
SWORD v0.5

Jean Christoph Jung André Sülflow Robert Wille Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{jeanjung,suelflow,rwille,drechsle}@informatik.uni-bremen.de

Introduction

In this paper, we describe SWORD – a decision procedure for bit-vector logic
that uses SAT techniques and exploits word level information [5]. The main idea
of SWORD is based on the following observation: While current SAT solvers
perform very well on instances with a large number of logic operations, their
performance on arithmetic operations degrades with increasing data-path width.
In contrast, pure word-level approaches are able to handle arithmetic operations
very fast, but suffer from irregularities in the word-level structure (e.g. bit slic-
ing).

SWORD tries to combine the best of both worlds: On the one hand, it
includes fast propagation, sophisticated data structures, as well as advanced
techniques like non-chronological backtracking and learning from modern SAT
solvers. On the other hand word-level information is exploited in the decision
heuristic and during propagation. Additionally, rewriting on word-level and bit-
level is performed before starting the search process.

Implementation

The overall architecture of SWORD is shown in Figure 1. At first, the instance
is rewritten on word-level, i.e., rules for distributivity and commutativity are
applied. Afterwards, the resulting (already simplified) instance is translated to an
AIG-like data structure [3]. More precisely, a data structure not only supporting
and-nodes but also iff-nodes is used for rewriting. The rules for and-nodes are
adapted from [4] and have been extended for iff-nodes.

After rewriting, the bit-level data structure is converted into Conjunctive

Normal Form (CNF) and given to the solve engine (see right side of Figure 1).
Basically, the solve engine of SWORD is a DPLL style decision procedure as
deployed in many state-of-the-art SAT solvers [2]: While free variables remain, a
free variable is assigned, and its implications are propagated. If a conflict occurs,
it is analyzed and a conflict clause is learnt.

SWORD extends the basic algorithm by so called “modules” (for more details
see [5]). Modules can be instantiated for, principally, any sub-unit of the formula
under consideration. However, currently supported modules are multiplication
and addition. The motivation of modules is twofold: First, they are used for



Word-level
Rewriting

Bit-level
Rewriting

Solve
Engine

x + 0 x

a · x + b · x (a + b) · x

a + (x + b) (a + b) + x

a ∧ ¬a false

¬(a ∧ b) ∧ ¬a ¬a

a ↔ (a ∧ b) a → b

free var? SAT
no

yes

select var
(solver)

select var
(module)

propagation

fail

resolve

conflict
UNSAT

fail

ok

Fig. 1. The overall architecture of SWORD

propagation where a translation to CNF would be too expensive. Second, high
level information is exploited inside modules, e.g., for making decisions.

Applying modules yields several new options. As an example, there is a choice
between using the SAT solver’s decision heuristic and the decision heuristic of
a module (as depicted on the right side of Figure 1). The decision heuristic of a
module depends on the type of the module and uses module specific high level
information. For example, the heuristic of the addition module differs from that
of the multiplication module.

SWORD supports the QF BV logic defined in [6] and is implemented in C++
on top of the SAT solver MiniSat [2]. The parse routine of the solver is based on
the grammar of Smt2Sf [1]. SWORD will participate in the QF BV division at
the SMT competition 2009 using random seed 10659.

References

1. D. Babic. Smt2Sf. http://www.cs.ubc.ca/∼babic/index tools.htm.
2. N. Eén and N. Sörensson. An extensible SAT solver. In Theory and Applications of

Satisfiability Testing 2003, volume 2919, pages 502–518, 2004.
3. A. Kuehlmann, V. Paruthi, F. Krohm, M. K. Ganai:. Robust Boolean reasoning

for equivalence checking and functional property verification. In Trans. on CAD of

Integrated Circuits and Systems, volume 21(12), pages 1377–1394, 2002.
4. R. Brummayer and A. Biere. Local Two-Level And-Inverter Graph Minimization

without Blowup. In Doctoral Workshop on Mathematical and Engineering Methods

in Computer Science, 2006
5. R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler. SWORD: A SAT like

Prover Using Word Level Information. In Int’l Conference on Very Large Scale

Integration, pages 88–93, 2007.
6. S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. http://

combination.cs.uiowa.edu/smtlib/


