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Abstract

Today’s complex systems are modeled on a high level
of abstraction. In this context, C/C++-based description
languages, like SystemC, become very important. The
modeling features of SystemC enable adequate levels of
abstraction, hardware/software integration and fast exe-
cutable specifications. Using the SystemC design method-
ology, a system is partitioned into hardware and software.
Then the modules are refined down to the implementation.
Besides efficient modeling, the correct functional behavior
is very important. Already today up to 80% of the overall
design costs are due to verification. As the complete sys-
tem cannot be formally verified, checking of the functional
behavior during operation has to be considered.

In this paper an approach is presented that allows to
check temporal properties for a SystemC design not only
during simulation, but also after fabrication in form of an
on-line test. The method translates the properties into syn-
thesizable SystemC instructions. By this, the properties can
be checked like HDL assertions during simulation and after
production since they can be synthesized together with the
system. The proposed approach enables a concise circuit
and system verification methodology.

1. Introduction

While classical design approaches based on VHDL or
Verilog mainly allow for describing on the RT-level, model-
ing on higher levels of abstraction becomes more and more
important. Since first reference designs are usually mod-
eled in C or C++ there is a strong interest in C-like descrip-
tion languages which cover all levels of abstraction. A very
promising candidate in this area is SystemC [11]. As a C++

∗This work was supported in part by DFG grant DR 287/8-1.

class library SystemC enables modeling of systems at dif-
ferent levels of abstraction starting at the functional level
and ending at a cycle-accurate model. The well-known con-
cept of hierarchical descriptions of systems is transferred to
SystemC by describing a module as a C++ class [9, 12, 14].
Furthermore, fast simulation is possible at an early stage of
the design process and hardware/software co-design can be
carried out in the same environment.

But with the increasing complexity of today’s systems it
is a challenging task to ensure the correct functional behav-
ior. In the meantime it has been observed that verification
becomes the major bottleneck of modern circuit and sys-
tem designs, since up to 80% of the overall design costs
are due to verification. As alternatives to classical simu-
lation formal methods have been proposed [3]. In equiva-
lence checking formal tools are state-of-the-art [5]. In case
of SystemC, examples of simulation based techniques are
[13, 6]. First formal approaches to check the behavior of a
circuit description in SystemC have been reported in [4, 8].
While equivalence checking can be applied to large designs,
property checking is limited to the block level. But besides
the verification of the blocks in a large system their mutual
communication has to be checked.

There are several approaches to system level verification
which are based on assertions [7]. The key idea is to de-
scribe expected or unexpected behavior directly in the de-
vice under test. These conditions are checked dynamically
during simulation. An approach to check temporal asser-
tions for SystemC has been presented in [13]. There, the
specified properties are translated to a special kind of finite
state machines (AR-automata). These automata are then
checked during the simulation run by algorithms, which
have been integrated into the SystemC simulation kernel.
In contrast in [2] a method has been proposed to synthesize
properties for circuits into hardware checkers. Properties
which have been specified for (formal) verification are di-
rectly mapped onto a very regular hardware layout.



Following the latter idea in this paper a method is pre-
sented which allows checking of temporal properties for
circuits and systems described in SystemC not only dur-
ing simulation. A property is translated into a synthesizable
SystemC checker and embedded into the circuit description.
This enables the evaluation of the properties during the sim-
ulation and after fabrication of the system. Of course, with
this approach a property is not formally proven and only
parts of the functionality are covered. But the proposed
method is applicable to large circuits and systems and sup-
ports the checking of properties in form of an on-line test.
This on-line test is applicable, even if formal approaches
failed due to limited resources.

The remaining part of the paper is structured as follows:
In Section 2 an overview about SystemC is given. Section
3 describes the concepts and translation of a temporal prop-
erty into a SystemC checker. Experimental results demon-
strating the advantages of the approach are given in Section
4. Section 5 concludes the paper and summarizes the re-
sults.

2. SystemC

The main features of SystemC for modeling a system are
based on the following:

• Modules are the basic building blocks for partitioning
a design. A module can contain processes, ports, chan-
nels and other modules. Thus, a hierarchical design
description becomes possible.

• Communication is realized with the concept of inter-
faces, ports and channels. An interface defines a set
of methods to access channels. Through ports a mod-
ule can send or receive data and access channel inter-
faces. A channel serves as a container for communi-
cation functionality, e.g. to hide communication proto-
cols from modules.

• Processes are used to describe the functionality of the
system, and allow expressing concurrency in the sys-
tem. They are declared as special functions of modules
and can be sensitive to events, e.g. an event on an input
signal.

• Hardware specific objects are supplied, like e.g. sig-
nals, which represent physical wires, clocks, and a set
of data-types useful for hardware modeling.

Besides this, SystemC provides a simulation kernel. The
functionality is similar to traditional event-based simula-
tors. Note that a SystemC description can be compiled with
a standard C++ compiler to produce an executable specifi-
cation. The output of a system can be textual, using C++

routines likecout for instance, or waveforms. As a C++
class library SystemC can easily be extended by using the
facilities of C++.

The following section describes how a temporal property
is translated into a SystemC checker.

3. SystemC Checker

3.1. Property Language

Describing temporal properties for verification can be
done in many different ways, since there exist several lan-
guages and temporal logics. In the following we use the no-
tation of the property checker from Infineon Technologies
AG (see e.g. [10, 1] for more details). A property consists
of two parts: a list of assumptions (assume part) and a list
of commitments (proof part). An assumption/commitment
has the form

at t+a: expression;
or during[t+a,t+b]: expression;
or within[t+a,t+b]: expression;

wheret is a time point, anda, b are offsets. If all assump-
tions hold, all commitments in the proof part have to hold
as well.

Example 1. The propertytest says that whenever signal
x becomes1, two clock cycles later signaly has to be2.

theorem test is
assume:

at t: x = 1;
prove:

at t+2: y = 2;
end theorem;

In general a property states that whenever some signals
have a given value, some other (or the same) signals assume
specified values. Of course it is also possible to describe
symbolic relations of signals. Furthermore the property lan-
guage allows to argue over time intervals, e.g. that a signal
has to hold in a specified interval. This is expressed by us-
ing the keywordsduring andwithin .

Each property can be translated to SystemC constructs.
The result is a SystemC checker which is based on shift
registers and additional logic representing the relations of
the specified signals. The SystemC constructs needed for
generation of a checker from a property can be limited to
synthesizable SystemC code.

In the next section the overall flow for the translation of
a property is discussed.
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Figure 1. Shift register and logic for property
test

3.2. Basic Idea of Checker Generation

At first the basic idea of the translation of a property into
a checker is illustrated by the following example.

Example 2. Consider again Example 1. For the property
test it has to be checked that whenever signalx is 1,
two time frames latery has to be2. This is equivalent to
¬(x′′ = 1) ∨ (y = 2), if x′′ is x delayed by two clock
cycles. If the equation evaluates to false the property is vi-
olated. Obviously the translation of the property can be
expressed in SystemC. The basic idea of a hardware real-
ization is shown in Figure 1. If the output of the OR gate is
0 the property fails.

In general the translation of a property works as follows:
Let P be a property which consists of the assumptionsA =
(a1, . . . , am) and the commitmentsC = (c1, . . . , cn). Then
the translation algorithm is based on four steps:

1. ParseP and determine the maximum offsetomax of
the property by analyzing the time points of allai and
cj .

2. For each signal used inP generate a shift register of
lengthomax. Then the values of a signal at time points
t, t + 1, . . . , t + omax are determined by the outputs
of the flip-flops in the corresponding shift register. The
offset i of a time point can directly be identified with
thei-th flip-flop, if the flip-flops are enumerated in de-
scending order. This is illustrated in Figure 2.

3. Combine the signals of eachai (andcj) as stated by
the logic operations in its expression. Thereby the
variables of the appropriate time points are used. In
case of the interval operatorsduring andwithin
an AND and an OR of the resulting expressions is
computed. The results of this step are the equations
â1, . . . , âm, ĉ1, . . . , ĉn corresponding to the assump-
tions and commitments ofP .

4. The final equation ischeckP = ¬
m∧

i=1

âi ∨
n∧

j=1

ĉj .

t+omax
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Figure 2. Mapping of time points
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Figure 3. Work flow

Of course all described transformations from the prop-
erty description into the resulting equationcheckP have to
be performed by using SystemC constructs, i.e. the use of
different data types and operators has to be incorporated. Fi-
nally, the propertyP can be checked by evaluatingcheckP

in each clock cycle during simulation or operation. In the
next section some details about the transformation into Sys-
temC code are given.

3.3. Transformation into SystemC Checkers

The work flow of the proposed approach is shown in Fig-
ure 3. At first the design has to be built and the specification
has to be formalized into properties. Then the properties
are translated to checkers and embedded into the design de-
scription (hatched area in the figure). If all checkers hold



template<class T >
class regT : public sc_module {
public:

sc_in_clk clock;
sc_in<T > in;
sc_out<T > out;

SC_CTOR(regT) {
SC_METHOD(doit);
sensitive_pos << clock;

}
void doit() {

out = in.read();
}

};

Figure 4. Generic register

regT<sc_int<8> > *r
= new regT<sc_int<8> >("reg");

r->clock(clock);
r->in(a);
r->out(a_d);

Figure 5. Usage of generic register

during simulation the next step of the design flow can be
entered.

A property is assumed to use only port variables and sig-
nals of a fixed SystemC module or from its sub-modules.
During the translation for the variables of the properties
shift registers have to be created as has been described in
the previous section (Step 2). For this purpose a generic
register as shown in Figure 4 has been modeled. The regis-
ter delays an arbitrary data type for one clock cycle. If such
a templated register is not directly supported by the syn-
thesis tool, it is possible to replace every templated register
with a version where the concrete input and output types
are explicitly specified. The generic register can be used as
shown in the example in Figure 5. There a register with an
sc_int<8> input and output is declared and instantiated.

During the generation of the shift registers of length
omax for a variable,omax generic registers have to be de-
clared and instantiated. This is done in the constructor of
the considered module. The necessarysc_signals (out-
put variables of the registers) for the different time points
are declared as member variables of the considered module.
Their names are produced by adding the number of delays
to the variable name. The absolute time points can not be
used, because if a variable is employed in at least two prop-
erties the delay of the same time points may differ.

SC_MODULE(module) {
public:

// ports
sc_in_clk clock;
...

// sc_signals for different
// time points
sc_signal<T> x_d1,x_d2;

SC_CTOR(module) {
// shift register
regT<T> rx_d1 = ...
rx_d1->clock(clock);
rx_d1->in(x);
rx_d1->out(x_d1);
regT<T> rx_d2 = ...
rx_d2->clock(clock);
rx_d2->in(x_d1);
rx_d2->out(x_d2);
...

}
};

Figure 6. Insertion of a shift register for prop-
erty test

Example 3. Consider again Example 1. Let the data type of
x be T. Let the propertytest be written for the SystemC
modulemodule . As has been explained abovex has to
be delayed two times. Then the resulting shift register is
inserted into the module as shown in Figure 6.

As can be seen in Figure 6 the data type of a variable
used in a property has to be known for declaration of the
sc_signals and shift registers. Thus, with a simple
parser the considered SystemC module is scanned for the
data types of the property variables.

The resulting code to check a property (equivalent to the
equationcheckP ) is embedded into anSC_METHODpro-
cess of the module, which is sensitive to the module clock,
i.e. the process is triggered every clock cycle. In the final
step of writing SystemC code for the translated property the
following is taken into account:

• The shift register for each variable used in a property
is shared between different checkers.

• In case of an array access it has to be distinguished
between an access to an array of ports and an access to
a port which contains an array type. An array of ports
is mapped onto different variables each representing an



// theorem: test
bool check_test = !( ( x_d2.read() == 1 ) ) | ( y.read() == 2 ) ;
if (check_test == false) {

cout<<"@"<<sc_simulation_time()<<": THEOREM test FAILS!"<<endl;
}

Figure 7. Checker for property test

according index of the array. Furthermore the access
operator[] has to be replaced accordingly.

• The operators of the property language have to be
mapped onto its counterparts in C++, e.g.= to ==.

• The resulting checker formula is assigned to a Boolean
variablecheck_<property name> . If this vari-
able is false during simulation the property is violated
and an according output is given using thecout rou-
tine. For the synthesis part an output port for the con-
sidered module has to be generated, which assumes
zero if the property fails.

Example 4. In Figure 7 the translated equationcheck
_test for the propertytest is shown. If the property
fails, this is prompted directly to the designer.

3.4. Optimizations

All shift registers for different properties of one concrete
module which are driven by the same clock, can be inte-
grated into one clocked process. Then in the constructor
SC_CTORof the module instead of the shift registers only
one clocked process has to be declared. In this process the
according output variables are written, e.g. in case of the
propertytest the process statements are:

x_d1.write(x); x_d2.write(x_d1);

So the number ofSC_METHODsis reduced and the simula-
tion speed increases (see also Section 4.2).

As has been explained in the previous section if the
checkers are synthesized one-to-one for each property an
output port is generated, which assumes the value zero if
the property fails. This leads to a trade-off between good
diagnosis and number of output pins. Diagnosis is easy if
each property directly corresponds to an output pin, while
many outputs require more chip area.

4. Experimental Results

The technique described above is experimentally stud-
ied. For this task a bus architecture has been modeled. In
Figure 8 a block diagram of the bus architecture is shown.

The bus is described as a SystemC module, and masters
and slaves can connect to the bus. The bus is divided into

ack_out
req_in

Arbiter

Master 1

Slave 1

data, address
send_flag
recv_flag

Figure 8. Bus architecture
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Figure 9. The integrated arbiter

a data part, an address part and a flag part. These are all
sc_inout -ports and they have the typesc_uint with
a scalable size to allow for variable data width, number
of slaves, and number of masters. The address is used by
the masters to address a slave. The flagssend_flag and
recv_flag are set during a bus transaction (see below).



Figure 10. Simulation trace of a small bus example

Furthermore the bus contains a scalable arbiter. Thus the
bus also has a request input and an acknowledge output for
each master. The arbiter consists ofn cells (one for each
master) and combines priority arbitration with a round robin
scheme. This guarantees that every master will finally get
access to the bus. In Figure 9 the arbiter is shown. Summa-
rized, the features of the bus are:

• Only masters can write to the bus and each master has
a unique id.

• A slave has a unique address. This address is given at
instantiation of the slave.

• A bus transaction works as follows:

1. A master requests the bus via its request output.
If access is granted see Step 2, otherwise the mas-
ter waits for an acknowledgment.

2. The master writes the target address and the data
to the bus. Furthermore, the master writes its id
to thesend_flag . Then the master waits for
an acknowledge that the slave has received the
data via therecv_flag (id of the master at the
recv_flag ).

3. If a slave detects its address on the bus, the
slave reads the data and writes the id from the
send_flag to therecv_flag of the bus.

4. If the master detects its id on the bus, the data
transmission was successful.

A wave form example of a bus with five masters and eight
slaves is shown in Figure 10.

4.1. Checkers

In the following an informal description of the properties
is given, which have been embedded as checkers into the
bus module:

1. Two output signals of the arbiter can never become1
at the same time (mutual exclusion).

2. The acknowledge is only set if there has been a request
(conservativeness).

3. Each request is confirmed by an acknowledge within
2 · n time frames (liveness).

4. If the bus has been granted for a master, the master
writes its id tosend_flag in the next cycle (master
id).

5. If a slave has been addressed, the slave writes the
master id (available at thesend_flag ) to the
recv_flag (acknowledge master).

4.2. Simulation Results

All experiments have been carried out on an Intel Pen-
tium IV 3GHz with 1GB RAM running Linux. Checkers
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Figure 11. Comparison of simulation perfor-
mance for checker mutual exclusion

have been generated for all described properties (see previ-
ous section). In the following for each property the simu-
lation performance in case of no checkers, the simple ap-
proach, and the optimized approach are compared. For this
task the bus model has been simulated for 100,000 clock cy-
cles for a various number of masters. Note that the number
of masters connected to the bus is equal to the number of
arbiter cells. For the checkers described above we obtained
the following results:

1. In Figure 11 the performance comparison for the
checkermutual exclusionis shown. As can be seen
the simulation time for the simple and the optimized
approach increases with the number of masters. Both
approaches behave similar since the observation win-
dow of the mutual exclusion property is 0, so no regis-
ters have to be created. For this reason no optimization
is possible. The total runtime overhead is moderate,
i.e. within a factor of two for 40 cells.

2. The simulation performance with and without the
checkers for theconservativenessproperties is nearly
identical (see Figure 12). This is an expected behav-
ior, because each conservativeness property only ar-
gues over two signals of each arbiter cell.

3. In Figure 13 the results for thelivenesscheckers are
shown. The figure shows that the optimized approach
leads to better results than the simple approach. Since
the observation window of the liveness property is2 ·n
(where n is the number of masters) the number of
SC_METHODshas been reduced effectively by opti-
mization. However the runtime overhead compared to
pure simulation is due to the significantly increasing
size of the observation windows of the liveness prop-
erties.
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Figure 12. Comparison of simulation perfor-
mance for checker conservativeness
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Figure 13. Comparison of simulation perfor-
mance for checker liveness

4. The results for the checkers ofmaster idshow that
there is a small benefit of the optimized approach over
the simple approach (see Figure 14). In total these
properties can be checked during simulation very fast.

5. As expected theacknowledge masterproperty leads to
the same performance as pure simulation, because this
property could be described very compact. Figure 15
shows the diagram.

The experiments demonstrate that the overhead during
simulation for properties with large observation windows is
moderate, and negligible for properties with smaller obser-
vation windows.
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Figure 14. Comparison of simulation perfor-
mance for checker master id
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Figure 15. Comparison of simulation perfor-
mance for checker acknowledge master

5. Conclusions

A new approach has been presented that allows to check
temporal properties for SystemC designs not only during
simulation but also after fabrication. Therefore each prop-
erty is translated into a checker. Such a checker is based on
synthesizable SystemC constructs and embedded into the
design description. Experimental results have demonstrated
the quality of the approach. In case of large observation
windows of the checkers the runtime overhead is moderate,
whereas for small observation windows it is negligible.
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