Model-Based Diagnosis versus Error Explanation

Heinz Riener*
*Institute of Computer Science
University of Bremen, Germany
{hriener,fey } @informatik.uni-bremen.de

Abstract—Debugging techniques assist a developer in localizing
and correcting faults in a system’s description when the behavior
of the system does not conform to its specification. Two fault
localization techniques are model-based diagnosis and error
explanation. Model-based diagnosis computes a subset of the
system’s components which when replaced correct the system.
Error explanation determines potential causes of the system’s
misbehavior by comparing faulty and correct execution traces.
In this paper we focus on fault localization for imperative, non-
concurrent programs. We compare the two fault localization
techniques in a unified setting presenting SAT-based algorithms
for both. The algorithms serve as a vantage point for a fair
comparison and allow for efficient implementations leveraging
state-of-the-art decision procedures. Firstly, in our comparison
we use constructed programs to study strengths and weaknesses
of the two fault localization techniques. We show that in general
none of the fault localization techniques is superior but that
the computed fault candidates depend on the program structure.
Secondly, we implement the SAT-based algorithms in a prototype
tool utilizing a Satisfiability Modulo Theories (SMT) solver and
evaluate them on mutants of the ANSI-C program TCAS from
the Software-Artifact Infrastructure Repository (SIR).

Index Terms—Debugging, fault localization, SAT

I. INTRODUCTION

Functional verification and debugging activities account for
more than half of the total development time of a system.
Functional verification attempts to detect misbehavior of a
system by checking conformance of the system’s behavior to a
specification. Debugging deals with localizing and correcting
known misbehavior in the system’s description.

In industrial applications, verification and debugging are
still done manually. Developers or verification engineers exten-
sively simulate and test the system guided by the specification
to identify and correct misbehavior which is often complicated,
frustrating, and time-consuming. Automated techniques have
the potential to reduce the labor-intensive manual burden
needed for verification and debugging and to decrease the
overall time-to-market. Fault localization has been recognized
as the most challenging and laborious task in the debugging
process [1].

In this paper we focus on automated fault localization tech-
niques for systems described as imperative, non-concurrent
programs. Given the source code of a program which does
not conform to its specification, a fault localization technique
attempts to exactly pinpoint the misbehavior to the part of the
source code that is faulty.

This work was supported in part by the German Research Foundation (DFG,
grant no. FE 797/6-1).

Gorschwin Fey*!
TInstitute of Space Systems
German Aerospace Center, Germany
goerschwin.fey @dlr.de

Fault localization techniques divide into two broad cat-
egories. The first category [4], [5], [6], [7] is based on
Model-Based Diagnosis (MBD) [2], [3]. MBD searches for
components of the program that when replaced correct the
program’s misbehavior. Thus, fault localization is closely
related to program repair, i.e., a component is potentially faulty
if and only if (iff) replacing the component makes the program
correct. The second category is formed by explanation-based
techniques [8], [9], [10], [11], [12], [13] which “explain” a
misbehavior by comparing the differences (and similarities)
between faulty and correct execution traces.

Both technqiues have their merits. MBD-based techniques
directly point to potentially faulty components. However, the
number of potentially faulty components is usually large.
Explanation-based techniques attempt to understand the symp-
toms of a system’s misbehavior on a particular execution trace.
The technique identifies parts of a faulty execution trace that
can be changed to satisfy the specification.

There is only little work in comparing (and combining)
MBD-based and explanation-based techniques [14], [15]. Kob
and Wotawa [14] compare the reported results of an MBD-
based and an explanation-based technique for a concurrent
program which implements a simple locking protocol. They
concluded that an automatic debugging environment can profit
from both techniques. Fey et al. [15] describe a debugging
approach for sequential circuits given as Hardware Descrip-
tion Language (HDL)-designs. They use a combination of an
MBD-based and an explanation-based technique to improve
the resolution of their approach.

In this paper we compare an MBD-based and an
explanation-based fault localization technique. Both tech-
niques allow for certain design choices. We adopt the tech-
niques to provide a unified setting and to allow for a fair
comparison. In particular, the MBD-based technique is similar
to the approach described by Smith et al. [5] but focuses on
fault localization in software programs rather than hardware
circuits. The explanation-based technique is an adaption of
error explanation [13].

We present algorithms to formalize the fault localization
problem with respect to both techniques into logic formu-
lae. The inputs are the source code of an imperative, non-
concurrent program and a formal specification which is either
given by local assertions annotated into the program’s source
or by a reference implementation of the program. The output
is a set of potentially faulty program locations which we
call fault candidates. The logic formulae are solved leveraging
state-of-the-art decision procedures for the Satisfiability (SAT)

problem. A satisfying assignment corresponds to one fault
candidate. We use incremental SAT to enumerate all fault
candidates, i.e., we repeatedly check for satisfiability, extract
the satisfying assignment, and block the assignment until the
logic formulae become inconsistent. However, we do not need
to enumerate all possible assignments of the logic formula but
focus on a specific subset of the variables introduced for fault
localization.

Our SAT-based algorithms are implemented in a prototype
tool which uses Quantified-Free Bit-Vector Logic (QF_BV)
and solves the logic formulae with the aid of a Satisfiability
Modulo Theories (SMT) solver.

Our comparison identifies strengths and weaknesses of the
fault localization techniques. The contribution of the paper is
threefold:

1) We present algorithms, called MBD and BEST-
EXPLAIN, for formalizing fault localization with re-
spect to both techniques into instances of the satisfiabil-
ity problem to form a unified framework for comparison.
The algorithm MBD refers to classical model-based
diagnosis leveraging multiple counterexamples. The al-
gorithm BEST-EXPLAIN refers to a new generalization
of error explanation which searches for the most similar
pair of a faulty and a correct execution trace. Moreover,
it is the first implementation of error explanation lever-
aging incremental SAT instead of Pseudo-Boolean (PB)
constraint solving.

2) We study the fault localization techniques on constructed
programs and show that depending on the program the
fault candidates obtained with the two techniques can
be very different, i.e., one of the techniques pinpoints
the fault whereas the other reports fault candidates for
almost all program locations.

3) We compare the fault localization techniques experi-
mentally in a case study using mutants of the pro-
gram TCAS from the Software-Artifact Infrastructure
Repository (SIR) [16]. We implemented a prototype
tool to compute fault candidates with MBD and BEST-
EXPLAIN. We asses the quality of the fault candidates
similar to Renieris and Reiss [11], i.e., we count their
distance from the real faults with respect to a reference
implementation of TCAS on the Program Dependency
Graph (PDG). The distance refers to the length of the
cause-effect chain the programmer has to examine in
order to locate the real fault.

The remainder of the paper is structured as follows. In
Section II, we present a simple program model and establish
notation to encode a program into logic. In Section III, we
introduce the two fault localization techniques, and describe
algorithms for formalizing them into instances of the satis-
fiability problem. In Section IV, we identify strengths and
weakness of the two techniques and study them in the context
of constructed programs. In Section V, we present a case study
using the ANSI-C program TCAS. Section VI concludes the

paper.

II. PRELIMINARIES
A. Program Model

1) Preprocessing: We use a bounded model checking ap-
proach for software programs similar to Kroning et al. [17]
using loop unrolling and Static Single Assignment (SSA)
form [18]: given an imperative, non-concurrent program P and
an unrolling bound &, we unroll loops and recursive functions
in the program with respect to k£ and transform the unrolled
program into SSA form. Additionally, we assume that function
calls have been inlined to simplify the following presentation.
We denote this transformation by Preprocess(P, k). The
resulting program P* contains no loops and no function calls
and consists of statements over program variables, constants,
and labels. The program is in SSA form, i.e., the value of
each program variable is assigned on its first appearance in
the program’s source code and then remains constant.

2) Syntax and Semantics: In the following, we use the
symbols s, I, v, and ¢ (with or without indices) to denote
statements, labels, program variables, and constants, respec-
tively. Moreover, w (with or without index) is used to denote
a program variable or constant. Each statement has a unique
label. We write s(I) to denote the statement at label I.
A statement is either an assignment statement, a branching
statement, or a phi statement.

An assignment statement is of the form v, := e, (wy) or
v, = ep(wr,we), where e, and e, are expressions and w;
and wy are program variables or constants, respectively. We
allow all usual arithmetic, relational, and logical expressions
with the expected semantics, e.g., the logic negation wy, the
arithmetic negation —wy, or the arithmetic addition w; + ws.
The assignment statement evaluates the expression on the
Right-Hand Side (RHS) by interpreting the semantics of the
operators in the expression with the program variables or
constants as operands and assigns the resulting value to the
program variable v, on the Left-Hand Side (LHS) when
executed.

A branching statement is either of conditional form if v,
then goto /; else goto /5 or of unconditional form goto [,
where v, is a program variable and [y, l5, and [are labels.
The branching statement changes the flow of control in the
program, i.e., it jumps to a statement at a particular label in the
program when executed. The conditional branching statement
jumps to s(ly) if the value of v, is equal to 0 and jumps to
s(l1) otherwise. The unconditional branching statement jumps
under all conditions to s(I).

A phi statement v, = ¢([wo, l;,], (w1, i), -+, [Wn,li,])
denotes a special function which selects the program variable
or constant w;, 0 < j < n, and assigns its value to v, if the
statement S(I;;) was most recently executed before the phi
statement with respect to the statements s(I;,), 0 < k < n.
The phi statements establish the transformation into SSA
form without the need for the introduction of identity assign-
ments [19]. A ¢-function is used when the value assigned to a
program variable cannot be determined statically but depends
on the control flow of the program when executed.

A program is syntactically described as a sequence of
statements. The semantics of a program corresponds to a

semantic function over a set of program variables with a
distinguished subset of input variables and a distinguished
subset of output variables. We say a program is deterministic
if an assignment to the input variables implies a unique
assignment to all other program variables in order to satisfy the
semantics of the statements. Otherwise, we say the program is
non-deterministic. In the following, we focus on deterministic
programs.

B. Encoding the Program

1) Formalization into a Logic Formula: The semantics of
each statement can be formalized to obtain a logic formula.
For each program variable, we introduce a logic variable which
symbolically represents all possible values of the program
variable. In the following, we use the symbols x and d (with or
without indices) to denote logic variables and constant values,
respectively.

We call the transformation from the program into a logic
formula the logic encoding. The logic of choice may be
propositional logic or propositional logic enriched with word-
level data types and operations, e.g., QF_BV logic. Logic
variables and word-level operations then need to be mapped
into the respective primitives of the logic in use. Following an
eager approach, we lower word-level operations when needed
to semantically equivalent logic formulae using Boolean con-
nectives similar to Tseitin’s encoding [20]. We denote the logic
formula which describes the semantics of the statement s by
Encode(s) and extend the definition of Encode to programs.
Let P be a program consisting of statements s;, 0 <7 < n,
then Encode(P) := A[_,Encode(s;).

In the following, we abstract from the logic encoding to
simplify notation and describe the program P by a logic
formula p over the logic variables z;, 0 < % < r, rather than
the real logic primitives used to encode the logic variables.

Suppose P is a program encoded into the logic formula p.
We use Vars(p) to refer to the set of all logic variables of p and
separate Vars(p) into two disjoint subsets In(p) and Aux(p).
We call In(p) the input set of p which is the set of logic
variables corresponding to the input variables of P and we
call Aux(p) := Vars(p)\In(p) the auxiliary set.

Lastly, we wuse (po,p1,-..,Pk):=Encode(P k) as
shorthand for p; := Encode(P), 0<i<k. The sets
Vars(p;) of logic variables are pairwise disjoint, i.e.,
Vars(p;) NVars(p;) = 0 for all i # j and 0 < 4,5 < k.

2) Solving Logic Formulae: We leverage a decision pro-
cedure for the satisfiability problem with respect to the logic
in use, i.e., a SAT solver or an SMT solver, to decide the
satisfiability of the logic formula and assume that the solver
returns a satisfying assignment in case the logic formula is
satisfiable.

We denote a call to a SAT or SMT solver by SAT(f), where
f is a logic formula over logic variables to be checked for
satisfiability. We assume that a SAT or SMT solver is a sound
and complete decision procedure, i.e., the solver returns true
iff f is satisfiable. We use Model(f) to denote an arbitrary
model of the logic formula f, i.e., a satisfying assignment for f
in case it is satisfiable and undefined values otherwise. Thus,

before Model(f) is used, the logic formula f needs to be
checked for satisfiability. This reflects the behavior of common
SAT and SMT solvers. Additionally, we use Model(f,V)
with a second parameter V' to denote the model restricted to
a certain subset V' C Vars(f). Omitting the second parameter
in Model(f) is equivalent to Model(f, Vars(f)).

For the sake of simplicity, we assume that Model(f) is
a model in terms of the logic variables when f is a logic
formula over logic variables z;, 0 < ¢ < r, ie., the real
model with respect to the logic in use is implicitly mapped
to the logic variables. The model can then be written as an
assignment t := (xg = do,x1 = dy, ..., x, = d,) of constant
values dy, dy, . . ., d, of the corresponding domains to the logic
variables xg,z1,...,x,. We say that the assignment ¢ for the
logic formula f is satisfying iff f(¢) is satisfied when z; is
replaced by d; for all 0 < ¢ < r. Moreover, an assignment ¢
is complete (with respect to f) if ¢ assigns a value to all logic
variables « € Vars(f) and partial otherwise.

A common operation when SAT or SMT solvers are
used is restricting a particular set of possible assignments
of a logic formula. We define a restriction operator | in
terms of the logic variables. Suppose f is a logic formula
and ¢ := (zg = do,x1 = di,...,2, = d,.) is a possibly partial
assignment to the logic variables, we define the positive
restriction f|, := f A (\i—o(z; = d;)) and the negative re-
striction f|.¢ := f A (Vi—o(z; # d;)). We extend the defi-
nition of the restriction operator | to sets of assignments
to logic variables. Let f be a logic formula over logic
variables and tg,t1,...,t, be assignments to logic variables,
then we define f|¢4, g0..a03 := ((- ((flgo)|qn) - - -)g,) With
q; € {t;,t;} for 0 <i <r. We use f|-r as a shorthand
for fli—t, ~ts,...,~t,} Where T := {ti,to,...,t.} is a set of
assignments to logic variables.

C. Formal Specification

A formal specification is a set of logic properties which
describe the correct behavior of a program. The formal spec-
ification is either provided by local assertions annotated into
the program’s source code or by a reference implementation of
the program. In both cases the formal specification is encoded
into a logic formula with an approach similar to the description
above. When a reference implementation is used, the encoded
program and the encoded specification share the same logic
variables for inputs and outputs.

We use ¢ (without indices) to denote the logic formula
obtained from encoding the formal specification. In our al-
gorithms for fault localization, we often need multiple copies
of the formal specification, each with its own set of logic
variables. Thus, we use ¢; with index 0 < ¢ < n, to refer to
logic formulae syntactically equivalent to ¢ where the set of
logic variables Vars(y;) and Vars(y;) of each pair (p;, ;) of
logic formulae are pairwise disjoint for i # j and 0 < 4,5 < n.

D. Fault Model

We focus on fault localization, i.e., in our setting the
program’s source code does not conform to its formal spec-
ification. We deal only with simple mistakes which have

one root cause but may manifest in the program’s source
code as multiple faulty program locations. For instance, a
programmer erroneously assumes that array indices start at
index 1 instead of index 0. The mistake has one root cause,
the misunderstanding of array indexing in the programming
language, but manifests in the program’s source code as
multiple faulty program locations corresponding to all array
accesses in the program.

Consider a faulty program P with a simple mistake. We use
the closest reference implementation P’ to P to classify the
mistake. The closest reference implementation is the program
with the smallest number of changes with respect to P which
conforms to the formal specification. We distinguish six types
of simple changes: (1) An operator mutation which refers to
a change of a relational or arithmetic operator. (2) A logic
mutation which refers to a change of a logic operator.
(3) A variable mutation which refers to the replacement of a
program variable with a constant or another program variable
in the scope. (4) A constant mutation which refers to the
change of a constant value. (5) Additional code which refers
to an additional statement in P with respect to P’. (6) Missing
code which refers to a missing statement in P with respect to
P’. Moreover, we say a complex change refers to any change
which does not fit to one of the simple changes.

We define a fault as a simple change, i.e., a fault corresponds
to a single statement. A complex change corresponds to
multiple faults. However, for complex faults we are often
unable to distinguish between replacements, additional code,
and missing code. We refer to a fault in a statement s
with label [either by saying that the statement s or the
statement S(I) at label [is faulty.

Suppose P is a faulty program. A fault influences the
program’s behavior when the program is executed, i.e., the
semantics of the program diverges from the expected se-
mantics. When the developer (or user) is confronted with
unexpected misbehavior of the program, i.e., the program does
not conform to the specification, a symptom of the fault be-
comes observable. For instance, a test case fails unexpectedly
or a logic property of a formal specification is refuted by
the program. In the following, we say that the observable
symptoms of a fault are failures.

The fault localization problem is to trace a failure to its root
cause. An “ideal” fault localization technique would precisely
report a fault for each program location which is faulty.
However, in general there is an unlimited number of possible
corrections for a particular fault and thus the “ideal” technique
does not exist. When an exact localization is not possible, the
fault localization technique determines a proper subset of the
statements of the program that may be faulty, the so-called
fault candidates. The major obstacle in fault localization is
the large number of fault candidates that need to be manually
examined in order to identify the real faults.

Figure 1 and 2 show the programs)¢ and Ry, respectively,
which we use as running examples. Each program has one
injected fault. The program code complies to the program
model introduced in Section II-A. However, we make two sim-
plifying assumption: (1) we assume that all program variables
and constants are of integer type and (2) we avoid dealing with

Fig. 1. Program Qo with a faulty output variable s(I5).
lo : Vg = io 7é 0
l1: (% = io + ¢o
lz: if vy then goto [, else goto I3
l3: goto Iy
la: vy = @([v1, 2], [c1,15])
09 := vy *xerror(cy)

Fig. 2. Program R(with a faulty phi statement S(l4).
lo : Vo = io + ¢o
ll U1 = ’il # 0
l: if v; then goto I, else goto I3
l3: goto Iy
ly: w2 1= ¢([er,la], [exrror(cs),ls])
ls: 09 := vg-+ v

overflow semantics but assume that the values of all program
variables and constants are restricted such that no overflows
are possible. Moreover, to improve readability we use special
names g, ¢1, and og to distinguish the program’s input and
output variables from other program variables.

The injected faults manifest themselves in the program code
as erroneous constant values, i.e., the changes are constant
mutations. We mark the faults in the program code symboli-
cally with the special operator error. The operator error takes
a constant value ¢ as operand and evaluates to a constant
value ¢’ # ¢ when executed. The program becomes correct
if error(c) is replaced by ¢, where ¢ is a constant value.
We denote the correct programs with a superscript C'. For
instance, to obtain the correct program QS from Qg the
expression error(cs) has to be replaced by cy. The program
Qo results in failure if executed on input iy # ¢y and the
program Ry results in failure if executed on input ¢; =0
regardless of the value assigned to ¢g. For all other inputs the
two programs behave correctly, i.e., the programs and their
reference implementations compute the same output when
executed on the same input.

III. FAULT LOCALIZATION

In this section we introduce the two fault localization
techniques. For each technique we describe the general idea
and present an algorithm for formalizing the fault localization
problem into instances of the satisfiability problem. The MBD-
based technique, called MBD, is motivated by Reiter’s fault
diagnosis framework [2] but adapted for software programs.
Our approach is similar to the technique described by Smith et
al. [5] but focuses on software programs rather than hardware
circuits. However, we do not need test cases as part of the
input but use model checking to “extract” the test cases from
a fixed number of counterexamples.

The explanation-based technique, called BEST-EXPLAIN,
is an adaption of error explanation [13]. Given a counterex-

ample, error explanation searches with the aid of a model
checker for the most similar execution trace that satisfies
the formal specification. However, we do not use an initial
counterexample, instead we search for the most similar pair
of faulty and correct execution traces to explain a failure. The
differences are then mapped to the program’s source code to
identify fault candidates.

Our setting is unified in the sense that both techniques,
MBD and BEST-EXPLAIN, are based on a model checker
and use the same input data, a program, a formal specification,
and an unrolling bound, to calculate a set of fault candidates.
Additionally, the accuracy of MBD can be tuned by specifying
the number of counterexamples used for fault localization.

A. Model-Based Diagnosis

For the general description of MBD, we follow in terms
and notation Reiter [2] and adapt the description to fault
localization when needed: a system’s description, a model of
a system, consisting of components and a set of observations
about the correct behavior of the system are given. Both the
system’s description and the observations are formalized as
logic sentences SD and OBS, respectively. The components
of the system are defined as COMP.

We focus on fault localization in the system’s descrip-
tion, i.e., the system’s description and the observations are
inconsistent because the system’s description contains one
or more faults. The goal of MBD is to determine a subset
COMP’ € COMP of the components that are responsible for
the inconsistency and serve as fault candidates. In order to de-
termine this subset, an abnormal predicate ab(c) is introduced
for each component ¢ € COMP. The component ¢ behaves
as usual if the abnormal predicate is false and behaves non-
deterministically otherwise. For each component ¢ € COMP,
this is formally expressed as —ab(c) — Behavior(c), where
Behavior(c) is a logic sentence which describes the normal
behavior of c¢. A subset COMP’ C COMP is a set of fault
candidates iff SD UOBS U {-ab(c) | c € COMP\COMP'}
is consistent.

Reiter [2] proposed a hitting set algorithm to determine
a minimal set COMP’ C COMP of fault candidates. A
set of fault candidates is minimal iff no proper subset
COMP” c COMP’ is a set of fault candidates. The size
|COMP’| of a set of fault candidates is the number of elements
of the set.

Procedure 1 shows our MBD-based fault localization al-
gorithm in pseudo code. Similar to Smith et al. [5] and
Fey et al. [7], our algorithm relies on a SAT solver. The
input of the algorithm is the source code of a program P,
a formal specification ¢, and an unrolling bound k. The
number [of counterexamples used for fault localization can
be provided to tune the algorithm’s accuracy. Intuitively, the
algorithm computes a non-deterministic repair with respect to
the inputs of all blocked counterexamples, i.e., a subset of the
program statements is selected which when replaced with non-
deterministic behavior make the program conform to its formal
specification. The counterexamples are obtained using SAT-
based bounded model checking. The output of the algorithm
is a set of fault candidates.

Procedure 1: MBD-Based Fault Candidate Computation
Input : the source code P of a program, a formal
specification ¢, an unrolling bound k, a
number [of counterexamples
Output: a set of fault candidates F'C

1 begin

2 P* .= Preprocess (Pk);

3 P1 := Encode (P*);

4 C:=0,1:=0;

5| Yi=piAoe

6 while SAT (¢)|-¢) A (I’ <) do
7 C := CUModel(9|-¢);

8 UV:=1+1,

9 end

10 let (c1,co,...,cr) == C,

1 (P2, P3, .-, Prr) := Encode (P*, I' —1);

12 (ﬁlaf)Qa"'aﬁlUAB) = Aand(Pk, (ﬁlaﬁQa"
14 ~

13 d] = /\Lzl(pZ A soi)hn(ci) A ZaEABa =1

14 F =0

15 while SAT (¢)|-F) do

'af)l’)) 5

16 m = Model(®|-r, AB);
17 F:=FU{m}

18 end

19 FC :=MapToSource(F);
20 return F'C;

21 end

First, we preprocess and encode P to obtain the logic
formula p; as described in Section II-A1 (line 2-3). We gen-
erate [’ different counterexamples with respect to the formal
specification (line 4-10) by checking the satisfiability of the
logic formula p; A = with the aid of a SAT solver. Initially,
we start with an empty set of counterexamples C' (line 4)
and successively block them in the following iterations until
either the number of counterexamples ! has been reached or
all counterexamples have been explored and the logic formula
becomes unsatisfiable. We call the actual number of generated
counterexamples I’ < [. In practice [’ is usually equal to [. The
counterexamples are collected in a set and blocked using the
restriction operator (line 7). To simplify notation, we refer to
the set of counterexamples as an ordered sequence which is
expressed using the let keyword in the pseudo code (line 10).

Then, we encode the program P again to obtain I’ syn-
tactically equivalent formulae p;, 1 <i <1’ (line 11) with
" < 1. Also, we duplicate the formal specification to obtain I’
syntactically equivalent logic formulae ¢;, 1 <14 <[’. Recall
that each of these logic formulae uses its own set of logic
variables.

We add abnormal predicates to the logic formulae
Di» 1 <14 <I', denoted by AbnPd (line 12). In our setting
a component is a statement. We introduce one abnormal
predicate per statement and reuse the abnormal predicates
for the same statements in different logic formulae p;. Let
P be a program consisting of statements s;, 0 <4 < n, and
let a;, 0 < ¢ < n, be abnormal predicates, we define

P = N\i_o(—a; — Encode(s;)). The abnormal predicates can
be used to “disable” the behavior of particular statements
of P: if an abnormal predicate a; is assigned true, the
corresponding clause (—a; — Encode(s;)) is satisfied with-
out the need for checking the satisfiability of Encode(s;).
If an abnormal predicate is assigned false, the behavior of
that statement is not changed, i.e., the corresponding clause
reduces to Encode(s;). We use a mapping stmt,,(a) = s
to map an abnormal predicate a to the statement s when
(ma — Encode(s)) is a clause in p. The abnormal predicates
in all logic formulae p;, 1 < i <[’ are the same, i.e., setting
an abnormal predicate a to true disables the behavior of the
statement stmt,;(a) in all logic formulae p;, 1 < i <['. We
use AB to denote the set of all abnormal predicates.

Lastly, we restrict the assignments to the inputs of the
logic formulae p; to the values of the counterexamples and
enforce with a cardinality constraint that exactly one ab-
normal predicate is true (line 13), i.e., we search for an
assignment to the abnormal predicates that satisfies the formal
specification ¢ over the input values of the counterexamples.
Assuming that there is only one faulty program statement,
MBD can pinpoint the fault utilizing one abnormal predicate.
However, our fault model introduced in Section II-D considers
multiple faulty program locations, too. Thus, in our setting we
cannot guarantee that MBD will compute a fault candidate
which corresponds to the real fault. All assignments to the
abnormal predicates are systematically blocked (line 14-18)
and mapped to the corresponding statements in the program’s
source code (line 19) denoted by MapToSource, ie., we
collect a statement s as a fault candidate if there is an
assignment u € F' which assigns an abnormal predicate a = 1
with stmt,,(a) = s.

B. Error Explanation

Our explanation-based technique is an adaption of error
explanation [9], [13]. The underlying motivation of error ex-
planation arises from the counterfactual approach to causality
[21]. The key idea is that an observed effect e is causally
dependent on a cause c¢ in an environment F iff for all
environments E’ similar to E it is more likely that the removal
of the cause c also removes the effect e than removing the
cause c¢ without the effect e. The difference (and similarity)
of the environments F and E’ is expressed by means of
a distance metric over possible environments. A distance
metric over a set S is any binary function d:S xS — R
that is positive definite, symmetric, and satisfies the triangle
inequality.

In error explanation, the execution traces of a program P
serve as the possible environments, the cause is a fault, and
the effect is a failure. An execution trace corresponds to
a terminating path with respect to the control flow of the
program and is formalized as a complete assignment to all
logic variables. Once all logic variables are assigned to a
value, the sequence of statements to be executed is fixed.
The difference of two execution traces is measured using the
Hamming distance [22] defined on execution traces. Given

two execution traces t := (xf = cf, 2t =ct,... 2t = cl) and

Procedure 2: Explanation-based Fault Candidate Compu-
tation
Input

: the source code P of a program, a formal
specification ¢, and an unrolling bound &
Output: a set of fault candidates F'C

1 begin

2 Pk = Preprocess (Pk);

3 (p,7') := Encode (P*, 2);

4 let (z1,22,...,2m,) = Vars(p);

5 let (2}, 2,...,2),) = Vars(p');

6 -=(x17$x)f0r0§z§m,

7 A = Zi:o i

8 | Y= ((BA0)AD Ap2);

9 E' =MIN@W A (A = k), k, m);

10 v:=Model(p A (A=F), {d;| 0<i<m})
1 FC = MapToSource(v);

12 return FC;

13 end

= (zh =cb,xt =¢ ... xt =) of P of finite length

r, where] are logic variables and ¢] are constant values with
7 € {t,t'} and 0 < i < r. The distance d(¢,¢') of ¢ and ¢’ is
defined as d(t,t') := Y7_, A(i) where A(i) = 1 iff ¢! # ¢t
An execution trace is correct if the assignment to the logic
variables satisfies the formal specification, i.e., no assertion
statement along that path fails or the values of the output
variables are equal to the values of the output variables of a
reference implementation when executed on the same inputs.
Otherwise, the execution trace is faulty. In error explanation,
a model checker is used to determine a counterexample which
serves as a faulty execution trace. In order to obtain a set
of fault candidates, a correct execution trace with minimal
distance to the counterexample is computed. The differences
between the two execution traces are then examined on the
source code of the program.

We adapt error explanation for fault localization rather
than explaining counterexamples. Procedure 2 shows our
explanation-based fault localization algorithm, called BEST-
EXPLAIN, in pseudo code. The input and output of the
algorithm, the preprocessing, and the encoding (line 2,3) are
similar to MBD. In BEST-EXPLAIN, however, we encode the
program only twice into the logic formulae p and p’ (line 3).

Our BEST-EXPLAIN algorithm searches for the most sim-
ilar pair of a correct and a faulty execution trace, i.e., a
faulty and a correct execution trace with minimal distance,
and collects the statements corresponding to the differences
of the two traces as fault candidates. We formalize this as
an optimization problem similar to Groce et al. [13] which
minimizes the distance between the logic variables of the
two logic formulae p and p’. Notice that BEST-EXPLAIN is
different from the original error explanation algorithm because
it searches for both the correct and the faulty execution trace
by minimizing the distance between all program variables.

We introduce Boolean variables d;, 0 < ¢ < m, for corre-
sponding pairs of logic variables of p and p’, where m is the

number of logic variables in p and p’, respectively, (line 6,7).
We then define A :=3""" d; as the arithmetic sum of the
Boolean variables d;, 0 < i < m.

We use (A = k) as the optimization criterion and minimize
it by iteratively calling a SAT solver. The optimization is
denoted by k' = MIN(¢) A (A = k), k, m) in the pseudo code
(line 9), where ¥ A (A = k) is the logic formula, k is the
parameter to be minimized, and m serves as a trivial upper
bound for k. We start with checking whether ¢ A (A = m) is
satisfiable and use binary search to determine the minimum &’
such that ¥ A (A = k') is satisfiable but ¥ A (A =k —1)
is unsatisfiable for all [> 0. Then, we extract a model v
of Y A(A=F) for the Boolean variables d;, 0 <i<m
(line 10). We map the model v to the source code of the pro-
gram P and determine the fault candidates F'C' similar to MBD
denoted by MapToSource (line 11). Different from MBD,
MapToSource collects the statements with corresponding
Boolean variables d; = 1, 0 < ¢ < m, in v.

IV. COMPARISON

In this section we compare MBD and error explanation on
constructed programs. We show that depending on the program
the fault candidates computed by the two fault localization
techniques can be very different. In particular, we construct
programs for which one of the techniques computes less fault
candidates than the other and show that by systematically
adding statements the difference between the sets of fault
candidates grows.

We use the two faulty programs)y and Ry from Sec-
tion II-D. Suppose MBD and BEST-EXPLAIN define func-
tions FCq and FC. which map a program to the number of
computed fault candidates. We generalize the programs @)
and Ry to sequences of faulty programs (Q)ren and (Rg)ken
where ;11 and R; are obtained from (); and R; by adding
one statement, respectively. We argue that for the sequences
of faulty programs Q)i and Rj the number of fault candidates
with respect to one technique remains constant whereas the
number of fault candidates with respect to the other technique
grows linearly with the size of the program:

FCa(Qr) = O(1) and FCe(Qy) = O(k) (1
FCu(Ry) = O(k) and FCo(Ry) = O(1) @)

Intuitively, we show that one of the fault localization tech-
niques reports a fault candidate for each added statement and
the other does not.

A. MBD can be superior to Error Explanation

Consider the faulty program @) from Figure 1. There is only
one correct execution trace when the program is executed on
input 79 = —co which forces oy = 0 and eliminates the effect
of the faulty statement at /5. All other inputs iy # —c¢q cor-
respond to faulty execution traces. MBD computes one fault
candidate for the real faulty statement at label /5 regardless
of which faulty execution trace is used as counterexample.
A program can always be corrected at its output variable.
However, we can choose constant values cg, ¢, ¢o such that no
other fault candidates exist. For instance, assume we attempt

to correct the program at s(I;). MBD creates logic formulae
qo and ¢§ from Qo and its reference implementation QS
and substitutes the logic variable corresponding to vy in qq
with an open variable R. If the output variables of ¢y and
q§ become equal allowing arbitrary values for R then s(I;)
is a fault candidate. In particular, s(l;) is a fault candidate
iff R« error(cy) = cy *co. If we choose the constants ¢y,
¢o, and error(cg) such that error(cy) does not divide ¢y * co
without remainder then the value of R is not an integer and
no correction for s(I;) is possible. Similar arguments apply to
all other statements. Thus, we can choose certain values for
Co, C1, C2, and error(cy) such that s(I5) remains the only fault
candidate.

Our error explanation algorithm searches for a pair of a
faulty and a correct execution trace with minimal distance.
The correct execution trace ¢ forces vg = 1, v; =0, vy =0,
and ogp = 0. We distinguish two cases of faulty execution
traces with respect to the control flow of the program:
(1) ip = 0 and (2) ip = d with d € Int\{—cp,0}. In the first
case, the faulty execution trace ¢_; forces vy =0, v; = ¢y,
vy = ¢1, and o9 = ¢1 * error(cg). In the second case, for all
faulty execution traces t_o the program variables evaluate
to vg=1, v1 =d, vo =d’, and o9 = d’' x error(ce) with
d" = Int\{0, co}. The distances of the faulty and the correct
execution traces are d(ti,t_1) =4 and d(ty,t_2) =3 if
d" = ¢y, respectively. Thus, error explanation will generate
three fault candidates for vy, vs, and og.

We construct a sequence @i, k € N, of faulty programs
from ()y. We systematically add statements of the form
w; = wi—1 +g;, 1 <i <k, to Qo between s(l;) and s(l3)
to obtain () where w; are new program variables and g;
are constants. Additionally, we define wy := v; and replace
vy by wy in S(l4) to connect the added statements to the
rest of the program. For fault localization with MBD the
same argument applies: we can choose constants cg, ¢1, c2,
and error(ce) such that there is only one fault candidate
which considers correction at the output variable. Error ex-
planation reports by construction one fault candidate for each
added statement. There is one correct execution trace for
Qy; if the program is executed on input ig = — Zle gi — Co
which forces w; = Zf:j gi;. We distinguish two cases of
faulty execution traces: (1) i =0 and (2) i9 =d with
d € Int\{0, — Zle gi — co}. In the first and the latter case,
wj=co+>71_,9; and wj =d+co+ Y. gi respectively.
Thus, the distance between the correct and the faulty execution
traces are guaranteed to grow with k for non-trivial g;,
1<i:<Ek.

B. Error Explanation can be superior to MBD

Consider the faulty program R, from Figure 2. There are
several correct and faulty execution traces depending on the
value assigned to the input 4. If 41 # O the program results in
failure and otherwise if 41 = 0 the program’s output is correct
with respect to its reference implementation R§ because the
erroneous constant value at [, does not propagate to the
output variable. MBD computes one fault candidate for every
statement. A program can always be correct at its output

variable and thus MBD computes one fault candidate for S(I).
Additionally, MBD computes fault candidates for s(ly), s(I1),
s(l3), and s(l4), i.e., MBD can replace v; to avoid executing
the fault and replace vy or vs to correct the output value.

Error explanation selects a faulty and a correct execution
trace with minimal distance and compares them to compute
fault candidates. For all faulty execution traces t_, the in-
put variable ¢y = yo and ¢; = 0 force vy = yg + cp, v1 =0,
vy = error(cy), and o9 = Yo + ¢o + error(cz), where yo is
an open variable. For all correct execution traces ¢, the
input variables iy = y; and i; = d, d € Int\{0} which forces
Vo = io + cg, V1 = d, V2 = C1 and [io “+co + c1, where
y1 is an open variable. The distance d between a faulty ¢_
and a correct execution trace t4 is minimal if yy = y3, i.e.,
d(ty,t_) = 3. Thus, error explanation generates the three fault
candidates s(I1), S(l4), and s(I5).

Again, we construct a sequence (Ry), k € N, of faulty
programs from R,. We systematically add statements of the
form w; == w;—1 +¢;, 1 <i <k, to Ry between s(ly) and
s(l1) to obtain Ry where w; are new program variables and g;
are constants. We connect the new statements to the rest of the
program: we define wy = vo and replace vy in S(l5) by wg.
MBD computes a fault candidate for each added statement,
i.e., all w; are added up to the output variable oy in S(I5) and,
thus, each w; can be used to correct the value of oy. However,
when error explanation is used the values of w; are equal for
all faulty and correct execution traces when executed with the
same input ¢¢. Thus, error explanation computes no new fault
candidates for the added statements.

V. CASE STUDY

In this section, we compare both fault localization tech-
niques experimentally in a case study using the Traffic Colli-
sion Avoidance System (TCAS) from SIR [16]. TCAS is an im-
perative, non-concurrent ANSI-C program which implements
a collision avoidance system for aircraft in 135 lines'. SIR
provides 41 mutants of TCAS?. Each mutant corresponds to
the correct program with injected faults. The mutant contains
a simple mistake with respect to the correct program. These
mistakes may refer to a single or multiple faulty statements.

For the comparison, we compute fault candidates for each
mutant of TCAS with both fault localization techniques. All
our experiments were conducted on a PC AMD Phenom' 1I
X4 Processor which has 4 cores with 3 GHz each and 8 GB
RAM. We use the 64-bit version of Boolector 1.4.1 as SMT
solver. Our prototype tool interacts with Boolector via API
calls. In Section V-A we describe the implementation of the
algorithms, MBD and BEST-EXPLAIN, and in Section V-B
we list the results for the mutants of TCAS.

A. Implementation

We implemented the algorithms, MBD and BEST-
EXPLAIN, into a C++ application using the libraries Boost
1.4.9, Low Level Virtual Machine (LLVM) 3.0 [23], and

! All source lines are counted using the Unix tool sloccount.
2The source code is publicly available on http://sir.unl.edu/portal/index.php.

metaSMT pre-release 4 [24]. The preprocessing, previously
denoted by Preprocess, leverages the LLVM compiler
infrastructure. We use LLVM’s C/C++ compiler front-end to
translate the ANSI-C program first into LLVM bitcode, i.e., a
RISC-like intermediate representation similar to the program
model introduced in Section II-A. The LLVM compiler infras-
tructure provides transformations that can be used to establish
SSA form.

Our logic encoding, previously denoted by Encode, is
based on QF_BV logic rather than propositional logic. The
QF_BV logic enriches the syntax and semantics of proposi-
tional logic with bit-vectors and, additionally, defines word-
level operators on the bit-vectors. For instance, an LLVM
instruction which adds two 32-bit integers can be formalized
using two bit-vectors of length 32 and the addition opera-
tor defined on bit-vectors. The logic encoding is similar to
Section II-B, i.e., we define an encoding for each LLVM
instruction type.

Logic formulae are checked for satisfiability using an SMT
solver which supports QF_BV logic. In practice SMT solvers
are effective for solving logic formulae of moderate to large
size. We use metaSMT as a generic interface to different SMT
solvers which either allows for dumping a file in the SMT-LIB
version 2 format or for interacting with a solver via API calls.

B. Experimental Results

Model checking the correct TCAS program with our pro-
totype tool takes 3.36 seconds. Table I presents the fault
localization results for all 41 mutants of TCAS with respect to
both fault localization techniques. The table is built as follows:
the first column names the benchmark. The second column
classifies the change with respect to the fault model introduced
in Section II-D. For simple changes, we use the first letter
of the mutation as abbreviation, i.e., O denotes an operator
mutation, L denotes a logic mutation, V denotes a variable
mutation, C denotes a constant mutation, A denotes additional
code, and M denotes missing code. Moreover, we use * to
indicate a complex change. In order to assess the quality of
the fault candidates we use an approach similar to Renieris and
Reiss [11], i.e., we compute the distance of the fault candidates
to the real faulty program locations on the PDG constructed
from the mutant. The distance refers to the length of the cause-
effect chain the programmer has to examine until the real fault
is found. We built the PDG for all mutants. The third column
lists the diameter of the PDG. The rest of the table is split
into 4 parts each having 5 columns. The first three parts list
the results for MBD using 1, 5, and 10 faulty execution traces
and the last part lists the results for BEST-EXPLAIN. For
each of those parts, we present the number F'C' of reported
fault candidates, the time ¢ in seconds for computing the fault
candidates, and the minimal, maximal and average distance
of the fault candidates to a real faulty program location. We
marked the faulty program locations on the PDG manually. For
simple changes, we marked the statement that differ between
the mutant and the correct TCAS program. For complex
changes, we marked the statements which in our opinion
correspond to the root cause of all failures. The minimal and

http://sir.unl.edu/portal/index.php

TABLE I
FAULT LOCALIZATION FOR THE ANSI-C PROGRAM TCAS

Program MBD(1) MBD(5) MBD(10) BEST-EXPLAIN

Id Type ¢ FC t Min Max Avg FC t Min Max Avg FC t Min Max Avg FC t Min Max Avg
tcas (01) o 29 69 6.18 0 8 5 69 14.40 0 8 5 69 26.76 0 8 5 14 79.79 1 7 4
tcas (02) o 29 75 439 0 7 4 75 11.73 0 7 4 68 23.60 0 7 4 3 2752 5 5 5
tcas (03) L 29 71 3.93 0 9 4 71 11.98 0 9 4 71 3242 0 9 4 3 13.01 3 5 4
tcas (04) L 29 71 436 0 8 4 64 12.27 0 8 4 64 18.95 0 8 4 17 23.68 2 7 5
tcas (05) M 29 62 3.37 0 10 5 62 11.60 0 10 5 62 2395 0 10 5 4 975 5 7 5
tcas (06) o 29 66 4.99 0 6 4 59 11.50 0 6 3 59 2794 0 6 3 6 1947 1 4 2
tcas (07) c 29 43 334 0 8 5 43 891 0 8 5 43 20.46 0 8 5 5 2331 2 4 3
tcas (08) c 29 70 5.14 0 8 4 63 11.30 0 8 4 63 2392 0 8 4 5 2695 2 4 3
tcas (09) o 29 31 226 0 7 4 31 771 0 7 4 31 17.11 0 7 4 8 28.84 1 5 3
tcas (10) o 29 83 5.99 0 6 3 76 1443 0 6 3 86 2642 0 6 3 6 2195 1 4 2
tcas (11) * 28 63 4.03 0 6 3 63 994 0 6 3 56 24091 0 6 3 6 20.50 1 4 2
tcas (12) L 29 67 3.67 0 10 5 67 11.62 0 10 5 59 2792 0 10 5 3 14.66 4 4 4
tcas (13) c 29 65 3.73 0 10 5 65 12.86 0 10 5 58 2224 0 10 5 4 1331 1 4 2
tcas (14) c 29 12 127 0 5 2 12 04.03 0 5 2 12 8.60 0 5 2 3 2373 5 6 5
tcas (15) A 29 56 3.40 0 7 3 56 10.92 0 7 3 56 23.71 0 7 3 4 1141 1 4 2
tcas (16) c 29 43 3.37 0 8 5 43 8.56 0 8 5 43 21.34 0 8 5 5 19.27 2 4 3
tcas (17) c 29 71 421 0 8 4 71 10.82 0 8 4 64 27.90 0 8 4 5 1944 2 4 3
tcas(18) c 29 43 345 0 8 5 43 941 0 8 5 43 17.01 0 8 5 5 2727 2 4 3
tcas(19) c 29 72 447 0 8 4 65 11.04 0 8 4 68 29.17 0 8 4 5 23.56 2 4 3
tcas (20) o 29 75 5.5 3 8 5 68 11.57 3 8 5 68 26.12 3 8 5 19 3941 3 7 5
tcas (21) * 27 31 3.04 2 7 5 31 8.8 2 7 5 31 1827 2 7 5 9 4040 4 5 4
tcas (22) * 27 25 279 0 6 3 25 7.67 0 6 3 25 16.86 0 6 3 9 6259 3 5 4
tcas (23) * 26 64 3.63 0 6 4 64 10.04 0 6 4 57 21.68 0 6 4 8 3045 2 4 3
tcas (24) * 26 31 3.03 2 8 5 31 835 2 8 5 31 18.90 2 8 5 8 3472 4 5 4
tcas(25) o 29 44 476 0 8 4 44 10.40 0 8 4 44 20.67 0 8 4 9 2358 5 8 6
tcas (26) * 29 67 3.75 0 9 5 67 11.97 0 9 5 60 25.50 0 9 5 3 1059 4 5 4
tcas (27) M 29 62 3.36 0 10 5 62 11.61 0 10 5 62 2381 0 10 5 4 12.02 4 6 4
tcas (28) A 29 74 439 0 7 4 74 11.65 0 7 4 67 25.60 0 7 4 3 2799 5 5 5
tcas(29) * 28 70 3.75 2 8 5 70 11.57 2 8 5 63 27.64 2 8 5 3 20.64 4 5 4
tcas (30) * 28 78 4.27 2 8 5 78 13.66 2 8 5 71 25.17 2 8 5 3 2275 4 5 4
tcas(31) * 20 56 3.72 2 7 3 56 1141 2 7 3 49 22.54 2 7 3 13 14.39 1 4 2
tcas(32) * 28 58 4.19 0 6 3 51 9.82 0 6 2 51 2443 0 6 2 15 1752 1 5 3
tcas (33) * 29 66 6.15 0 8 4 66 13.83 0 8 4 66 26.02 0 8 4 5 3954 2 4 3
tcas (34) A 30 58 3.79 0 9 5 58 10.24 0 9 5 58 28.92 0 9 5 9 1520 1 6 4
tcas (35) * 29 74 438 0 7 4 74 11.63 0 7 4 67 25.59 0 7 5 3 2254 5 5 5
tcas(36) c 29 15 128 0 6 3 15 4.60 0 6 3 15 1055 0 6 3 18 50.16 0 7 3
tcas (37) \% 19 66 2.84 2 9 5 59 759 2 9 5 59 1750 2 9 5 3 1848 4 5 4
tcas (38) * 27 43 2.56 2 9 5 43 6.19 2 9 5 43 1241 2 9 5 5 19.70 5 5 5
tcas (39) o 29 44 476 0 8 4 44 10.40 0 8 4 44 20.65 0 8 4 9 3134 5 8 6
tcas (40) M 20 39 237 2 8 5 39 721 2 8 5 39 15.84 2 8 5 9 1555 2 4 3
tcas (41) M 27 72 4.14 2 8 5 65 10.47 2 8 5 65 2821 2 8 5 16 37.36 4 8 6

maximal distance refer to the shortest and longest shortest
path of the PDG from a fault candidate to any marked faulty
program location. The average distance is the arithmetic mean
of all shortest paths of the PDG from a fault candidate to any
marked faulty program location.

For all 41 mutants of TCAS, MBD(1) computes the fault
candidates faster than BEST-EXPLAIN but the computed fault
candidate sets are always larger. Using more counterexample
hardly reduces the number of reported fault candidates, i.e.,
the counterexamples provided by the SMT solver are not
guaranteed to activate different control paths.

The algorithm MBD localizes most faults exactly producing
a fault candidate with minimal distance 0. However, our
fault model considers multiple faults and thus MBD is not
guaranteed to compute a fault candidate which pinpoints the
fault when only one abnormal predicate is enabled. This
applies to complex changes and simple changes when a single
faulty location in ANSI-C transforms to multiple faults in the
LLVM bitcode.

The explanation-based algorithm, BEST-EXPLAIN, tends
to avoid the execution of the faulty program locations. For in-
stance, the values of a condition evaluate to true in the correct

execution trace and false in the faulty execution trace. Notice
that the program is in SSA form. If a program variable is not
assigned because a statement was not executed, the value of
the program variable is non-deterministic. The logic variables
corresponding to this program variable become trivially equal
when searching for a pair of a faulty and a correct execution
trace with minimal distance. Thus, BEST-EXPLAIN does not
report fault candidates with minimal distance 0 if the correct
execution trace does not execute the faulty statement. As a
result BEST-EXPLAIN rarely computes fault candidates with
minimal distance 0.

VI. CONCLUSIONS

In this paper, we compared MBD-based and explanation-
based fault localization techniques. We adapted the fault lo-
calization techniques to provide a unified setting and presented
algorithms, called MBD and BEST-EXPLAIN, for formalizing
them into instances of the satisfiability problem. The inputs
of the algorithms are the source code of an imperative, non-
concurrent program written in a programming language like
ANSI-C and an unrolling bound. The output is a set of

potentially faulty statements, called fault candidates, which
need to be manually examined.

Firstly, we explored the strengths and weaknesses of the
two fault localization techniques using constructed programs.
We showed that the fault candidates computed with the two
techniques can be very different with respect to the program.
Secondly, we compared the two techniques experimentally in
a case study using 41 mutants of the TCAS program. We
implemented both fault localization techniques in a prototype
tool leveraging the LLVM compiler infrastructure to encode
the program into a logic formula and an SMT solver to decide
satisfiability of the logic formula. We assessed the quality
of the computed fault candidates with respect to both fault
localization techniques by counting their distance to the real
faulty program locations on the PDG.

REFERENCES

[1] I. Vessey, “Expertise in debugging computer programs: An analysis of
the content of verbal protocols,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 16, no. 5, pp. 621-637, 1986.

[2] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, no. 1, pp. 57-95, 1987.

[3] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial
Intelligence, vol. 32, no. 1, pp. 97-130, 1987.

[4] W. Mayer, M. Stumptner, and F. Wotawa, “Model-based debugging or
how to diagnose programs automatically,” in International Conference
on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, 2002, pp. 746-757.

[5] A. Smith, A. Veneris, M. F. Ali, and A.Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Transactions on CAD,
vol. 24, no. 10, pp. 1606-1621, 2005.

[6] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in Conference on Computer Aided Verification, 2005, pp. 226—
238.

[71 G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Transactions on CAD, vol. 27,
no. 6, pp. 1138-1149, 2008.

[8] A.Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
193-200, 2002.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

A. Groce and W. Visser, “What went wrong: Explaining counterexam-
ples,” in International Conference on Model Checking Software, 2003,
pp- 121-136.

T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause:
Localizing errors in counterexample traces,” in Symposium on Princples
of Programming Languages, 2003, pp. 97-105.

M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in IEEE International Conference on Automated Software
Engineering, 2003, pp. 30-39.

H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,”
International Journal on Software Tools for Technology Transfer, vol. 6,
no. 2, pp. 102-116, 2004.

A. Groce, S. Chaki, D. Kroning, and O. Strichman, “Error explanation
with distance metrics,” International Journal on Software Tools for
Technology Transfer, vol. 8, no. 3, pp. 229-247, 2006.

D. Koéb and F. Wotawa, “A comparison of fault explanation and
localization,” in International Workshop on Principles of Diagnosis,
2005, pp. 157-162.

G. Fey, A. Siilflow, and R. Drechsler, “Towards unifying localization
and explanation for automated debugging,” in International Workshop
on Microprocessor Test and Verification, 2010, pp. 3-8.

H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering: An International Journal,
vol. 10, no. 4, pp. 405-435, 2005.

D. Kroning, “Software verification,” in Handbook of Satisfiability,
A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds. IOS Press,
2009, pp. 505-532.

B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of
variables in programs,” in Symposium on Princples of Programming
Languages, 1988, pp. 1-11.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in Symposium on Princples of
Programming Languages, 1988, pp. 12-27.

G. S. Tseitin, “On the complexity of derivation in propotional calculus,”
in Automation and Reasoning: Classical Papers in Computational Logic
1967-1970, 1983, originally published in 1970.

D. Lewis, “Causation,” Journal of Philosophy, vol. 70, pp. 556-567,
1973.

R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Journal, vol. 29, no. 2, pp. 147-160, 1950.

C. Lattner, “LLVM: An infrastructure for multi-stage optimization,”
Master’s thesis, University of Illinois at Urbana-Champaign, 2002.

F. Haedicke, S. Frehse, G. Fey, D. Grofe, and R. Drechsler, “metaSMT:
Focus on your application not on solver integration,” in International
Workshop on Design and Implementation of Formal Tools and Systems,
2011, pp. 22-29.

	Introduction
	Preliminaries
	Program Model
	Preprocessing
	Syntax and Semantics

	Encoding the Program
	Formalization into a Logic Formula
	Solving Logic Formulae

	Formal Specification
	Fault Model

	Fault Localization
	Model-Based Diagnosis
	Error Explanation

	Comparison
	MBD can be superior to Error Explanation
	Error Explanation can be superior to MBD

	Case Study
	Implementation
	Experimental Results

	Conclusions
	References

