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ABSTRACT
Finding the cause of a bug can be one of the most time-consuming
activities in design verification. This is particularly true in the
case of bugs discovered in the context of a random simulation-
based methodology, where bug traces, or counterexamples, may
contain several hundred thousand cycles. In this work we pro-
pose Butramin, a bug trace minimizer. Butramin considers a bug
trace produced by a random simulator or a semi-formal verification
software and produces an equivalent trace of shorter length. Bu-
tramin applies a range of minimization techniques, deploying both
simulation-based and formal methods, with the objective of pro-
ducing highly reduced traces that still expose the original bug. We
evaluated Butramin on a range of designs, including the publicly
available picoJava microprocessor. Our experiments show that in
most cases Butramin is able to reduce traces to a small fraction of
their initial size, in terms of cycle length and signals involved.

1. INTRODUCTION
Modern integrated circuit design has reached unparalleled levels

of size and overall complexity. In this context, design verification
has become a pivotal aspect of electronic design automation. In
fact, various estimates indicate that functional errors are still re-
sponsible for 40% of failures at first tape-out, and that verification
accounts for two thirds of the design cycle and effort [2, 14]. Re-
solving design bugs in the early development stages is, at the same
time, a sophisticated and time-consuming activity, as well as a cru-
cial task for the project development and for the success of a design
team. With mask costs approaching a million dollars per set, being
able to find and fix bugs before first tape-out offers a significant
economic advantage.

Among the techniques and methodologies available for func-
tional verification, simulation-based verification is prevalent in the
industry because of its linear and predictable complexity and its
flexibility in being applied, in some form, to any design. A com-
mon methodology in this context is random simulation. Random
simulation involves connecting a logic simulator with stimuli com-
ing from a constraint-based random generator, that is, an engine
that can automatically produce random legal input for the design
at a very high rate, based on a set of rules (or constraints) derived
from the specification document. In order to detect bugs, assertion
statements, or checkers, are embedded in the design and continu-
ously monitor the simulated activity for anomalies. When a bug
is detected, the simulation trace leading to it is stored and can be
replayed at later times to analyze the conditions that led to the fail-
ure. Because of the randomized nature of this methodology, and
because it is usually applied in late design stages (when simple
bugs have already been flushed out), it is very common that the
bug traces generated are very complex and can often be hundreds
of thousands of cycles long.

Another family of techniques gaining increasing attention from
industry is that of semi-formal verification. These tools combine
a mix of formal and simulation-based techniques with the goal of
producing high-coverage verification results on complex designs.
These results may entail generating tests that cover a specific state
configuration, proving or disproving a property (or a checker), etc.
Pure formal verification techniques, such as symbolic simulation,
bounded model checking (BMC) or reachability analysis [12, 3],
would be ideal to generate compact high-coverage tests, such as,
for instance, a minimum-length counterexample that disproves a
property. Unfortunately, they do not scale well, and can only be
applied to very small designs.

In the more general context of semi-formal techniques, such as
[1, 11, 9], heuristics and randomized exploration allow designers
to obtain high-coverage results on designs of medium and large
complexity, but, to this end, they must sacrifice the generation of
minimum-length counterexamples. While these tools are a promis-
ing direction in terms of high-quality verification, little concern has
been given to the reduction of the complexity of the bug traces gen-
erated. The result is that once a bug is found, a copious amount of
effort is dedicated to tracking it back to its cause, either an incorrect
design specification or an erroneous property definition.

Future trends are to generate high quality results while demand-
ing limited effort from the verification engineer, such as the pre-
viously mentioned random simulation and semi-formal verification
techniques. Both these techniques are very appealing when com-
pared to the most traditional direct-test simulation approach, which
is extremely demanding, requiring the direct development of entire
sets of specific test stimuli. At the same time, these trends, and the
growing complexity of digital designs, are deemed to exasperate
the debugging phase of verification by producing increasingly long
and complex bug traces.

Contributions. This work addresses the problem of debugging
complex bug traces by proposing a technique for trace minimiza-
tion called Butramin (“BUg TRAce MINimization”). The objective
of Butramin is to consider a bug trace and the checker (or property)
that it triggers and seek a much shorter and simpler trace to falsify
the same property. Previous work in this arena has been centered
on using formal techniques to simplify the counterexample [15, 4].
In a separate context, the problem of trace minimization has also
been addressed in software verification [10, 7].

Butramin simplifies a trace by incrementally eliminating redun-
dant portions of the trace. For instance, it checks if there are redun-
dant sequential steps, or sequential loops that can be removed. It
also checks if some input events in the bug trace are redundant. For
every candidate simplification the trace is re-simulated to check if
it is still a valid counterexample. Once no additional simplifica-
tions can be performed, Butramin attempts to further reduce the
trace by using a formal verification engine, a SAT-based bounded
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model checker, and to search for “short-cuts” along the trace path.
A directed graph is built according to the shortcuts and a shortest-
path algorithm is used to find the best path from the initial state to
the bug state. Our approach to trace minimization is novel in the
following aspects:

• It simplifies the trace incrementally targeting the total num-
ber of clock cycles as well as the input-events of the trace.
• It combines simulation and formal techniques, which exploits

the performance of logic simulation as far as possible and
only applies formal techniques to an already reduced trace,
requiring a much simpler analysis.
• Experimental results show that Butramin can greatly sim-

plify counterexamples generated by semi-formal verification
tools down to a small fraction of their original size, and it
produces consistent results across a range of design sizes and
characteristics. The compact traces lead to a much easier in-
terpretation of the activity causing the bug.

In developing Butramin, we gave top consideration to the quality
of the results, since the engineering time saved by the latter well
outweighs the execution time of the software. We envision a de-
ployment scenario where Butramin is run overnight to prepare sim-
plified traces to be analyzed, and, in this context, we found that
almost all of our execution time are well within this limit.

The remainder of this paper is organized as follows: Section 2
describes relevant previous work on bug trace minimization for ran-
dom simulation and bounded model-checking. Section 3 presents
our new bug trace minimization technique that relies on logic sim-
ulation, and describes the BMC-based search for counterexample
shortcuts. Sections 4 and 5 discuss algorithmic aspects of Butramin
and experimental results. Finally, Section 6 summarizes the contri-
butions and concludes the paper.

2. BACKGROUND AND PREVIOUS WORK
Research focusing on minimizing property counterexamples or,

more in general, bug traces has been pursued both in the context
of hardware and software verification. In the hardware verifica-
tion domain, the majority of the solutions proposed is concerned
with minimizing traces generated by deploying a bounded model
checker (BMC). Before discussing these techniques, we give some
preliminary background and provide a brief overview of the BMC
algorithm.

2.1 Preliminaries
A bug trace is a sequence of test vectors that leads a logic simula-

tor to hit a bug. The length of the trace is the number of cycles from
the initial state to the bug state, and an input event is a change of an
input signal at a specific clock cycle of the trace. One input event
is considered to affect only a single input bit. An input variable is
a value assignment to an input signal at a specific cycle. A checker
signal is a signal used to detect a violation of a checker, that is, if
the signal changes to a specific value, then the checker is violated,
and a bug is found. The objective of bug trace minimization is to
reduce the number of input events and cycles in a trace.

Figure 1: Bug trace example. The boxes represent input variables
to the circuit at each cycle, shaded boxes represent input events. This
trace has three cycles, four input events and twelve input variables.

EXAMPLE 1. Consider a circuit with three inputs a, b and c,
initially set to zero. Suppose that a bug trace is available where a
and c are assigned to 1 at cycle 1. At cycle 2, c is changed to 0 and
it is changed back to 1 at cycle 3. In this situation we count four
input events, twelve input variables, and three cycles for our bug
trace. The example trace is illustrated in Figure 1.

2.2 Bounded Model Checking Overview
Bounded model checking (BMC) [3] is a formal method which

can prove or disprove properties of bounded length in a design,
frequently using SATisfiability solving techniques to achieve this
goal. A high level flow of the algorithm is given in Figure 2. The
central idea of BMC is to “unroll” a given sequential circuit k times
to generate a combinational circuit that has behavior equivalent to k
clock cycles of the original circuit. In the process of unrolling, the
circuit’s memory elements are eliminated, and the signals that feed
them at cycle i are connected directly to the memory elements’ out-
put signals at cycle i−1. In Conjunctive Normal Form(CNF)-based
SAT, the resulting combinational circuit is converted to a CNF for-
mula C. The property to be proved is also complemented and con-
verted to CNF form (p). These two formulas are conjoint and the
resulting SAT instance I is fed into a SAT solver. If a satisfiable as-
signment is found for I, then the assignment describes a counterex-
ample that falsifies the (bounded) property, otherwise the property
holds true.

1 SAT-BMC(circuit, property, maxK) {
2 p=CNF(not(property));
3 for k=1 to maxK do {
4 C = CNF ( unroll(circuit, k) );
5 I = C ∧ p; //SAT instance
6 if (I is satisfiable)
7 return (SAT solution);
8 }
9 }

Figure 2: Bounded Model Checking pseudo-code.

2.3 BMC-based Techniques
Traditionally, a counterexample generated by this technique re-

ports the input value assignments (also called input variables) for
each clock cycle and for each input line of the design. However, it is
possible, and common, that only a portion of these assignments are
required to falsify the property. Several techniques that attempt to
minimize the trace complexity have been recently proposed. For in-
stance, Ravi et al. [15] are concerned with removing input variables
from a counterexample. They propose two techniques to this end:
brute force lifting (BFL), which attempts to eliminate one variable
assignment at a time, and an improved variant that eliminates vari-
ables in such a way to highlight the primary events that led to the
property falsification. The basic idea of BFL considers the “free”
variables of the bug trace, that is, all input variables in every cycle.
For each free variable v, BFL constructs a SAT instance SAT(v),
to determine if v can prevent the counterexample. If that is not the
case, then v is irrelevant to the counterexample, and can be elimi-
nated. Because this minimization technique is concerned with the
minimization of BMC-derived traces, its focus is only on reducing
the number of assignments to the circuit’s input signals. More-
over, each single assignment elimination requires solving a distinct
SAT problem, commonly a fairly resource demanding task. More
recent work in [16] further improves the performance of BFL by
attempting the elimination of sets of variables simultaneously. Our
technique for removing individual variable assignments is similar
to BFL in its attempting to remove an assignment by testing a trace
obtained with the opposite assignment. However, we apply this
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technique to a longer trace obtained with semi-formal methods and
we test the alternative assignment via re-simulation. Another tech-
nique applied to model checking solutions is by Gastin et al. [7].
Here the counterexample is converted to a Büchi automaton and
a depth-first search algorithm is used to find a minimal bug trace.
Minimization of counterexamples is also addressed in [13], where
the distinction between “control” and “data” signals is exploited in
attempting to eliminate data signals first from the counterexample.

All of these techniques focus on reducing the number of input
variables to disprove the property. Because the counterexample is
obtained through a formal model checker, the number of cycles
in the bug trace is minimal by construction. Butramin’s approach
considers a more general context where bug traces can be gener-
ated by simulation or semi-formal verification software attacking
much more complex designs than BMC-based techniques. There-
fore, (1) traces are in general orders of magnitude longer than the
ones generated by BMC, and (2) there is much potential for reduc-
ing the trace in terms of number of clock cycles, as we show in the
experimental result section.

2.4 Techniques Based on Random Simulation
Techniques that consider a random simulation approach for trace

generation have also been explored in the context of hardware ver-
ification. One such technique is by Chen et al. [4] and proceeds
in two phases. The first phase identifies all the distinct states of
the counterexample trace. The second phase represents the trace
as a state graph, it applies one step of forward state traversal [5] to
each of the individual states and adds transition edges to the graph
based on it. Dijkstra’s shortest path algorithm is applied to the final
graph obtained. This approach, while very effective in minimizing
the trace length (the number of clock cycles in the trace), (1) does
not consider elimination of input variables and (2) makes heavy use
of formal state traversal techniques, which are notoriously very de-
manding in terms of computing power and can usually be applied
only to small-size designs.

2.5 The Software Verification Domain
The problem of trace minimization has been a focus of critical

research also in the software verification domain. Software bug
traces are characterized by involving a very large number of vari-
ables and very long sequences of instructions. A fairly popular
technique in the software world has been introduced by [10], who
proposed the “delta debugging” algorithm that simplifies a com-
plex software trace by extracting the portion of a trace that is rel-
evant to expose the bug. Their approach is based exclusively on
resimulation-based exploration and it attacks the problem by parti-
tioning the trace (which in this case is a sequence of instructions)
and checking if any of the components can still expose the bug.
The algorithm was able to greatly reduce bug traces in Mozilla, a
popular web browser. A recent contribution that makes reference to
counterexamples found by model checking is by Groce et al. [8].
Their solution focuses on minimizing the trace with respect to the
primitives available in the language used to describe the system and
on trying to highlight the causes of the error in the counterexample,
so to produce a simplified trace that is more understandable by a
software designer.

3. PROPOSED TECHNIQUES
Butramin searches for several possible reductions in bug traces.

It first tries to minimize a trace by simulating reduced variants of
the trace both in terms of shorter length (clock cycles) and num-
ber of assignments to input signals. Once these techniques run out
of steam, Butramin applies a series of SAT-BMC refinements. The

SAT-based search is limited so that we never unroll the circuit more
than a fixed number of cycles which allows us to limit the complex-
ity of the BMC search. We present the following techniques, which
are then discussed in detail in the sections below:

1. Cycle removal shortens a bug trace by re-simulating a variant
of the trace with one less input vector from the trace.

2. Input event elimination attempts to eliminate events, by re-
simulating trace variants which involve fewer input events.

3. Alternative trace finish is exploited when the changes made
on the test vectors result in an alternative path to the bug,
which is shorter than the original bug trace.

4. State skip identifies all the unique state configurations, in a
bug trace. If the same state occurs more than once, it indi-
cates the presence of a loop, and the trace can be reduced.

5. When no improvements can be obtained by the previous tech-
niques, a limited-depth BMC technique is deployed, which
attempts to reduce further the trace length by finding shorter
paths between two states.

3.1 Cycle Removal
Cycle removal is an efficient but aggressive way to reduce the

length and the number of input events on a bug trace. It tentatively
removes a whole cycle from the bug trace and checks if the bug is
still exposed by re-simulating the new trace. If this is the case, the
cycle is removed from the trace. This procedure is applied itera-
tively on all cycles in the trace.

EXAMPLE 2. Consider the trace of Example 1. During the first
step, cycle removal attempts to remove cycle 1. If the new trace
still exposes the bug, we obtain a shorter bug trace with two cycles
and two input events, as shown in Figure 3. Note that it is possible
that some input events become redundant because of cycle removal,
as it is case for the event on signal c at cycle 2. This is because
the previous transition on c was at cycle 1, which has now been
removed. After redundant events are eliminated, cycle removal can
be applied to cycle 2 and 3, iteratively.

Figure 3: Cycle removal attempts to eliminate individual trace cycles,
generating reduced traces which still expose the bug. This example
shows a reduced trace where cycle 1 has been removed.

3.2 Input Event Elimination
Input event elimination is the basic technique to remove input

events from a trace. It tentatively generates a variant trace where
one input event is substituted with the complementary value assign-
ment. If the variant trace still exposes the bug, the input event can
be removed. In addition, the event immediately following on the
same signal becomes redundant and can be removed as well.

Figure 4: Input event elimination removes pair of events. In the ex-
ample, the input events on signal c at cycle 1 and 2 are removed.
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EXAMPLE 3. Consider once again the trace of Example 1. The
result after elimination of input event c at cycle 1 is shown in Fig-
ure 4. Note that the input event on signal c at cycle 2 becomes
redundant and it is also eliminated.

3.3 Alternative Trace Finish
An alternative trace finish occurs when a variant trace reaches

a state that is different from the final state of the trace, but it also
exposes the bug. The alternative state is obviously reached in fewer
simulation steps than the original one. This leads to an alternative
and shorter trace to the same bug. As shown in Figure 5, if s j2 ,
reached at time t2 by the variant trace, exposes the bug, the new
variant trace is substituted for the original one.

Figure 5: Alternative trace finish: The variant trace hits the bug at
step t2. The new trace replaces the old one, and simulation is stopped.

3.4 State Skip
State skip is exploited when two identical states exist in a bug

trace. This happens when there is a sequential loop in the bug trace
or when, during the simulation of a tentative variant trace, an al-
ternative (and shorter) path to a state in the original trace is found.
Consider the example shown in Figure 6: If states s j2 and si4 are
identical, then a new, more compact trace can be generated by ap-
pending the portion from step t5 on from the original trace, to the
prefix extracted from the variant trace up to and including step t2.

Figure 6: State skip: If state s j2 = si4 , cycles t3 and t4 can be removed,
obtaining a new trace which includes the sequence “... s j1 , s j2 , si5 , ...”.

3.5 BMC-based Reduction
This technique can be used after simulation-based minimization

to further reduce the length of the bug trace. Due to state-skip,
after applying simulation-based minimization, no two states in a
trace will be the same. However, the distance between any pair of
states may not be minimal. We propose here an approach, based
on model checking, to find the shortest path between two states.
The algorithm, also outlined in Figure 7, considers two states, say
si and s j, which are k cycles apart in the trace and attempts to find
the shortest path connecting them. This path can then be found by
unrolling the circuit from 1 to k−1 times, asserting si and s j as the
initial and final states, and attempting to satisfy the corresponding
Boolean formula. If we call CNFc the CNF formula of the unrolled
circuit, then CNFc ∧CNFsi ∧CNFsj is the Boolean formula to be
satisfied. If a SAT solver can find a solution, then we have a short-
cut connecting si to s j. Note that the SAT instances generated by

our algorithm are simplified by the fact that CNFsi and CNFsj are
equivalent to a partial satisfying assignment for the instance. An
example is given in Figure 8.

1 Select two states si and s j, k cycles apart
2 for l = 1 to k−1 do {
3 C = circuit unrolled l times;
4 Transform C into a Boolean formula CNFc;
5 I=CNFc ∧ CNFsi ∧ CNFs j
6 if (I is satisfiable)
7 return (shortcut si → s j, l steps);
8 }

Figure 7: BMC-based shortcut detection algorithm.

Figure 8: Our BMC-based method finds a shortcut between state S1

and S4, reducing the overall trace length.

The algorithm described in Figure 7 is applied iteratively on each
pair of states that are k steps apart in the bug trace, and using vary-
ing values for k from 2 to m, where m is selected experimentally so
that the SAT instance can be solved efficiently. We then build an ex-
plicit directed graph using the shortcuts found with the BMC-based
method and construct the final shortest path from the initial state to
the bug state. Figure 9 shows an example of such graph. Each
vertex in the graph represents a state in the starting trace, edges
between vertices represent the existence of a path between the cor-
responding states, and the edge’s weight is the number of cycles
needed to go from the source state to the sink. Initially, there is
an edge between any two consecutive vertices and the weight la-
bels are 1. Edges are added between vertices when shortcuts are
found between the corresponding states, and they are labeled with
the number of cycles used in the shortcut. The single-source short-
est path algorithm for directed acyclic graphs is then used to find
the shortest path from the initial to the bug state.

Figure 9: A shortest-path algorithm is used to find the shortest se-
quence from the initial state to the bug state. The edges are labeled by
the number of cycles needed to go from the source vertex to the sink.
The shortest path from state 0 to state 4 in the figure uses 2 cycles.

The path constructed by this shortest-path algorithm is optimal
within the selected window size m and can compensate local opti-
mizations overlooked by simulation-based techniques, which may
exist due to their heuristic nature.

4. IMPLEMENTATION INSIGHTS
We built a prototype implementation of the techniques described

in the previous section to evaluate Butramin’s performance and
trace minimization capability on a range of digital designs. Our im-
plementation strives to simplify a trace as much as possible, while
at the same time providing good performance. This section dis-
cusses some of the insights we gained while constructing a Bu-
tramin’s prototype.
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4.1 System Architecture
The architecture of Butramin consists of three primary compo-

nents: a driver program, a commercial simulation software, and a
SAT solver. The driver program is responsible for (1) reading the
bug trace, (2) interfacing to the simulation tool and SAT solver for
the evaluation of the compressed variant traces, and (3) generat-
ing the minimizations discussed in the previous sections. The logic
simulation software is responsible for simulating test vectors from
the driver program and notifying the system if the trace reaches
the bug under study, and communicating back to the driver each
visited state during the simulation. BMC-based minimization was
implemented using MiniSAT [6] which analyzes the SAT instances
generated by converting the unrolled circuits to CNF form using a
CNF generator. The system architecture is shown in Figure 10.

Figure 10: Butramin system architecture.

4.2 Performance Optimizations
To identify multiple occurrences of a state, all states visited by

a trace are hashed and tagged with the clock cycle in which they
occur. During the simulation of variant traces we noted that in
some special conditions we can improve the performance of Bu-
tramin by reducing the simulation required: If at any point after the
time where the original and the variant traces differ, a variant state
matches a state in the original trace, and they are both tagged by
the same clock cycle, then we can terminate the variant simulation
knowing that the variant trace will hit the bug. We call this an early
exit. As illustrated in Figure 11, early exit points allow the simula-
tion to terminate immediately. Often state skip optimization leads
to early exits as the destination state is already in the trace database.

Figure 11: Early exit. If the current state s j2 matches a state si2 from
the original trace, we can guarantee that the bug will eventually be hit.

4.3 Use Model
To run Butramin, the user must supply four inputs: (1) the design

under test, (2) a bug trace, (3) the property that was falsified by the
trace, and (4) an optional set of constraints on the design’s input
signals. Traces are represented as VCD (Value Change Dump) files,
which is a compact format that includes all top-level input events.
Similarly, the minimized bug traces are output as VCD files.

Removing input events from the bug trace during trace mini-
mization may generate illegal input sequences, which in turn could
erroneously falsify a property. Consequently, when testing sub-

components of a design with constrained inputs, it becomes neces-
sary to validate input sequences during trace minimization. There
are several ways to achieve this goal. One technique is to mark re-
quired inputs so that Butramin does not attempt to remove the cor-
responding events from the trace. For instance, reset and the clock
signals could be handle with this approach. For complex sets of
constraints, it is possible to convert them into an equivalent circuit
block connected to the original design. The block’s inputs would
be random, independent signals, and the outputs would be legal de-
sign’s inputs. We deployed a validation technique whereas a set of
assumptions monitors the input events generated in the candidate
traces that Butramin produces; if a trace invalidates an assumption,
than the trace is declared invalid and dropped. For BMC-based
reduction, these assumptions are synthesized and included as addi-
tional constraints to the problem instance.

Finally, we found that, after applying our minimization tech-
niques, bug traces are usually much shorter. However, many input
variables may still be part of the trace, and their relevance in expos-
ing the bug may be uneven - some may be essential, while others
are not. Butramin includes an “x mode” feature for this purpose,
where input variables are classified as essential or not, based on a
3-value (0/1/X) simulation analysis. Each input variable in turn is
assigned the value X; if the assignment implies a value X on the
checker’s output, than the variable is tagged essential and the orig-
inal assignments are restored in the trace. Otherwise the variable is
kept at X, so that a designer would not spend effort analyzing that
signal’s transitions.

5. EXPERIMENTAL RESULTS
We tested Butramin by attempting to minimize traces generated

by a range of commercial verification tools: a constraint random
simulation, a semi-formal verification software, and a semi-formal
tool where we specified to put extra effort to generate compact
traces. We considered eight benchmarks designs from OpenCores,
ISCAS89, and ITC99, and whose characteristics are reported in Ta-
ble 1. We developed assertions to be falsified, when not available
with the design, and we inserted proper bugs to falsify the asser-
tions. Table 2 reports assertions and bugs inserted. Finally, exper-
iments were run on a Sun Blade 1500 (1 GHz UltraSPARC IIIi)
workstation running Solaris 9.

Benchmark Inputs Latches Gates Description
S38584 41 1426 20681 Unknown
S15850 77 534 10306 Unknown
MULT 257 1280 130164 Wallace tree multiplier
DES 97 13248 49183 DES algorithm
B15 38 449 8886 Portion of 80386
FPU 72 761 7247 Floating Point Unit
ICU 30 62 506 PicoJava Instr. cache unit
picoJava 53 14637 24773 PicoJava full design

Table 1: Benchmarks characteristics.

Circuit Bug injected Assertion used
S38584 None Output signals forced to value
S15850 None Output signals forced to value
MULT AND gate changed

with XOR
Compute correct output

DES Complemented output Timing between receive valid,
output ready and transmit valid

B15 None Output signals forced to value
FPU divide on zero condi-

tionally complement
Assert divide on zero when di-
visor=0

ICU None Buffer-full condition
picoJava None Assert SMU’s spill and fill

Table 2: Bugs injected and assertions for trace generation.
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Our first set of experiments attempts to minimize traces gener-
ated by running a semi-formal commercial verification tool with the
checkers specified, and subsequently applying only the simulation-
based minimization techniques of Butramin. Figures 12 and 13
show the number of cycles and input events removed from the orig-
inal bug trace. The height of the bars represent the number of cycles
or input events in the baseline bug trace, and the patterns show the
contribution of the techniques discussed in removing cycles and in-
put events. Note that for all benchmarks we are able to remove the
majority of cycles and input events. Table 3 shows the absolute
values of cycles and input events removed from each trace and the
overall runtime of Butramin using only simulation techniques.

Figure 12: Number of cycles removed using simulation-based tech-
niques. 1 = cycle removal, 2 = input event elimination, 3 = alternative
trace finish, and 4 = state skip + early exit.

With reference to Figure 12, note that input event elimination can
impact the number of cycles removed only when the variant trace
can lead to an alternative trace finish. On the other hand, the addi-
tion of our cycle removal technique produces most of the reduction.
In the graph, we report, for the larger testbenches, only the contri-
bution of cycle removal together with early exit. This is because
early exit contributes greatly to the performance of Butramin, and
the larger benchmarks timeout (at 40,000 seconds) without this op-
timization. With reference to Figure 13, the major contributor to the
reduction is now input event elimination, while cycle removal has
only minimal impact. Once again, some of the larger tests can be at-
tacked within our performance boundaries only after our early exit
optimization is plugged in. Overall the simulation-based reduction
techniques of Butramin can remove 81% of all cycles and 95% of
input events leading to bugs. Designs for which minimal bug traces
are inherently difficult to generate using formal methods, such as
multipliers, can also be efficiently handled by the techniques pro-
posed in this work. In performing our experiments we noted that
the occurrence of early exit situations or state skips are the most ad-
vantageous in positively affecting performance. For instance, state
skip occurred 4 times in our ICU experiment, and removed 6978
cycles, reducing greatly the overall runtime.

Figure 13: Number of input events eliminated with simulation-based
techniques. 1 = cycle removal, 2 = input event elimination, 3 = alterna-
tive trace finish, and 4 = state skip + early exit.

Circuit Cycles Input events Runtime
Original Removed Original Removed (seconds)

S38584 14 5 255 253 358
S15850 62 60 2412 2403 67
MULT 8 2 660 658 277
DES 331 309 4802 3117 227
B15 2501 2489 451291 451263 222
FPU 53712 53706 1756431 1756414 12032
ICU 7000 6991 62781 62737 7
picoJava 30018 30007 674521 675503 34727

Average 100% 81.34% 100% 95.42% 5890s

Table 3: Cycles and input events removed by simulation techniques of
Butramin on traces generated by semi-formal verification.

Our second set of experiments apply Butramin to a new set of
traces, also generated by a semi-formal tool, but this time we spec-
ified to the software to dedicate extra effort in generating short
traces, by emphasizing the time spent in the formal analysis of the
bug. Similarly to Table 3 discussed earlier, Table 4 reports the re-
sults obtained by applying the simulation-based minimization tech-
niques of Butramin to these traces. We still find that Butramin has a
high impact in compacting these traces, even if, generally speaking,
they present less redundancy, since they are closer to be minimal.
Note in particular, that the longer the traces the more the benefit
from the application of Butramin. Even if the overall impact is re-
duced, we still observe a 52% reduction in number of cycles and
94% in input events, on average.

Circuit Cycles Input events Runtime
Original Removed Original Removed (seconds)

S38584 14 5 255 253 159
S15850 20 18 671 662 57
MULT 7 1 660 658 276
DES 429 101 4934 4927 833
B15 30 18 462 434 87
FPU 24 18 800 783 43
ICU 25 16 183 134 3
picoJava 28 17 717 699 226

Average 100% 52.91% 100% 94.99% 210.5s

Table 4: Cycles and input events removed by the simulation-based
techniques of Butramin on traces generated by the compact-mode
semi-formal verification tool.

The third set of experiments evaluated traces generated by con-
strained random simulation. Results are summarized in Table 5.
Testbenches which timed-out (that is, the random simulator could
not generate a trace within 40,000 seconds) are not reported in the
table. As expected, Butramin produced the most impact on these
set of traces, since they tend to include a lot of redundant behavior.
The average reduction is of 99% on both cycles and input events.

Circuit Cycles Input events Runtime
Original Removed Original Removed (seconds)

S38584 1004 995 19047 19045 158
S15850 2004 2002 77456 77447 67
MULT 1004 998 128199 128197 277
DES 25329 25305 667607 667597 273
FPU 1046188 1046183 36125365 36125348 266121
ICU 31998 31989 287770 287726 11

Average 100% 99.71% 100% 99.99% 44484.5s

Table 5: Cycles and input events removed by simulation the methods
of Butramin on traces generated by constrained random simulation.

A comparison of Butramin’s impact and runtime on the three sets
of traces is summarized in Figure 14. It shows that Butramin can
effectively reduce all three types of bug traces in reasonable amount
of time. Note, in addition, that in some cases the minimization of
a trace generated by random simulation takes similar or less time
than applying Butramin to a trace generated by a compact-mode
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semi-formal tool, even if the initial trace is much longer. This is,
for instance, the case for S38584, S15850, MULT, DES or ICU.
The authors suspect that the reason of this lies in the nature of the
traces: Random simulation generated traces tend to visit states that
are easily reachable, therefore states are likely to be repetitive, and
state-skip occurs more frequently, leading to a shorter minimization
time. On the other hand, states visit in a compact-mode generated
trace mode are commonly produced by formal engines and can be
highly specific, making state-skip a rare event. The case of FPU
is relevant in this context: here state-skips do not occur, and the
minimization time is proportional to the original trace length. FPU
is also an example of the benefits of using Butramin in a verifi-
cation methodology context. The original trace is a million cycle
long and requires 20 minutes to be simulated. However, the post-
Butramin trace only requires a few seconds of simulation. The ben-
efits of adding the minimized trace to a regression suite, instead of
the original one, are obvious.

Figure 14: Comparison of Butramin’s impact when applied to traces
generated in three different modes. The graph shows the fraction of
cycles and input events eliminated and the overall runtime.

Circuit Normal Compact-trace Random
Orig Rem Time Orig Rem Time Orig Rem Time

S38584 9 0 34 9 0 34 9 0 34
S15850 2 0 0 2 0 0 2 0 0
MULT 6 0 11 6 0 11 6 0 11
DES 22 4 109 328 238 5548 24 8 1016
B15 12 0 76 12 0 76 N/A N/A N/A
FPU 6 0 2 6 0 2 5 0 2
ICU 9 0 5 9 0 5 9 0 4
picoJava 11 0 56 11 0 58 N/A N/A N/A

Table 6: Cycles removed by the BMC-based method: DES can be
minimized further after Butramin’s simulation techniques.

We applied our BMC-based technique to the traces already min-
imized by simulation-based methods to evaluate the potential for
further minimization. Results are summarized in Table 6, where
Orig is the original number of cycles in the trace, and Rem is the
number of cycles removed. We used a maximum windows of 10
cycles (m = 10). In two cases random simulation timeout in at-
tempting to generated a bug trace. The main observation that can
be made is that simulation-based techniques are very effective in
minimizing the bug traces. In one case, DES, the BMC-based tech-
nique was able to extract additional minimization opportunities, in
particular when the starting trace was longer than average. Poten-
tially, we can repeat the application of simulation-based techniques
and BMC-based methods alternating them until convergence, that
is, no additional minimization can be extracted.

Finally, we evaluated the ”x mode” feature, described in Section
4.3, and extracted the essential variables from the minimized traces
(obtained from our first set of experiments). Table 7 shows that
after this trace explanation technique is applied, many input vari-
ables are removed. Note that the comparison is now between input
variables, not input events.

Circuit Input Variables With x mode
S38584 360 2
S15850 152 4
MULT 1536 1531
DES 2112 1209
B15 444 25
FPU 426 131
ICU 261 61
picoJava 572 44

Table 7: Input variables removed with trace explanation (x mode).

6. CONCLUSIONS
This work presented Butramin, a bug trace minimizer that com-

bines simulation-based techniques with formal methods. Butramin
applies simple but powerful simulation-based bug trace reductions,
such as cycle removal, redundant input event elimination, alterna-
tive trace finish and state skip. An additional BMC-based mini-
mization method is used after these techniques, to exploit the po-
tential for further minimizations. Compared to purely formal meth-
ods, Butramin has the following advantages: (1) it can reduce both
the length of a bug trace and the number of its input events, (2)
it leverages fast logic-simulation engines for bug trace minimiza-
tion and is more scalable than formal methods, (3) it can find bug
trace reductions in large designs that cannot be handled by purely
formal methods, (4) it leverages the existing simulation-based in-
frastructure, which is currently prevalent in the industry. The latter
significantly decreases the barriers to the adoption of Butramin in
practical verification of industrial designs.
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