
Automatically Connecting Hardware Blocks
via Light-Weight Matching Techniques

Jan Malburg∗ Niklas Krafczyk∗ Görschwin Fey∗†

∗Institute of Computer Science †Institute of Space Systems
University of Bremen German Aerospace Center

28359 Bremen, Germany 28359 Bremen, Germany
{malburg,thurisaz}@informatik.uni-bremen.de Goerschwin.Fey@dlr.de

Abstract—In modern chip design, many different blocks are assembled
in a single chip. Normally, these blocks have been written by different
developers or even licensed from other companies. Correctly connecting
all blocks is a tedious task. State of the art tools for automatically gen-
erating the connections either require identical port-names or additional
user input describing the intended connections.

In this paper we present an automatic approach for connecting
different blocks. In contrast to previous approaches, we neither need
exact name matching of the port-names nor additional user input. An
evaluation showed the advantages of our approach. For seven of eight
designs our approach generated better connections than a previous
approach, including a design which has been optimized for being used
with the previous approach.

A second goal of this paper is to understand the limitations of the
presented light-weight matching techniques.

I. INTRODUCTION

Modern chip designs are composed out of several different blocks.
Blocks are typically described in a Hardware Description Language
(HDL). Often these blocks are from different developers or even third
party blocks licensed from other companies and have to be assembled
into a single chip. Writing the corresponding connections is a tedious
task for a developer, as he needs to connect several hundreds or even
thousands of different ports. Hence, automation is desirable.

We consider a technique as automatic if it only requires the
blocks and the number of instances of each block. In this sense
tools are not considered automatic if they require further user input
like descriptions of the intended connections as, for example, the
tool MKTREE [1]. An example for an automatic tool based on
this definition is the openly available Emacs Verilog-Mode [2],
which allows automatic generation of the connections. Additionally,
a developer can add hints to support the generation.

In this paper we propose a technique which automatically generates
the connections between a set of blocks. Our technique uses heuristics
to compute likely connections between the different blocks using the
similarities of the port-names, the bit-width of the ports and the data-
direction. In contrast to similar techniques, our technique does not
require 100% matching of the port-names to find the connections.
This is an advantage, as often there is no 100% match of the names,
either because the blocks are from different companies with different
naming conventions or the naming convention includes pre- and
suffixes for the data-direction and -width. A secondary research goal
of this work is to evaluate the limitations of light-weight approaches
for automatically connecting modules. Therefore, no computation
intensive functional techniques are used.

We evaluated our approach on eight different designs of different
size, authors, functionality, and origin. As comparison we use Emacs
Verilog-Mode. With respect to a quality metric, which approximates
the amount of work such a tool saves a developer, our approach
generates equal or better connections than Emacs Verilog-Mode for
all of the eight designs considered. This even includes a design which
has been optimized for being used with Emacs Verilog-Mode. For one

This work was supported in part by the German Research Foundation (DFG,
grant no. FE 797/6-1)

design, for which Emacs Verilog-Mode was not able to create any
connections, our approach generates a perfect set of connections.

Finally, we present cases which cause poor results for the approach
and possible future improvements.

The remainder of this paper is organized as follows: Section II
describes related work. Our approach is described in Section III in-
cluding the different heuristic and connection strategies we are using.
In Section IV we present the used quality metric and the evaluation
of our approach. In Section V the limitation of the evaluated light-
weight techniques and future improvements are discussed. Section VI
concludes the paper.

II. RELATED WORK

In this section we discuss existing tools for generating connections
between ports of different modules. However those techniques either
require exact name matching of the port names or additional user
input.

With SystemVerilog 1800-2005 [3] the implicit port instantiation
operators .* and .name have been introduced. The operators allow
shortening the instantiation list of modules. However, they require a
complete match of the signal names with the port-names and that the
signals are already defined in the module. In contrast, our approach
neither requires that signals are already defined nor that there is a
100% matching between the names. The implicit port instantiation
operators and our approach have in common that they expect correct
data-width and data-direction.

The Emacs plugin Verilog-Mode [2] adds several options for
automatic instantiation to the text editor Emacs. The option AU-
TOINST allows instantiation based on direct name matching similar
to the .* operator for SystemVerilog. Further, a user can use
regular expressions in order to lift the requirement of exact name
matching. Additionally, Verilog-Mode provides AUTOWIRE and
AUTOREG which automatically declares wires and registers based
on the module’s input and output definitions. Still this approach either
requires exact name matching or complex user input, in form of the
corresponding regular expressions, to automatically create the port
connections. Similarly, Emacs plugins for VHDL exist as well [4].

MKTREE [1] is a tool to create connections between several
Verilog modules. For this MKTREE utilizes a special description
language to reduce the coding effort for a developer. Therefore, MK-
TREE is not an automatic tool in our sense and has the disadvantage
that the developer has to learn the description language used.

ShapeUp [5] is a tool which uses a connection description written
in Click, a language originally designed to describe network systems
for generating the connection between modules. Further, ShapeUp
utilizes module-interface descriptions based on the IP-XACT standard
[6] in order to ensure correct wiring between the different modules.
To some extend ShapeUp is even able to automatically generate
converter blocks in cases where the interfaces do not completely
match, for example in presence of different bit-widths. However, both
the Click description of the intended connection and the IP-XACT
description of the modules need user interaction. Thus ShapeUp is
not considered an automatic tool in our sense.

Figure 1. The basic flow of our approach

In [7] Avnit et. al. present an approach to automatically generate
protocol converters for the communication protocols of two blocks.
Their approach needs a description of source protocol and target
protocol in form of a finite state machine and a mapping of data-
and control-ports. Based on this they compute a hardware block
implementing a finite state machine, which translates one protocol
into the other. Their approach differs from ours as we assume match-
ing protocols where they explicitly assume nonmatching protocols.
Further, their approach needs user input in form of the finite state
machines and the port mapping and uses computational costly formal
analysis.

III. TECHNIQUE

In this section we describe our technique and the heuristics we are
using. The implementation of our technique is based on the parser
of IcarusVerilog [8]. Consequently, our implementation only supports
Verilog. However, the basic idea should work for other HDLs, like
VHDL or SystemC as well.

The basic flow of our approach is shown in Figure 1. As input a list
of Verilog modules, the source code of each module, and, optionally,
the amount how often each module should be instantiated is used.
First, a set of prohibiting heuristics is applied on the modules. The
prohibiting heuristics mark connections as forbidden either because
they are very unlikely or would result in nonsynthesizable code. Then
supporting heuristics are used which compute the likelihood of a
connection of being correct based on name comparison. The last step
in the computation is the application of a connection strategy which
uses the results of the heuristics. Some strategies additionally use a
threshold or a safety approximation. The connection strategy returns
the generated connections between the different modules.

A. Prohibiting heuristics

In this section we present the heuristics which mark connections
between two ports as forbidden connections either because such a
connection would result in invalid Verilog code or the connection is
extreme unlikely.

• No output-to-output connections:
Such a connection is not allowed by Verilog.

• No Output-to-InOut connections:
A connection of an InOut port with an Output-port is valid in
Verilog. But this type of connection is unlikely and might often
result in multiple driver errors during synthesis.

• No connection between ports with different bit-width:
Like the previous case, this results in correct Verilog code but
is rather unlikely.

• No connection between two ports of the same module-instance:
This is also very unlikely as the information could be forwarded
inside the module.

• No connection of a port with itself:
Such a connection cannot be expressed in Verilog.

B. Supporting Heuristics

Here we present several heuristics to compute a likelihood for two
ports to be connected. These heuristics assign values to pairs of ports
in the range from zero to one, where zero means unlikely and one
means very likely.

1) Name matching (Nm): The first set of heuristics we present is
based on the similarity of the port-names. For any sensible naming
convention for port-names, those names should contain information
about the data, which is expected to be send over that port. Conse-
quently, if two ports should be connected, the same data is to be send
over both ports. Over one of the ports as input and over the other
port as output. Thus it can be assumed that the ports which should
be connected have to some extend similar names.

We implement three different heuristics based on the string-
similarity metrics Jaro-distance [9], Levenshtein-distance [10] and
longest-common-substring.
• Jaro-distance (NmJ):

For computing the Jaro-distance, first the relation of match-
ing characters gets computed, where characters are considered
matching if they are identical and their position does not differ
beyond a value defined by the length of the string. Then the
amount of transpositions is counted. A transposition is a set
of two matching characters, which are in different order in the
two strings. After that, the distance is computed as the average
of the relation of the matching characters to the length of the
strings and the relation of matching non-transposed characters
to matching characters.

• Levenshtein-distance (NmLev):
The Levenshtein-distance, also known as edit-distance, is defined
as the minimal number of edit operations which have to be
applied in order to change one string into the other. An edit-
operation is defined as either, deleting a character, adding a
character, or the replacement of a character. The largest possible
Levenshtein-distance of two strings is the length of the longer
of those two strings.

• Longest-common-substring (NmLCS):
The longest-common-substring is the length of the longest
substring which both strings have in common. This value then is
normalized based on the average size of both strings. The idea
in using the longest-common-substring is that in many naming-
conventions characteristics of the port, like direction and bit-
width, are included in the name in form of a pre- or suffix.

For our heuristic computation the result of the distance computation
is normalized to the range between zero and one, where zero means
no similarities between the strings and one means identical strings.
The normalized value is the resulting likelihood.

2) Extended name matching (ENm): Like the normal name match-
ing, but additionally, the port name is also compared to the module
name of the ports to which it should be connected, the submodules,
if any, which use the port and the port names for those submodules.
The maximum score of all these computations is used. As for name
matching extended name matching can be combined with the different
string metrics resulting in the three heuristics ENmJ , ENmLev and
ENmLCS .

3) Event checking (Ev): In synchronous designs, there exists
always a clock signal and most likely a reset signal. If the event
checking heuristic is used, a top level signal clock is assumed to
exist as well as a signal reset. The sensitivity lists of the modules
and submodules are checked, and it is assumed that reset and clock
signal are signals which appear in the sensitivity lists of the modules.
For those signals which appear in the sensitivity list, their names get
compared to the names clock and reset, as normally the clock
signal is named clock or clk and the reset signal reset or rst.
The result of this comparison is used as the assigned likelihood.
Because, this heuristic only compares port-names with clock and
reset, the heuristic only assigns likelihoods to such connections.

C. Score and Threshold

Over all heuristics a score is computed for the connection between
two ports. For this the likelihoods computed by the different heuristics
get summed up. Also the prohibiting heuristics assign likelihoods

to the possible connections, hereby the following rules apply: The
heuristic which checks for port direction assigns 0.5 to connections
between input and InOut ports and to all other legal connection the
likelihood 1.0. Forbidden connections get the likelihood 0.0 assigned.
Correspondingly, the heuristic which checks for port width assign a
likelihood of 1.0 to connections with matching port widths and 0.0
otherwise.

A threshold on the computed score has been defined in order to
decide if a connection is likely or not. As the likelihood of all used
heuristics get summed up, the maximal score value depends on the
number of used heuristics. Therefore, the value of the threshold is
defined as a fraction of the maximum score. Preliminary experiments
showed that choosing a threshold equal to two third of the maximal
reachable score is effective; thus this is the value we are using for
the experiments in this paper.

D. Safety Approximation

For a port, there are often several ports to which it can connect.
However, input ports are only allowed to connect to a single other
port. All those possible ports present alternatives to which the port
can be connected. Potentially, some of those connections might not
have the highest score, but do not have any other likely connection
and the connection with the highest score may have many different
other possible connections. In this section we present a safety approx-
imation which also considers the score of alternative connections.
The basic idea of the safety approximation is to compute, how much
more likely a connection is compared to the other connections the
associated port could be part of. Let s(i, j) be the score for the ports
i and j. Further, let smax be the highest possible score and P the set
of all ports. Then we define the safety approximation c(i, j) between
the port i and j as:

c(i, j) = b(i, j) ∗ s(i, j)

savg(i, j)
∗ s(i, j)

smax

With b(i, j) is a factor based on the prohibiting heuristics:

b(i, j) =

{
0 connection marked as forbidden
1 otherwise

and savg(i, j) is the average score which i and j reach:

savg(i, j) =
1

2 ∗ |P| ∗
P∑
k

(s(i, k) ∗ b(i, k) + s(j, k) ∗ b(j, k))

E. Connection Strategies

We implemented several different strategies for choosing the con-
nections between the ports.

1) Greedy approach using the score (Shf):
Always the connection with the highest score is created first.
This might make other connections invalid. Connections are
created until no further connection with a score higher than or
equal to the threshold is possible.

2) Greedy approach using the safety approximation (Scm):
Like Shf but creating the connection with the highest safety
approximation first.

3) Preferring already connected modules using the score (Sem,hf):
Like Shf , however when choosing the next connection to
create, for connections between two modules which already are
connected, the scores of these connections get multiplied by 1.1.
This is due of the fact, that often a package of logical information
is sent over a combination of several ports.

4) Preferring already connected modules using the safety approx-
imation (Sem,cm): Like Sem,hf , but using the safety approxi-
mation instead of the score.

Name module # port # norig Source
SHA3 3 26 11 [11]
Wishbone-specification 3 38 20 [12]
SD Mass Storage Controller 4 60 10 [13]
uart2spi 4 61 31 [14]
tiny-AES 27 115 66 [15]
MIPS789 19 140 83 [16]
OpenRISC 1200 14 429 230 [17]
OpenSPARC T1 core 12 1230 626 [18]

Table I
OVERVIEW OF THE DESIGNS USED FOR OUR EVALUATION

IV. EVALUATION

In this section we evaluate our approach on several designs. In
order to reduce possible bias we use designs of different size, of
different purpose, and from different authors. For the evaluation we
removed the sub-module instantiations from the top-modules of the
designs and then applied our approach to recreate the instantiations.
We used Emacs Verilog-Mode as a baseline-comparison. We have
chosen Emacs Verilog-Mode because it is a freely available tool,
which uses similar inputs as our approach, however a developer may
add hints, in form of regular expressions, to improve the result. A
connection is considered correct if it is identical to a connection
of the original top-module; otherwise the connection is considered
incorrect. Thus, the resulting connection is optimal, if and only if it
is semantically equivalent to the original top-module.

For comparing the results a quality measurement has been defined.
Let ncorr be the number of correctly generated connections, nall

the number of all generated connections and norig the number of
expected correct connections. Our quality measurement q is then
defined as:

q =

ncorr−(nall−ncorr)−(norig−ncorr)

norig
+ 1

2

The intention of this measurement is to approximate the amount
of work a developer can save by using a tool1 for creating the
connections: ncorr is the amount of correct connections, i.e., work
a developer has saved; however, a developer has to remove the
connections the tool has incorrectly created (nall−ncorr) and, finally,
he has to add all missing connections (norig−ncorr). The rest of the
formula normalizes the value such that 0 means no work is saved,
corresponding to the case of the design without any connections, and
1 means that all connections are correctly generated, i.e., all work
is saved. The formula may return negative numbers; this is the case
when the correction of the returned solution is harder than connecting
the modules completely by hand.

Table I gives an overview of the designs used for this evaluation.
SHA3 is a design for computing the SHA3-hashcode of the input
data. The Wishbone-interface is an interface for register and memory
access, used in many designs on the OpenCores.org-website. The
interface allows a master and several slaves on a single bus. The
specification includes the naming convention for the correspond-
ing ports. The design Wishbone-specification only consists of sub-
modules with the correspondingly named ports but without any actual
logic. SD Mass Storage Controller is an SD-Card controller. The
design uart2spi is a protocol translation block between UART and
SPI which can additionally parse some simple commands directly.
MIPS789 and OpenRISC 1200 are two different RISC processor
designs. The OpenRISC 1200 supports floating point arithmetic and
includes data- and instruction caches, a memory management unit, a
timer, an interrupt controller, a debugging unit and two Wishbone-
interfaces. OpenSPARC T1 core is a core of the OpenSPARC T1
processor. The OpenSPARC seems to be developed using the Emacs

1Approximation because it assumes that the work a developer needs to
remove a wrong connection and to create a correct connection is identically.
Under this assumption the value is a exact value.

N
m
L
C
S

N
m
J

N
m
L
ev

E
v

E
N
m
L
C
S

E
N
m
J

E
N
m
L
ev

N
m
L
C
S
, E

v

N
m
J
, E

v

N
m
L
ev

, E
v

N
m
L
C
S
, E

N
m
L
C
S

N
m
J
, E

N
m
L
C
S

N
m
L
ev

, E
N
m
L
C
S

N
m
L
C
S
, E

N
m
J

N
m
J
, E

N
m
J

N
m
L
ev

, E
N
m
J

N
m
L
C
S
, E

N
m
L
ev

N
m
J
, E

N
m
L
ev

N
m
L
ev

, E
N
m
L
ev

N
m
L
C
S
, E

v,
 E
N
m
L
C
S

N
m
J
, E

v,
 E
N
m
L
C
S

N
m
L
ev

, E
v,

 E
N
m
L
C
S

N
m
L
C
S
, E

v,
 E
N
m
J

N
m
J
, E

v,
 E
N
m
J

N
m
L
ev

, E
v,

 E
N
m
J

N
m
L
C
S
, E

v,
 E
N
m
L
ev

N
m
J
, E

v,
 E
N
m
L
ev

N
m
L
ev

, E
v,

 E
N
m
L
ev

0.2

0.0

0.2

0.4

0.6

q

Shf

Scm

Sem,hf

Sem,cm

qevm

Figure 2. Average q-value for different heuristics and connection strategies

Name Parsing Shf Scm Sem,hf Sem,cm

SHA3 0,05 0,01 0,01 <0.01 0,01
Wishbone-specification <0.01 0,01 0,01 0,02 0,01
SD Mas Storage Controller 0,01 0,08 0,08 0,08 0,08
uart2spi 0,02 0,09 0,09 0,09 0,09
tiny-AES 1,18 0,30 0,30 0,30 0,31
MIPS789 0,02 0,51 0,51 0,55 0,52
OpenRISC 1200 0,10 4,76 5,27 4,95 5,53
OpenSPARC T1 core 19,61 95,80 79,48 98,28 79,93

Table II
PROCESSOR TIME FOR USING OUR APPROACH IN SECONDS, FOR THE

DIFFERENT DESIGNS

Verilog-Mode as it includes the corresponding hints and the original
module instantiation is in the form Emacs Verilog-Mode creates.

We have measured the runtime of our approach for the different
designs. The measurement was conducted on an Intel Core2 Duo
2GHz, running Archlinux 3.9.3-1 and all heuristics have been used.
Table II shows the processor time our technique required. The column
parsing gives the time required by the IcarusVerilog parser to generate
the abstract syntax trees for the design with all its sub-modules.
The technique has been applied as presented in this paper, without
special optimization. As our approach requires that each port-name
is compared to each other port-name the runtime of our approach is
quadratic in the number of ports.

In the following paragraphs we present the results for our approach.
Due to space limitations, we only present the average results over all
designs (Figure 2) as well as the detailed results for the designs
OpenSPARC T1 core (Figure 3) and tiny-AES (Figure 4). The
OpenSPARC T1 core has been chosen because it includes hints for the
Emacs Verilog-Mode and therefore is considered optimal for Emacs
Verilog-Mode. The tiny-AES design was chosen because it shows
results different from the average case.

Figure 2 shows the average q-values over all evaluated designs for
different combinations of heuristics and connection strategies. The
different combinations of the heuristics which are used are shown at
the bottom. The abbreviations introduced in Section III-B are used.
In all cases the preventing heuristics are used as well. The different
connection strategies are differentiated by the bar-colors. The result

for Emacs Verilog-Mode (qevm) is shown in the figure as dotted
line. The best result with a q-value of 0.625 has been achieved by
combining NmLev and ENmLev and using Shf as connection strategy.
Further, Shf achieves the best average result for every combination
of heuristics expect when used with the event checking heuristic only.
Additionally, we see that using the event checking heuristic decreases
the quality of the result on average.

As already mentioned the OpenSPARC design is especially inter-
esting for a comparison between our approach and Emacs Verilog-
Mode because the design is optimized for the usage with Emacs
Verilog-Mode. This includes a corresponding naming convention and
hints for the connection generation process. The results are shown in
Figure 3. First, we notice that again Shf achieves the best results and
is able to achieve larger q-values than Emacs Verilog-Mode for most
combinations of the heuristics. This design nicely shows that coding
conventions which help other automatic tools, or are even required for
the tools to be used, help our approach as well. But our approach does
not require a developer to add supplementary information for the tool,
like the regular expression for the Verilog-Mode or the connection
rules for MKTREE. Even in cases where regular expressions are used
to define the correspondence of signals, like for Emacs Verilog-Mode,
the port-names should still have a strong similarity, which is sufficient
for our approach.

If we have a closer look at the connection strategies, we can see that
the qualities of Scm and Sem,cm are heavily fluctuating. Changing
a single heuristic can change the resulting q-value by 0.5 or more.
For example, the combination of name matching with the Jaro string-
metric and extended name matching with Levenshtein achieves a q-
value above 0.8. However, by changing the string metric for name
matching, the q-value drops below 0.1. Similar effects appear for the
designs MIPS789, OpenRISC 1200 and to some extent for the designs
SD Mass Storage Controller and Wishbone-specification. This shows
that Scm and Sem,cm are rather unreliable and hence, not very useful.

Considering the results for tiny-AES design in Figure 4, we see
that the result deviates from the other designs with respect to two
attributes. First, the connection strategies Scm and Sem,cm achieve
the best results for all combinations of heuristics. Second, using Ev

N
m
L
C
S

N
m
J

N
m
L
ev

E
v

E
N
m
L
C
S

E
N
m
J

E
N
m
L
ev

N
m
L
C
S
, E

v

N
m
J
, E

v

N
m
L
ev

, E
v

N
m
L
C
S
, E

N
m
L
C
S

N
m
J
, E

N
m
L
C
S

N
m
L
ev

, E
N
m
L
C
S

N
m
L
C
S
, E

N
m
J

N
m
J
, E

N
m
J

N
m
L
ev

, E
N
m
J

N
m
L
C
S
, E

N
m
L
ev

N
m
J
, E

N
m
L
ev

N
m
L
ev

, E
N
m
L
ev

N
m
L
C
S
, E

v,
 E
N
m
L
C
S

N
m
J
, E

v,
 E
N
m
L
C
S

N
m
L
ev

, E
v,

 E
N
m
L
C
S

N
m
L
C
S
, E

v,
 E
N
m
J

N
m
J
, E

v,
 E
N
m
J

N
m
L
ev

, E
v,

 E
N
m
J

N
m
L
C
S
, E

v,
 E
N
m
L
ev

N
m
J
, E

v,
 E
N
m
L
ev

N
m
L
ev

, E
v,

 E
N
m
L
ev

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

q

Shf

Scm

Sem,hf

Sem,cm

qevm

Figure 3. The q-value of the OpenSPARC T1-design for different heuristics and connection strategies

improves the quality of the results for the tiny-AES design in 26
of 48 of the cases and never reduces the quality of the result. In
contrast, for the other designs using Ev only improves the result
in very rare cases and in many cases even reduces the quality of
the result. Interestingly, in all cases at least 27 correct connections
has been created. This is the same number of connections Emacs
Verilog-Mode creates. Also, the best results are those where no other
connections have been created. In the cases where more than those 27
connections have been created, the quality of the additionally created
connections is not better than randomly created connections.

Further, the Wishbone-specification is to mention. Our approach
using Shf creates the correct wiring (q-value equals 1) for any
combination of heuristics which contain name matching or extended
name matching. Further, Sem,hf is able to create an optimal result in
most (15 out of 28) cases. The connection strategies Scm and Sem,cm

only achieve q-values between 0.4 and 0.9. Again those combinations
achieve the lowest q-values which include the Ev heuristic.

Finally, we compare our approach with the results of Emacs
Verilog-Mode. Table III gives the results when applying Emacs
Verilog-Mode to the designs and values achieved by our approach.
The column "highest" shows the highest achieved q-value over all
combinations of heuristics and connection strategies. The column
"best avg." shows the result for NmLev combined with ENmLev

and the connection strategy Shf , which was the combination achiev-
ing the highest average q-value. First, we notice that in case of the
Wishbone-specification Emacs Verilog-Mode is not able to create
any connection. This is due the fact that the naming convention
used for the specification includes a suffix for the port direction.
Hence, there is no exact name matching. In contrast our approach

Emacs Verilog-Mode Our technique
Name nall ncorr q best avg. highest
SHA3 12 9 0.682 0.818 0.909
Wishbone-specification 0 0 0.000 1.000 1.000
SD Mass Storage Controller 3 0 -0.150 0.100 0.333
uart2spi 26 26 0.839 0.903 0.903
tiny-AES 27 27 0.409 0.318 0.409
MIPS789 22 20 0.229 0.331 0.404
OpenRISC 1200 46 46 0.200 0.663 0.754
OpenSPARC T1 core 542 535 0.849 0.869 0.880

Table III
THE RESULTS OF THE EMACS VERILOG-MODE FOR THE DIFFERENT

DESIGNS, COMPARED WITH THE PRESENTED TECHNIQUE, USING THE
COMBINATION(NmLev , ENmLev , Shf WHICH RESULT IN THE HIGHEST

AVERAGE RESULT (BEST AVG.) AND THE HIGHEST OVERALL RESULT
(HIGHEST)

generates a perfect result. Second, in case of the SD Mass Storage
Controller Emacs Verilog-Mode only creates incorrect connections
resulting in a negative q-value. Finally, in case of the OpenSPARC T1
core, although created to be used with the Emacs Verilog-Mode and
corresponding hints are provided, incorrect connections are generated
and again the technique presented in this paper achieved better result.
Altogether we see that the presented approach is able to generate
connections at least as good as Emacs Verilog-Mode and in many
cases even better. Even as only the combination with the highest
average q-value is considered, our technique achieves better results
in seven of eight cases.

Additionally, the results for the Wishbone-interface, which repre-
sents one interface to combine blocks from different sources, suggest
that our approach is effective for combining several blocks from
different origin to a single chip with connection strategy Shf .

N
m
L
C
S

N
m
J

N
m
L
ev

E
v

E
N
m
L
C
S

E
N
m
J

E
N
m
L
ev

N
m
L
C
S
, E

v

N
m
J
, E

v

N
m
L
ev

, E
v

N
m
L
C
S
, E

N
m
L
C
S

N
m
J
, E

N
m
L
C
S

N
m
L
ev

, E
N
m
L
C
S

N
m
L
C
S
, E

N
m
J

N
m
J
, E

N
m
J

N
m
L
ev

, E
N
m
J

N
m
L
C
S
, E

N
m
L
ev

N
m
J
, E

N
m
L
ev

N
m
L
ev

, E
N
m
L
ev

N
m
L
C
S
, E

v,
 E
N
m
L
C
S

N
m
J
, E

v,
 E
N
m
L
C
S

N
m
L
ev

, E
v,

 E
N
m
L
C
S

N
m
L
C
S
, E

v,
 E
N
m
J

N
m
J
, E

v,
 E
N
m
J

N
m
L
ev

, E
v,

 E
N
m
J

N
m
L
C
S
, E

v,
 E
N
m
L
ev

N
m
J
, E

v,
 E
N
m
L
ev

N
m
L
ev

, E
v,

 E
N
m
L
ev

0.1

0.0

0.1

0.2

0.3

0.4

q

Shf

Scm

Sem,hf

Sem,cm

qevm

Figure 4. The q-value of the AES-design for different heuristics and connection strategies

V. LIMITATIONS AND FUTURE WORK

One goal of this work is to understand the limitations of the
light-weight techniques. In this section we discuss the limitation
we have found during the evaluation and possible ideas for future
improvements. Our evaluation showed that a good naming convention
helps the approach to achieve very good results, like in the case of the
Wishbone-interface for which a very strict naming convention is ap-
plied and a perfect result is achieved. Also in case of the OpenSPARC
core, where a naming convention is used to allow efficient use of
the Emacs Verilog-Mode, the results are very good. However, the
presented approach suffers from poor naming conventions.

Further, the approach suffers from its inability to create glue
logic. Especially, the SD Mass Storage Controller uses multiplexer
schemes to connect outputs of several sub-modules to one single
input. Similarly, several designs use the concatenation of several
signals as inputs to a sub-module.

We propose two advanced approaches for future work: First, a
functional analysis that matches trigger conditions of one module
with output sequences of other components. Second, validating the
result of the automatically connected design with respect to the
specification. Finally, as seen for the tiny-AES design, further work
is required with respect to preventing incorrect connections.

VI. CONCLUSION

In this paper we have presented an approach for automatically
creating the connections between different logic blocks. The pre-
sented approach does not apply computationally expensive functional
analysis. Instead our approach uses several heuristics which either
mark a connection as invalid or assign a score to the connections
based on a string metric to decide whether they are likely to be
correct.

We compared our approach against Emacs Verilog-Mode with
respect to eight different designs of various sizes. Our approach
achieved better results for seven of those designs and an equally
good result for the eighth design. Especially, our approach was able
to achieve better results for the design which was optimized for being
used with Emacs Verilog-Mode. Our approach generated a perfect
connection in case of the Wishbone-interface a standardized interface
to connect different blocks.

Further, the evaluation showed the limitations of the light-weight
techniques and thus the cases for which more advanced approaches
have to be considered.

REFERENCES

[1] “MKTREE,” accesss date: 12.09.2013. [Online]. Available: http:
//www.angelfire.com/biz/mktree/

[2] W. Snyder, “Verilog-mode: Reducing the veri-tedium,” in Synopsys
Users Group Conference, San Jose, 2001.

[3] “IEEE Standard for System Verilog- Unified Hardware Design, Speci-
fication, and Verification Language,” IEEE Std 1800-2005, pp. 1–648,
2005.

[4] R. Zimmermann and R. Whitby, “Emacs VHDL mode 3.34,” 2012,
accesss date: 05.03.2014. [Online]. Available: http://www.iis.ee.ethz.ch/
~zimmi/emacs/vhdl-mode.html

[5] C. Neely, G. Brebner, and W. Shang, “ShapeUp: A High-Level Design
Approach to Simplify Module Interconnection on FPGAs,” in IEEE
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, 2010, pp. 141–148.

[6] “IEEE Standard for IP-XACT, Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tools Flows,” IEEE Std 1685-2009, pp.
C1–360, 2010.

[7] K. Avnit, V. D’Silva, A. Sowmya, S. Ramesh, and S. Parameswaran,
“A formal approach to the protocol converter problem,” in Design,
Automation and Test in Europe, 2008, pp. 294–299.

[8] S. Williams, “Icarus Verilog,” access date: 05.03.2014. [Online].
Available: http://iverilog.icarus.com

[9] W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage.” in Survey Research
Methods Section, American Statistical Association, 1990, pp. 354–359.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” in Soviet physics doklady, vol. 10, 1966, pp.
707–710.

[11] H. Hsing, “sha3,” 2013, access date: 21.05.2013. [Online]. Available:
http://opencores.org/project,sha3

[12] W. D. Peterson, Wishbone B4, OpenCores Std., 2010, access date:
05.03.2014. [Online]. Available: http://cdn.opencores.org/downloads/
wbspec_b4.pdf

[13] A. Edvardsson, “sdcard_mass_storage_controller,” 2010, access date:
21.05.2013. [Online]. Available: http://opencores.org/project,sdcard_
mass_storage_controller

[14] D. Annayya, “uart2spi,” 2013, access date: 21.05.2013. [Online].
Available: http://opencores.org/project,uart2spi

[15] H. Hsing, “tiny_aes,” 2013, access date: 21.05.2013. [Online]. Available:
http://opencores.org/project,tiny_aes

[16] L. Wei, “mips789,” 2009, accesss date: 21.05.2013. [Online]. Available:
http://opencores.org/project,mips789

[17] A. Edvardson, M. Erlandson, J. Baxter, R. D’Addio, J. Bennet,
S. Fielding, M. Unneback, O. Kindgren, R. Herveille, Y. Vernier,
J. Bonn, S. Kristiansson, S. Kim, P. Skrzypek, N. Anastasiadis,
T. Markovic, A. Kamath, P. Gavin, and G. Scrivano, “OpenRISC
1200,” 2012, accesss date: 17.06.2013. [Online]. Available: http:
//opencores.org/or1k/Main_Page

[18] Sun Microsystems, “OpenSPARC T1,” 2006, accesss date:
03.07.2013. [Online]. Available: http://www.oracle.com/technetwork/
systems/opensparc/opensparc-t1-page-1444609.html

