Robust Tests for Transition Faults with Long
Propagation Paths Using Boolean Satisfiability

Stephan Eggersgliif3

Daniel Tille

Rolf Drechsler

Institute of Computer Science, University of Bremen
Bibliothekstr. 1, 28359 Bremen, Germany
{segg, tille, drechsle}@informatik.uni-bremen.de

Abstract—Increasing speed and decreasing gate sizes
make it necessary to test the correct temporal behavior
of a manufactured chip. In this paper, we present an
efficient SAT formulation for generating robust test
patterns for the transition fault model. For this, we
apply a multiple-valued logic that is able to model static
values and add structural information to model the
robust sensitization criterion.

Furthermore, we introduce a SAT technique that pri-
oritizes longer paths from the fault site to an output. As
a result, the generated test patterns generally sensitize
longer paths and consequently are more likely to detect
errors caused by small delay defects. Experiments on
ISCAS benchmarks and on industrial circuits show the
feasiblity of our approach.

I. INTRODUCTION

Delay testing is widely used in practice to ensure the cor-
rect timing behavior of a manufactured chip. The prevalent
fault models for testing delay faults are the Path Delay
Fault (PDF) model [1], [2] and the Transition Fault (TF)
model [3], [4]. The PDF model is the most appropriate
model targeting cumulative delays along a logical path and
can be classified broadly in two categories: non-robust and
robust [5].

This model is well suited for detecting small as well as
large delay defects. Achieving 100% robust PDF coverage
would cover all small and large delay defects in the circuit.
However, the number of paths in modern circuits is too
large so that complete testing of all paths is not possible.
Furthermore, only few paths are robust testable.

The TF model assumes a gross or large delay defect at
one site in the circuit which is large enough that it can be
observed at a primary output of the circuit. The advantage
of this model is that the number of faults is linear in the
number of connections in the circuit. Therefore, it is widely
used in industry guaranteeing a good coverage. A test
detects a TF, if it activates the transition at the fault site
and sensitizes at least one single path from the fault site to
an observation point, i.e. a (pseudo) primary output. By
this, not only the large delay defect on the fault site can
cause a wrong timing behavior, but also the distributed
small delays along the sensitized path.

However, it is pointed out in [6] that for reasons of
efficiency ATPG tools usually sensitize a short path to
an output. This is disadvantageous, because a distributed
delay defect is more likely to be detected on a longer path

if the delay defect on the fault site is not large enough. A
new TF model called As Late As Possible Transition Fault
(ALAPTF) was proposed that tries to activate the fault as
late as possible and sensitizes a long path to achieve a good
detection rate of small delay defects. However due to the
timing information, the ATPG method is computationally
complex. In [7], a PODEM-based algorithm for detecting
high quality tests for transition faults was proposed. But
this algorithm focuses on the predetermination of path
sensitization conditions for the longest paths.

In [8], an ATPG algorithm for detecting small delay
defects that is based on path delay testing was intro-
duced. The algorithm generates a set of multiple-detect
test patterns and uses a pattern selection strategy to
sensitize the long paths rather than the short paths. But
no classification with respect to non-robust and robust
tests is made. An approach for testing small delay defects
based on the TF model is presented in [9]. There, standard
TF testing is combinated with information gathered from
static timing analysis. By grouping test patterns and
adjusting their timing, the paths can be tested almost with
no slack and by this obtain a higher coverage of small
delay defects. In [10], a test pattern grading technique is
proposed that selects test patterns from an n-detection
pattern set according to their effect on small delay defect
detection.

Due to the recent advances in techniques to solve the
Boolean Satisfiability (SAT) problem [11]-[13], SAT-based
algorithms have been shown to be efficient in the field
of ATPG for delay faults. In [14], SAT-based ATPG for
path-oriented TFs was performed, whereas in [15], PDFs
are tested using a unified sensitization model. Both ap-
proaches have in common that they are not able to model
static values what is necessary for robust test patterns.
In [16], a SAT-based ATPG algorithm for PDFs was
presented. In this approach, static values are modeled for
generating robust test patterns using a multiple-valued
logic.

The approach presented in this paper uses the multiple-
valued logic from [16] for efficiently generating robust test
patterns for TFs. For determining whether a path from the
fault site is robustly sensitized, a SAT formulation for D-
chains [17] is presented which is similar to the formulation
for stuck-at faults introduced in [18]. Because it is ad-
vantageous for detecting small delay defects to propagate



the transition along a longer path, a SAT technique is
presented that makes use of Incremental SAT [19], [20]
(ISAT). This technique is similar to a technique presented
in [21] which is used to speed up equivalence checking but
not for increasing the quality.

All outputs at which the fault effect can potentially be
observed are ordered according to their distance to the
fault site and added incrementally to the SAT instance.
By this, it can be ensured, that a long propagation path is
chosen. Another advantage of this technique is that, beside
the longer paths, the number of faults, which could not be
classified, can be reduced. This is due to the circumstance
that the considered part of the circuit is much smaller and
therefore the SAT instances are less complex.

The remaining part of the paper is structured as follows.
In the next section, SAT-based ATPG and the application
of multiple-valued logic is introduced. In Section III, the
SAT formulation for the D-chains to detect a transition
fault is presented, whereas the ISAT technique for gener-
ating tests with long propagation paths is shown in Sec-
tion IV. Experimental results for the proposed approach
are presented in Section V and conclusions are drawn in
Section VI.

II. PrEVIOUS WORK

In this section, the usage of SAT in the field of ATPG is
introduced. Therefore, Section II-A deals with the general
transformation of a circuit problem, i.e. an ATPG prob-
lem, to a SAT problem, whereas in Section II-B, the usage
of multiple-valued logic for generating robust test patterns
for delay faults is explained.

A. Transformation into SAT Problem

For applying a SAT solver to a circuit problem, the
circuit problem has to be transformed into a Boolean
formula in Conjunctive Normal Form (CNF)!. A CNF is
a conjunction of clauses and each clause is a disjunction
of literals, whereas each literal is a Boolean variable in its
positive or negative form. To satisfy the CNF, each clause
has to be satisfied. A clause is satisfied, if at least one
literal in this clause is satisfied.

According to [22], for translating a circuit C' into a CNF
®¢, each gate g of C has to be transformed into a set of
clauses ®,. Then, ®¢ is composed by the conjunction of all
clauses of each gate. More formally, the CNF of C' is given
by the following formula, where n denotes the number of

gates in C:
e =]]
i=1

Each connection is represented by a Boolean variable
and the CNF representation ®, of each gate g can be
obtained either by algebraic conversions or by the usage of
a truthtable using the variable dedicated to the incoming

IThere also exist approaches using circuit-based SAT solvers, but
preliminary studies have shown that CNF-based SAT solvers have
significant advances regarding run time.

TABLE I
OFF-PATH CONSTRAINTS FOR ROBUST AND NON-ROBUST TESTS

gate type robust non-robust
falling | rising
AND/NAND S1 X1 X1
OR/NOR X0 S0 X0

or outcoming variables, respectively. In the following, the
outgoing connection denotes the name of the gate.

The CNF & represents the functionality of the circuit,
i.e. each satisfying assignment is valid according to the
circuit’s functionality. For generating test patterns for
delay faults, two time frames t1,t3 have to be considered.
For this, the circuit is duplicated such that two test vectors
can be calculated. Therefore, @ contains not a single time
frame, but two time frames in the following. The derived
CNF of the circuit must be extended by constraints, that
model the considered fault. Although this paper deals with
the TF model, this will be explained by the PDF model,
because it is more general and the conditions concerning
the propagation path hold for both.

A PDF is a fault on a path p = ¢1,..., g, where g1 is
an input and g, is an output. To detect the delay fault on
p, a transition which is either rising or falling is applied
to g1 and propagated along p to g,. Therefore, there exist
two different faults for each path in C. As stated in [5],
there are two categories of tests for the PDF model: robust
tests and non-robust tests. While robust tests guarantee
the detection of the fault independently from other delay
faults occuring at the same time, non-robust tests do not.
By applying only non-robust tests, other delay faults can
mask the target delay fault that it will not be observed.

Both types differ in the modeling of the off-path inputs
of p. An off-path input is an input of a gate g; on path p
that is not g;—1. In Table I, the constraints on the off-path
inputs are shown. There, X1 (X0) signifies that the value
in the final time frame t3 has to be 1 (0). No restriction
on t1 is made. The value S1 (S0), however, means, that on
both time frames the value has to be 1 (0) and no hazard
occurs between them; the signal has to be static.

For modeling the fault, these constraints ® ;4. must be
added to the SAT instance. However, static values which
are necessary for robust test generation cannot be modeled
by Boolean logic. Section II-B deals therefore with the
usage of multiple-valued logic in robust test generation.
In case of non-robust test generation, the constraints are
added to the SAT instance in form of fixed assignments.
If the SAT instance is satisfiable, the test pattern can be
derived from the solution by extracting the assignments of
the variables dedicated to the inputs.

In this paper, we consider the TF model. In this model,
no path is given, but a fault site, i.e. a connection or a
gate, and a transition which is either rising or falling. A
test for the TF model must therefore sensitize at least one
path from the fault site to an output. For determining
the quality of the test, i.e. non-robust or robust, the same
conditions for the off-path inputs as in the PDF model



can be applied with the difference that no path is specified.
For detecting a fully sensitized path, so-called D-chains are
used. This concept is explained in detail in Section III.

B. Usage of Multiple-Valued Logic

In this section, the usage of multiple-valued logic for
generating robust tests is briefly explained. Further details
can be found in [16]. As described in Section II-A, for
robust tests, it is necessary that some signals, i.e. off-
path inputs, must be guaranteed to be static. This is not
possible using Boolean logic. For example, consider an
AND gate with incoming connections a and b and outgoing
connection ¢. When a has a rising transition and b a falling
one, the value on c is in both time frames calculated as 0.
However, c is not static, but can have a glitch.

Therefore, a six-valued logic Lg is applied which is
able to model static values. Besides the Boolean values,
Lg contains also two more static values. The logic Lg is
defined as follows:

L¢ = {0,0,01,10,T,1}

The name of each value determines the behavior of the
connection in both time frames. The first position of the
name denotes the value of the signal in ¢;, whereas the
value of t, is given by the second position. For instance, 01
means, that the value is 0 in ¢; and 1 in ¢5. In case of only
one position, the signal of ¢; and ¢, is equal. An overlined
value means, that the signal cannot be guaranteed to be
static.

For generating a CNF while modeling the circuit in Lg, a
Boolean encoding is needed. Instead of two variables — each
for one time frame — three variables are needed to encode
the six values. The CNF of the circuit is then derived
in a similar manner as described in the previous section
using the CNF representation of each gate according to
the chosen Boolean encoding.

III. SAT FORMULATION: D-CHAINS

For the detection of a TF, at least one path from the
fault site to an output must be sensitized according to
the desired quality of the test, i.e. robust or non-robust.
Generally, a TF can be modeled as a stuck-at fault, but
using this model, no statement concerning the quality of
the test can be made. Therefore, the concept of D-chains
for generating robust tests for TF's is presented.

A potential D-chain is defined as a path starting at
the fault site and ending at an output. A gate g is on a
potential D-chain, if it is located on such a path. For each
gate g on a potential D-chain, a variable D, is introduced?.
The variable D, is 1, if and only if the targeted TF is
propagated via g to an output. For this, some implications
must be added to the SAT instance that guarantee the
correct behavior of the off-path inputs of g according to
sensitization criteria in Table I. In this section, the criteria
concerning robust test generation are considered.

2Note that fanouts are handled as a gate and a D-variable is
assigned to each outgoing branch.

For each incoming connection j; (if there are more than
one) of g that is located on a potential D-chain, it must
be assured that Dj, cannot be 1, if the conditions on the
off-path inputs, i.e. the other incoming connections, are
not satisfied. The following cases must be considered:

o If the first values of the transition on connection j;
is the non-controlling value ncv and the second one
is the controlling value cv (ncv — cv), e.g. the value
10 for an AND gate, all other incoming connections
J1s .- jn—1 must assume a static ncv (sncv):

D;, A (ji = (nev — cv))

- (vjk|0<k<n;jk;ﬁji :jk - Sncv)

o If the transition on j; is (cv — ncv), the values of
J1s -y jn_1 are restricted to be non-controlling only
in o, e.g. the values 01,1,1 for an AND gate (given
by X — ncv):

D;, A (i = (ev — nev))

— (Vikjo<k<nijnsi; : Jk = X — ncv)

e It must be ensured that at least one complete sensi-
tized path, i.e. a D-chain, exists. Therefore, each gate
g for which Dy = 1 holds must have at least one
successor h for which Dy, = 1 holds as well. Given gate
g on a potential D-chain with successors hq, ..., h,,
the following implication must be added to the SAT
instance:

e The value of the fault site f must be set to the
targeted transition, i.e. 01 for a rising TF (rTF') and
10 for a falling TF (fTF). To propagate the delay
defect, the D-variable D g, of the fault site must be
set to 1, i.e. the following constraints are added:

(rTF — f=01)® (fTF — f=10)
Dfault =1

The following example demonstrates the methodology:

Example 1: Consider the circuit in Figure 1. The fault
site for a rising TF is the outgoing connection of gate
f. There are two potential D-chains: f — f1 — ¢g and
f — f2 — h. Therefore, D-variables are assigned to all
gates or connections, respectively, on potential D-chains,
i.e. f, f1, f2,g,h. The value on f is set to a rising transi-
tion 01 and Dy is assigned to 1. One of the successors of
f must propagate the delay defect. When D5 is assumed
to be 1, the off-path input d must assume the static value
0. But this is not possible, because this would also lead
to the static value 0 on f. By this, the fault cannot be
justified. Consequently, Dy cannot be 1 targeting a rising
TF on f. Therefore, the delay defect must be propagated
via f1. This is possible, because Dy; = 1 implies e = 0
which can be obtained by setting a and b to static 0.



2D,
h
Dh
Fig. 1. Example circuit for D-chains
Untestable Cones |eft?
es
Initial CNF Add fanin cone
SAT solver
R

Fig. 2. Incremental Approach for Generating Tests with Long
Propagation Paths

The shown implications and properties are transformed
into CNF and added to the SAT instance. By this, the
instance grows but also speeds up the search process as
it is shown for stuck-at faults in [18]. Note that the SAT
formulation for non-robust tests can be easily derived by
relaxing the above described conditions.

IV. ISAT: LoNG PROPAGATION PATHS

As mentioned above, generating long propagation paths
is generelly preferred for detecting small delay defects.
Unfortunately, after building the CNF, no circuit infor-
mation can be used during the solving step. Therefore, the
search cannot be guided directly to find long propagation
paths. During the instance generation the entire influenced
circuit part, i.e. all gates on potential D-chains and all
gates which are needed to justify the fault, is transformed
into the CNF. Each output on a potential D-chain is a
candidate for the observation of the fault. As pointed out
earlier, the likelihood of chosing a short propagation path
is higher than chosing a long propagation path considering
all outputs at one step.

We propose an incremental approach to guide the test
algorithm preferring long propagation paths. A sketch of
the algorithm is illustrated in Figure 2. After all outputs
where a fault could be observed are determined by a depth-
first-search, the list of outputs is sorted in terms of the
distance to the fault site. In our approach, the distance
is the number of gates on the potential D-chain, i.e. the
length of the propagation path. The algorithm is easily
extensible by technology-dependent parameters.

Afterwards, the fanin cone of the first output, i.e. the
output with the longest path, is added to the initial SAT
instance (consisting of the CNF that injects the fault). If
this SAT instance is satisfiable a test pattern sensitizing
the longest path is found. Otherwise no classification can
be given, since a shorter path could exist.

Therefore, the initial SAT instance is augmented incre-
mentally by the second output’s fanin cone using ISAT.
The information learned so far is kept. By this, the restart-
ing search process could benefit such that already explored
search space must not be traversed again. If there are no
more fanin cones left, the fault is untestable.

More formally, let len(o) be the function that denotes
the length of the propagation path for output o. Then, the
outputs o1, ...,0, on a potential D-chain are ordered such
that len(o;) > len(o;)|i < j. The CNF of the fanin cone
of 0; is given by ®,,, whereas ® 4.+ represents the fault
modeling. Then, the initial SAT instance is given by:

D1 =Dy, - Prour
If ®; =0, the next SAT instance is created as follows:
by =0y - D,
or more generally:
O, =, 1-D,,:0<i<n

The procedure stops after solving ®,, or if ®; = 1. By
this procedure, the longest sensitizable propagation path is
found without including timing information in the problem
instance which would slow down the search process.

However, a large number of outputs on a potential D-
chain would result in significant overhead, if the longest
paths are not testable adding the fanin cone of each single
output in one step. Therefore, an n-steps approach is pro-
posed. This approach restricts the number of incremental
steps to n and add more than the fanin cone of one output
in each single step.

The number of outputs added in one single step depends
on n. For example, if n = 4, than 25% of the outputs on a
potential D-chain are added in one single step. This results
in at most four incremental steps. As the experiments in
the next section will show, the n-steps approach speeds
up the search process and at the same time degrades the
length of the propagation path only slightly.

V. EXPERIMENTAL RESULTS

In this section, the experimental results for generating
robust tests for the TF model with long propagation



TABLE II
CIRCUIT STATISTICS

circuit | #PI #FF | av. #P0O | #Faults
c2670 157 0 4.13 2802
¢3540 50 0 7.56 3742
c5315 178 0 6.83 6016
c6288 32 0 15.96 7744
c7552 206 0 6.02 8078

s641 36 20 3.80 324
s5378 35 179 2.92 3166
513207 62 638 3.89 3322
$15850 7 534 5.56 2446
$38417 28 1636 2.02 794
538584 38 1426 2.52 5148
p44k 739 2175 55.49 10000
p77k 171 2977 21.58 10000
p80k 152 3878 37.30 10000
p99k 167 5747 17.29 10000
pl77k 768 | 10507 444.88 10000
p462k | 1815 | 29205 79.46 10000

paths are presented. The algorithm is executed for IS-
CAS benchmarks and for industrial circuits provided by
NXP Semiconductors Hamburg, Germany; both in full-
scan version. As SAT solver, we used MiniSat v1.14 [13].
All experiments were carried out on a Dual DualCore Xeon
(3000 MHz, 32768 MByte RAM) running GNU/Linux.

The experimental setup is as follows. For ISCAS bench-
marks, robust tests are generated for each input and each
fanout branch targeting the falling and the rising TF.
For the industrial circuits, due to the large number of
fault locations and due to the absence of a fault simulator
targeting robust test for TFs?, the number of faults is
limited to 10,000. If the total number of faults exceeds the
limit, the number of faults on the inputs and the number
of faults on the fanout branches are each limited to 5,000.
Furthermore, it was tried to achieve a large structural
coverage of the circuit, i.e. only few targeted faults are
located in the same region. The timeout for each fault was
set to 13 MiniSat restarts (further details can be found in
13)).

The name of the industrial circuit roughly denotes the
size of the circuit, e.g. p462k contains nearly half a million
gates. Further information about the circuits can be found
in Table II. The first columns gives the name of the circuit,
whereas in column #PI and column #FF, the number
of primary inputs and the number of flipflops are shown,
respectively. The average number of outputs on a potential
D-chains for each targeted fault is presented in column av.
#PO and the number of targeted faults is given in the last
column.

The experimental results are presented in Table III.
In the first column, the name of the circuit is given,
whereas the results for the classical approach, where the
outputs are considered altogether are given in the column
entitled non-incremental. The column incremental pro-
vides the results for the incremental approach in which

3As common in industrial practice, a fault simulator is called for
each test pattern. If it detects more faults, these are dropped from
the fault list. By this, the number of targeted faults is reduced.

each single output is added incrementally in one step,
whereas the columns 4-steps, 8-steps and 32-steps present
configurations of the n-steps approach with n =4, n =38
and n = 32, respectively. Note, that the performance of
the incremental approach is very poor for the industrial
circuits. Therefore, it is not applicable, but the results are
presented anyway for the purposes of comparison.

The run time needed for targeting all faults are given in
columns time, whereas the number of faults that could not
be classified within the restart limit are given in column ab.
The average length of the propagation paths of all robustly
testable faults are presented for each circuit in columns
entitled D-len. In the upper part of the table, the results
for the ISCAS benchmarks are shown, whereas in the lower
part the results for the industrial circuits are presented.

The experiments show that all targeted faults in the
ISCAS benchmarks could be classified in less than two
minutes (except c¢6288 for which nearly seven minutes are
needed). The run times for the more complex industrial
circuits are generally higher and vary between under three
minutes (p99k) and approximately seven hours (p177k) for
the non-incremental approach. It can be concluded that
this approach achieves a very good performance even on
industrial circuits. But due to the large SAT instances
considering the outputs altogether, not all faults could be
classified in the industrial circuits, e.g. about 13% in case
of p177k and about 2% in case of p462k.

However, an analysis of the length of the propagation
paths shows that the non-incremental approach sensitizes
rather short paths compared to the length of the propaga-
tion paths of the incremental approach. The length of the
latter is increased up to a factor of more than two (s641)
for the ISCAS benchmarks and up to a factor of nearly
two (p80k) for the industrial circuits.

Considering the n-steps approaches that add more than
one output in each incremental step to the SAT instance
(4-steps, 8-steps, 32-steps), there are only slight differences
in run time for the ISCAS benchmarks. But already for
the 4-step approach, the length of the propagation paths
is increased significantly compared to the non-incremental
approach. It reaches almost the maximum length given by
the incremental approach. The other n-steps approaches
with a finer granularity (8-steps, 32-steps) still improve
slightly the length and 32-steps provides the same length
as the incremental approach.

Concerning the industrial circuits, the run time of the n-
steps approaches generally grows with the increasing of n
due to the higher number of incremental steps. Compared
to the run times of the non-incremental approach, the
results of 4-steps and 8-steps perform generally better,
whereas the results of 32-steps are in the same range. An
exception is p177k, for which the number of not classified
faults could be significantly reduced. By this, the run time
could also be reduced.

For the length of the propagation paths, it can be
observed that, similar to the ISCAS benchmarks, the
length is increased significantly already for the 4-steps



TABLE III

EXPERIMENTAL RESULTS

non-incremental incremental 4-steps 8-steps 32-steps
circ time ab. | D-len time | ab. | D-len time | ab. | D-len time | ab. | D-len time | ab. | D-len
c2670 0:31m 0 6.93 0:31m 0 7.95 0:31m 0 7.87 0:31m 0 7.95 0:31m 0 7.95
c3540 1:26m 0| 11.58 1:28m 0| 13.19 1:25m 0| 13.10 1:27m 0| 13.13 1:29m 0| 13.19
cb315 0:59m 0 6.41 0:57m 0 7.23 0:55m 0 7.21 0:55m 0 7.21 0:57m 0 7.23
c6288 6:46m 0| 16.27 6:36m 0| 16.27 6:17m 0| 16.27 6:23m 0| 16.27 6:37m 0| 16.27
c7552 1:52m 0 7.25 1:52m 0 7.40 1:48m 0 7.40 1:49m 0 7.40 1:52m 0 7.40
s641 0:01m 0 9.87 0:01m 0| 2047 0:01m 0| 19.83 0:01m 0 | 2047 0:01m 0 | 20.47
s5378 0:13m 0| 13.52 0:12m 0| 14.10 0:11m 0| 14.10 0:11m 0| 14.10 0:11m 0| 14.10
513207 0:52m 0| 18.65 0:54m 0| 19.49 0:53m 0| 19.48 0:54m 0| 19.49 0:54m 0| 19.49
515850 0:27m 0 | 14.46 0:28m 0| 21.31 0:27m 0| 21.30 0:28m 0| 21.30 0:28m 0] 21.31
538417 0:01m 0 | 10.07 0:01m 0 | 10:16 0:01m 0| 10.16 0:01m 0 | 10.16 0:01m 0| 10.16
s38584 0:28m 0| 15.67 0:25m 0| 16.86 0:24m 0| 16.85 0:24m 0| 16.86 0:25m 0| 16.86
pddk 4:41h 0| 10.24 14:20h 0] 11.22 4:51h 0| 11.16 4:42h 0| 11.17 4:47h 0| 11.19
p77k 3:09m 0 6.57 4:42m 0 6.60 2:58m 0 6.59 3:01m 0 6.57 3:36m 0 6.60
p80k 32:36m 0 7.30 1:32h 0| 14.31 12:57m 0| 13.54 || 15:09m 0 | 14.11 || 30:58m 0| 14.29
P99k 2:47Tm 0 8.38 1:57h 0| 12.02 4:21m 0| 11.89 4:49m 0| 11.96 7:34m 0| 12.01
pl77k 7:09h | 1331 7.84 7:50h | 713 | 12.91 5:49h | 904 | 11.21 5:03h | 760 | 12.50 5:01h | 718 | 12.87
p462k 1:08h 221 | 10.38 9:43h | 151 | 12.49 1:01h | 182 | 12.21 1:05h | 167 | 12.39 1:10h | 156 | 12.47
approach. The 32-steps approach then nearly reaches the  [6] P. Gupta and M. Hsiao, “ALAPTF: A new transition fault
maximum length. model and the ATPG algorithm,” in Int’l Test Conf., 2004, pp.
. 1053-1060.

The experiments have shown that the length of the [7] Y. Shao, I. Pomeranz, and S. Reddy, “On generating high quality
propagation paths can be increased significantly using the tests for transitions faults,” in Asian Test Symp., 2002.
incremental approach. Due to the large run time, this [8] N. Ahmed, M. Tehranipoor, and V. Jayram, “Timing-based de-

. . lay test for screening small delay defects,” in Design Automation
approach is not feasible. The proposed n-steps approaches Conf., 2006, pp. 320-325.
however reduce the run time significantly compared to the  [9] R. Putman and R. Gawde, “Enhanced timing-based transition
incremental approach. At the same time, the length of the dela%/stézsggg for small delay defects,” in VLST Test Symp., 2006,
. . . pp- —342.
propagation paths 18 Only Very Shghtly decreased. [10] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern
grading and pattern selection for small-delay defects,” in VLST
VI. CONCLUSIONS Test Symp., 2008.

In this paper, a new efficient SAT formulation for gener- [11] J. Marque§—Silva an(% K. Sa.kallah, “GRASP: A search algorithm

. for propositional satisfiability,” IEEE Trans. on Comp., vol. 48,
ating robust test patterns for the TF model was presented. no. 5, pp. 506-521, 1999.

The algorithm is based on a multiple-valued logic for [12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
modeling static values and adds structural information for ;S)};ag;g;lglz%egflf;gpafg Se(f:ﬁ?%lt SAT solver,” in Design Automa-
detecting robustly sensitzed paths from the fault site to an [13] N. Eén and N. Sérensson, “An extensible SAT solver,” in Int’l
output. Furthermore, a SAT technique was presented that Conf. on Theory and Applications of Satisfiability Testing, vol.

s 2919, 2004, pp. 502-518.
pI‘lOI‘lt.lzeS longer paths such that 'srnall delay defects are [14] K. Yang, K.T. Cheng. and L-C. Wang, “Trangen: a SAT.
more hkely to be found. The experiments have shown that based ATPG for path-oriented transition faults,” in ASP Design
the length of the propagation path could be increased by 15 Automation Conf., 2004, pp. 92-97.

- o : 15] S.-Y. Lu, M.-T. Hsieh, and J.-J. Liou, “An efficient SAT-based

a factor of more than two usimg this technique. path delay fault ATPG with an unified sensitization model,” in
Int’l Test Conf., 2007.

ACKNOWLEDGMENT [16] S. EggersgliiB, G. Fey, R. Drechsler, A. Glowatz, F. Hapke,

Parts of this research work were supported by the Ger- and J. Schloeffel, “Combining multi-valued logics in SAT-based

s . ATPG for path delay faults,” in ACM & IEEE Int’l Conf. on
man Federz,ﬂ Ministry of Education and Research (BMBF) Formal Methods and Models for Codesign, 2007, pp. 181-187.
in the Project MAYA under contract number 01M3172B [17] J. Roth, “Diagnosis of automata failures: A calculus and a
and by the German Research Foundation (DFG) under 18] meghod};” IBM J. Res. chi X)lélﬂ, pp. 278-281, 1961?3 o
5 18] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Com-
contract number DR 287/15 L binational test generation using satisfiability,” IEEE Trans. on
CAD, vol. 15, pp. 1167-1176, 1996.
REFERENCES [19] J. Hooker, “Solving the incremental satisfiability problem,”
[1] G. Smith, “Model for delay faults based upon paths,” in Int’l Journal of Logic Programming, vol. 15, no. 1-2, pp. 177-186,
Test Conf., 1985, pp. 342—349. 1993.
[2] C.-J.Lin and S. Reddy, “On delay fault testing in logic circuits,”  [20] O. Shtrichman, “Pruning techniques for the SAT-based bounded
IEEE Trans. on CAD, vol. 6, no. 5, pp. 694-703, 1987. model checking problem,” in CHARME, ser. LNCS, vol. 2144,
[3] J. Waicukauski, E. Lindbloom, B. Rosen, and V. Iyengar, “Tran- 2001, pp. 58-70.
sition fault simulation,” IEEE Design & Test of Computers, pp.  [21] S. Disch and C. Scholl, “Combinational equivalence checking
32-38, 1987. using incremental SAT solving, output ordering, and resets,” in
[4] K.-T. Cheng, “Transition fault testing for sequential circuits,” ASP Design Automation Conf., 2007, pp. 938-943.
[22] T. Larrabee, “Test pattern generation using Boolean satisfiabil-

IEEE Trans. on CAD, vol. 12, no. 12, pp. 1971-1983, 1993.

[5] K. Cheng and H. Chen, “Classification and identification of
nonrobust untestable path delay faults,” IEEE Trans. on CAD,
vol. 15, no. 8, pp. 845-853, 1996.

ity,” IEEE Trans. on CAD, vol. 11, no. 1, pp. 4-15, 1992.



