. CU Decision Diagram Package Release 2.4.0. University of Colorado at Boul-
der, 2004.

C. Yang and M. Ciesielski. BDS: a BDD-based logic optimization system. IEEE Trans. on
CAD, 21(7):866-876, 2002.

R. Zhou and E. Hansen. Memory-bounded A™ graph search. In 15th Int. Florida Artifi cial
Intelligence Research Soc. Conf., pages 203-209, 2002.

R. Zhou and E. Hansen. Multiple sequence alignment using A*. In Proc. of the National
Conference on Artifi cial Intelligence, Student Abstract, 2002.



