How to use the SWORD library

Jean Christoph Jung
December 7, 2009

This document describes the usage of SWORD — a decision procedure for the SMT
bit-vector logic. It is shown, how SWORD can be utilized as C++ library in existing
projects. Furthermore, it is described how to develop and integrate new modules. For
a more detailed treatment of the major concepts behind SWORD, we refer to the
respective literature.!

1

Creating and Solving QF BV Instances

SWORD supports quantifier free bitvector logic (see the description of the logic QF_BV
at SMTLIB? for details). To create and solve instances the SWORD library provides a
couple of public functions, namely

addVariable and addConstant to define new bit-vector variables and constants,
respectively,

addOperator to define operations over terms,

addAssertion to assert terms for all following solve processes,
addAssumption to assert terms for one following solve process,
solve to solve the resulting instance, and

getVariableAssignment to obtain assignments of variables in case the instance
is satisfiable.

In the following, the creation of a SWORD instance is described by means of a
running example. Assume the task is to factorize 18 into two 8-bit variables x and y,
i.e. solve the equation

r-y=18

First, SWORD has to be instantiated. This is simply done by:

'For example at the SWORD homepage www.informatik.uni-bremen.de/agra/eng/sword.php

2

www.smtlib.org

sword * solver = new sword();

Afterwards, using the resulting SWORD object all variables and terms are con-
structed by calling the respective functions mentioned above. Each function returns an
object of type PSignal which is used as unique identifier for the term created by the
call.

In the example, first of all the variables are defined. To this end, the bitsize and the
name of the variables (optional) are declared in the parameters:

PSignal x = solver->addVariable(8, "x");
PSignal y = solver->addVariable(8, "y");

The same way constants including their bit-size (8) and their value (18) are specified.

PSignal eighteen = solver->addConstant (8, 18);

Therewith, the atomic elements of the considered equation have been created. To
construct the terms, the addOperator function is applied. This function takes the oper-
ator type as first argument. More detailed information on how to create all terms possi-
ble in QF_BV with SWORD can be found in the header files include/swordOpcode.h
and include/libsword.h.

After the operator type, the terms that the operation is applied to, are passed. With
that as a basis, the equation from the running example can be created in two steps:

PSignal mult = solver->addOperator (MUL, x, y);
PSignal eq = solver->addOperator (EQUAL, mult, eighteen);

Finally, the resulting term is asserted in the solver.

solver ->addAssertion(eq);

Now the problem can be solved:

bool result = solver->solve();

In the running example the created instance is satisfiable so that the Boolean vari-
able result evaluates to true. In this case, the model can be obtained using the
getVariableAssignment function with the identifier of the respective variable:

vector<int> solutionX = solver->getVariableAssignment (x);
vector<int> solutionY solver->getVariableAssignment (y);

The respective calls return a vector that contains a satisfying assignment for the
given variable. For example, solutionX contains the assignment of variable x, where
solutionX.size()==8 and solutionX[0] is the value of the least significant bit of x.
Possible values in the solution are SWORD_DONTCARE, SWORD_TRUE, and SWORD_FALSE.
To check if exactly one of the factors in the running example is assigned to a negative
number (in 2-complement), the following function calls are sufficient:

bool one_negative = (solutionX.back()==SWORD_TRUE
" solutionY.back ()==SWORD_TRUE) ;

Using the functions introduced so far, any QF_BV instance can be created and
solved. Besides that, also the definition of assumptions is possible. Assumptions are
temporarily asserted terms, that are dropped after every call to solver->solve().
They can be added to an instance by the function addAssumption in the same way like
addAssertion. In particular, assumptions enable incremental usage of SWORD as the
following example shows.

PSignal zero = solver->addConstant (8, 0);
PSignal x_gt_0 solver->add0Operator (SGT, x, zero);
PSignal y_gt_0 solver->add0Operator (SGT, y, zero);

sword->addAssumption (sword->addOperator (AND, x_gt_0, y_gt_0));
if (sword->solve())
cout << "found_solution,with, x>0 and_ y>0\n";

sword->addAssumption (sword->addOperator (NOR, x_gt_0, y_gt_0));
if (sword->solve())
cout << "foundysolution, with,x<=0y,and y<=0\n";

This code in the snippet checks if there are solutions with both x and y assigned
to positive values and both z and y assigned to negative values. The complete code is
also available in the file doc/examplel.cpp of the SWORD v1.1 package.

2 Use of modules

Besides the QF_BV operations of SMTLIB, SWORD additionally provides the possibil-
ity to define user-specified operations in terms of modules. Each module is defined over
(bit-vector) variables and provides functions enabling dedicated strategies for decision
making (decide) and propagation (propagate). Summarily, decide is called whenever
the solver asks the module for a decision, and propagate is called whenever the value of
a variable constrained by the module is changed. A detailed description of this concept
can be found at SWORD’s homepage.

This section briefly describes how to define new modules with own strategies. There-
fore, the example from the previous section is continued and extended by a cardinality
constraint: A solution for z - y = 18 has to be determined where the number of bits in
x assigned to true is smaller than a given number n. A straight-forward solution to
this problem using the QF_BV operations is possible by extracting all single bits from
x, adding all of them up, and constrain the sum to be less than n. However, this can
be done more elegant by a dedicated SWORD module.

To this end, a new class that inherits from SwordModule has to be created. For the
example additionally two fields to store the maximal number n of bits allowed to be
assigned to true and the variables involved in the modules are created.

The variables are of type Lit, which is SWORD'’s internal representation of Boolean
literals.

class CardinalityLessThan : public SwordModule {

const std::vector<Lit> _vars;
const unsigned _maxOnes;
}; // class CardinalityLessThan

A SWORD module needs to be initialized with the current solver object. Further-
more, the constructor gets the variables considered by the module and parameters of the
respective constraint (in the example the value of n). With the function useVariables,
the module informs the solver object about the variables (of type Lit) it is using. This
ensures, that each time the value of one of the variables is changed (due to decision or
propagation), the respective propagate routine of the module is called to update the
current status and to deduce further assignments or to detect conflicts, respectively.

CardinalitylLessThan(sword * swd, PSignal signal, unsigned maxOnes)
SwordModule (swd)
, _vars(signalToLiterals (signal))
, _max0Ones (max0Ones)
{
useVariables (_vars); // inform the solver to use all _wvars

}

Finally, the respective functions for decision making (decide) and propagation
(propagate) can be overwritten.

The decision function of a module assigns a value to one of its variables. The
function is called when the solver wants the module to make a decision and returns a
literal representing the respective decision. In the case that all variables are already
assigned an undefined literal is returned. Different strategies can be thereby applied
for different types of modules. For the running example, a possible strategy could be
to assign a free variable to false in order to not exceed the number of bits assigned to
true:

virtual Lit decide () {

for (unsigned i = 0; i < _vars.size(); ++i) {
if (isFree(_vars[il)) // check if wvartable ts still free
return ~_varsl[i]; // set _wars[i] to false
}
return 1_Undef; // mno free wariable in this module

}

The function propagate is called when a variable of the module was changed. Then,
it is checked if the current status is conflict-free and if further assignments can be
deduced. In case of a conflict, a reason for the conflict has to be returned, i.e., a set of
assignments that are not valid in the module. The following code snippet demonstrates
the propagate function by means of the running example:

virtual Clause* propagate () {
conflict_set_t reason;

for(unsigned i = 0; i < _vars.size(); ++i) {

if (getValue(_vars[i]) == 1_True)
reason.push_back(_vars[i]);

}

if (reason.size() >= _max0Ones) {
return makeConflict (reason);

} else {
return NULL;

}

}

In the for-loop the number of true literals in vector _vars is counted. If this number
exceeds the maximal number of ones, a conflict is found. In this case, the reason of the
conflict are all assignments to true in the module. These assignments are collected in
reason and returned using the method makeConflict. If the module is in a consistent
state, NULL is returned.

Similarly, if a module makes an inference, this can be propagated in the solver with
inferLiteral (inferedLiteral, reason). Again, the reason is a set of literals that
imply the infered literal in the module. For example, if the maximal number of bits
is assigned to true, all other literals are infered to be false. This is done with the
following code:

if (reason.size() + 1 == _maxOnes) {
for (unsigned i = 0; i < _vars.size(); ++i) {
if (getValue(_vars[i]) == 1_Undef)
inferLiteral (" _vars[i], reason);

Having defined the module it is asserted with:

unsigned max = 4;
SwordModule * card = new CardinalityLessThan (solver, x, max);
solver ->addAndAssertModule (card);

Then the instance can be solved as shown above with solver->solve(). Again the
instance is satisfiable and the model is either t =2,y =9 or x =9,y = 2.

The complete code of the example is also available in the file doc/example2.cpp of
the SWORD v1.1 package.

