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Abstract— While facing continuously shrinking feature sizes,
the demand for fault tolerance in digital circuits increases.
Numerous approaches to achieve robustness on the design side
have been presented. But ensuring that the fault tolerance is
really achieved is a tough verification problem.

Here, we propose a formal model and an effective algorithm
to formally prove the robustness of a digital circuit. The
proposed model uses a fixed bound in time to cope with the
complexity of the sequential equivalence check. The result
is a lower and an upper bound on the robustness. The
underlying algorithm and techniques to improve the efficiency
are presented. In the experiments the method was evaluated on
circuits with different fault detection mechanisms.
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I. INTRODUCTION

According to Moore’s Law the number of components
per area increases at an exponential rate in integrated chips.
Continuously shrinking feature sizes drive this growth. As
a consequence the influence of process variations threatens
the correct operation of a circuit. Future circuits may have to
cope with imperfect components [1]. Another consequence
is an increase of externally induced transient faults [2].

Techniques to cope with imperfections and transient faults
are available on the production level [3] or the design level
[4], [5]. Even first tools to improve fault tolerance are
available [6]. But especially at the design level proving fault
tolerance is difficult. Simulation or emulation based methods
[7] can only cover a small part of the state and input space of
a circuit. Often a formal analysis determines the probability
of a fault to propagate to a primary output (see e.g. [8]). But
the computational effort is extremely high.

Methods commonly applied for formal verification can
prove fault tolerance of an implementation. The approach
of [9] proposes to use symbolic methods for the classical
analysis of fault trees. But the faults have to be specified
manually. Similarly, [10] and [11] rely on symbolic methods.
These approaches analyze fault tolerance with respect to
mutations of the implementation. As a result, [11] decides
whether an implementation is fault tolerant or not, while [10]
also provides data about the state space. Both techniques
use the original circuit as a specification. The authors of
[12] determine fault tolerance with respect to given formal
properties. Only faults in state bits are considered. None of
the techniques mentioned so far provides insight about circuit
structures that are not fault tolerant.

The technique proposed here is similar to [13] and uses
the same fault model. A circuit is classified as robust if no
fault tampers the output behavior. Detailed feedback about
components that are not fault tolerant is returned. Compared
to [13] our approach is more efficient and fits practical
requirements.

The contributions of our work are:
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Fig. 2. Sequential comparison

• Determination of fault tolerance within a lower and an
upper bound

• Trading accuracy for run time using a time bound
• Optimization techniques improve the efficacy

Experiments show the influence of the time bound on
the bound for fault tolerance. The optimization techniques,
i.e. the consideration of structural information and the reuse
of learned information, improve the performance by a factor
of up to 7.

This work is structured as follows: The underlying fault
model and a basic approach to determine the robustness are
discussed in the next section. Section III introduces a model
bounded in time that also yields bounds on the robustness of
a circuit. The incremental algorithm is explained in Section
IV, while Section V presents optimization techniques to
improve the efficiency. Experimental results are given in
Section VI. Section VII concludes the paper.

II. FAULT MODEL AND BASIC APPROACH

We consider a synchronous sequential circuit C with
Primary Inputs (PIs) X , Primary Outputs (POs) Y and state
bits S. The number of components in C is denoted by |C|.
Here, a component may be a gate, a module or a source
level expression in the hardware description language. Our
fault model assumes that a faulty component behaves non-
deterministically in one time frame, i.e. the value of the
output of the component does not depend on the values of the
inputs. We consider single faults only and justify in Section
III why this is sufficient. A component g is robust iff the
output behavior of C cannot change when g is faulty. Let T
be the set of robust components in C, then the robustness of
C is given by |T |/|C|.

As suggested in [13] we use an instance of Boolean
satisfiability (SAT) to measure robustness. In the following



the output signal of component g is associated to variable g as
well. A fault is modeled as follows (the formulation is similar
to SAT-based diagnosis [14]): For a component g, a fault
predicate pg and a new variable g′ are introduced; then g is
replaced by pg → g′ = g as shown in Figure 1. Consequently,
the value of g′ is specified by the circuit structure if pg = 0.
But if a fault at g is asserted by pg = 1, g′ may take any value.
Given a circuit C, the circuit C′ is created by replacing each
component as explained above. Then, P denotes the set of
fault predicates and G′ denotes the set of newly introduced
variables to replace the outputs of components.

Now, the SAT instance is created as shown in Figure 2:
The circuit C is unrolled for td time frames as in bounded
model checking; this is compared to the copy C′ connected
to td−1 instances of C; the POs in the final time frame td are
forced to be different; only one variable in P may take the
value 1. This SAT instance is satisfied iff the output behavior
of faulty and original circuit differ in time frame td . This may
only happen, when a faulty value is injected at component
g with pg = 1, i.e. component g is not robust. By finding
all satisfying assignments, the non-robust components are
retrieved. Once a component g has been found non-robust,
further solutions for this component are blocked by inserting
the constraint pg = 0 into the SAT instance. All non-robust
components are calculated by iteratively incrementing td .

Note, that the constraints on the initial states S(0) influence
the result. If S(0) is the set of reachable states, the exact value
of the robustness is determined, when reaching the maximal
sequential depth1 of the correct circuit and a faulty circuit
[13]. Otherwise typically a larger value for the robustness
results, since not all faults may have been observed at POs
when td is too small. Alternatively, if S(0) denotes the
reset states, the exact robustness is retrieved when td is
larger than the maximal sequential depth plus an initialization
sequence to reach the start state of the longest loop without
repetition. Before reaching the maximal sequential depth,
the components are not guaranteed to be robust. Finally,
if S(0) is not constrained at all, also non-reachable states
are considered. Therefore, too many components might be
classified non-robust, i.e. false negatives are introduced. As
a result the robustness is typically smaller.

In the following we assume that S(0) denotes the set of
reachable states unless explicitly stated otherwise.

III. BOUNDS FOR ROBUSTNESS

In this section we adjust the notion of robustness and
the model to practical requirements. As a side effect the
computational effort decreases.

In practice some action has to be taken after detecting an
internal malfunction. Otherwise the effects of multiple faults
can accumulate and cause a disastrous failure. Therefore, we
assume that a fault detection signal f d exists. If a malfunction
occurs, this is signaled by setting f d within a given time
bound of no more than td time steps. Moreover, it is safe to
assume that at most one fault occurs within td time steps.
This allows to retrieve exact bounds for the robustness while
restricting the formal analysis to td time steps.

We apply a case split to determine the robustness of a
component g. Assume component g behaves faulty, then the
robustness of g is assessed as follows:

1) Component g is robust, if

1The sequential depth is the longest trace without repeating a state.
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a) f d = 1 within td time frames before or when a
faulty value at the POs occurs or

b) f d = 0, a faulty value at the POs does not occur
and after td the same state is reached as in the
fault free circuit.

2) Component g is non-robust, if
a faulty value at the POs occurs within td time frames
and before f d = 1.

3) Component g is not classified, if
f d = 0, a faulty value at the POs does not occur and
the state differs from the fault free circuit after td time
frames.

To guarantee that a circuit is robust, neither non-robust nor
non-classified components must remain. For a non-classified
component, deviation from the expected output behavior has
not been shown. But the deviation in the state may lead to
faulty behavior in the future.

The same model also handles circuits that directly correct
faults instead of flagging a fault. In this case f d is assumed
constant 0. As a result case 1(a) of the case split given above
does not occur.

Example 1: A (7,4)-Hamming-Code recognizes and re-
pairs single faults [15]. Figure 3 shows a transmission using
an encoder for 4 bit data, a bit-wise serial channel and a
decoder. A failure in the transmitted code word is flagged
by setting f d . The timing is summarized like this:

• Encoding and transmission to the channel: 1 time step
• Transmission: 4 time steps (registers in the channel)
• Decoding, writing to the output, setting f d : 1 time step

The determined robustness depends on the value of td :
• td < 6: The data from t = 0 did not arrive at the

POs, yet. Faults injected in the decoding logic are
recognized within 1 time frame by setting f d . Therefore
the robustness of this logic is classified.
Faults injected in the channel change the state compared
to the fault free model, but not all data has been
decoded, yet. These faults are not recognized. Con-
sequently, these components are not classified. While
incrementing td , more and more components are clas-
sified.

• td = 6: The input data reaches the POs. Faults that can
be detected are flagged. All components are classified.

• td > 6: Faults injected at t = 0 do not influence the state
of the model after more than 6 time frames.

Let T be the set of components classified as robust; S
the set of components classified non-robust and U the set of
components not classified, yet. Then, C = T ∪S∪U . Now, a
lower bound Rlb and an upper bound Rub for the robustness
of the circuit C are given by:

Rlb = |T |
|C| = 1− |S∪U |

|C|

Rub = |T∪U |
|C| = 1− |S|

|C|
Example 2: The bounds that are determined for the ham-

ming model of the previous example are shown in Table I.
The bounds are approaching each other, until all components
are classified for t = 6.



TABLE I
HAMMING MODEL

t |T | |S| |U | Rlb % Rub %
0 5 2 275 1.77 99.29
1 48 27 207 17.02 90.43
2 73 40 169 25.89 85.82
3 98 52 132 34.75 81.56
4 123 64 95 43.62 77.30
5 148 78 56 52.48 72.34
6 191 91 0 67.73 67.73

IV. ALGORITHM

This section provides an incremental algorithm to trans-
form the calculation of bounds for the robustness into a
sequence of SAT instances [16]. A SAT solver [17] is used
to determine the solutions. The algorithm is based on the
approach introduced in Section II: The original circuit C
and a copy C′ are unrolled for an increasing number of
t ∈ [0 . . . td ] time frames. The initial states of both copies
are identical, the POs of time frame t are forced to different
values. Circuit C′ contains fault injection logic in time frame
0. If all fault predicates pg are set to 0, both copies behave
identically. The problem is unsatisfiable.

To analyze single faults, fault injection logic in time frame
0 is sufficient. This is valid, because all reachable states
are considered as initial states S(0). Also at most one fault
predicate may take the value 1. The model supports faults in
state elements as well as in combinational logic.

The algorithm in Figure 4 shows the incremental algorithm
that determines the lower and upper bound for the robustness.
Once a component is classified, this information is used in
the following iterations to reduce the run time. Given a circuit
C, a copy C′ with fault injection logic is created (Lines 2–
5). Both copies are converted into Conjunctive Normal Form
(CNF) [18] (Line 6). The initial states of both copies are
forced to be equal (Line 7). Depending on the formulation
additional constraints may be inserted to limit the initial
states S(0) to reachable states. The number of fault predicates
with value 1 is limited to one (Line 8).

Then, the sets of robust (T ), non-robust (S), and non-
classified (U) components are initialized (Lines 10–12). In
the beginning all components are non-classified. Next, the
sets are incrementally updated for time frame t, starting at
t = 0 up to t = td (Lines 13–43). As soon as all components
are classified, i.e. U = /0, the algorithm terminates. Fresh
copies of C are appended to the unrolled circuits for t > 0
(Line 15–19). Additional logic is introduced to compare the
POs in time frame t (Line 21), where cmpPOs = 1 indicates
a different value for fault free and faulty copy. Similarly,
cmpFFs compares the states (Line 22).

Then the components S′ that can be classified as non-
robust in time frame t are determined (Lines 24–26). The
POs are forced to different values and the fault detection
signal f d is forced to 0 (Line 24). Each satisfying solution
provides a component that is non-robust. The newly classi-
fied non-robust components S′ are returned by the subrou-
tine extractAllSolutions shown in Figure 5. The subroutine
extracts one non-robust component per satisfying solution
(Line 4) and forces the fault predicate of this component to
0 afterward (Line 6).

The main routine in Figure 4 proceeds by removing the
constraints on POs and f d (Line 26). Next, the algorithm
determines the remaining non-classified components U ′ in
a similar way (Lines 28–30). In case of non-classified
components the constraints pg = 0 are removed (Line 31)
before the next iteration for t +1 starts.

1 f u n c t i o n r o b u s t n e s s (C , td )
2 c r e a t e a copy C′

0 of C
3 foreach component g ∈ C′

0
4 r e p l a c e g by g′[g, pg] ;
5 done
6 c o n v e r t t o SAT i n s t a n c e ;
7 f o r c e i n i t s t a t e s o f C′

0 and C0 t o be e q u a l ;
8 c o n s t r a i n ∑ pg == 1 ;
9

10 T := /0 ;
11 S := /0 ;
12 U := a l l components g ∈ C′

0 ;
13 t := 0 ;
14 whi le ( t ≤ td && U 6= /0 )
15 i f ( t > 0) then
16 c r e a t e a copy C′

t of C ;
17 c r e a t e Ct and c o n n e c t t o C′

t ;
18 f i
19 c o n n e c t P I s o f C′

t and Ct ;
20
21 cmpPOs := a t l e a s t one p a i r o f POs i s

d i f f e r e n t ;
22 cmpFFs := a t l e a s t one p a i r o f FFs i s

d i f f e r e n t ;
23
24 add c o n s t r a i n t UR := (cmpPOs & ! f d) = 1 ;
25 S′ := e x t r a c t A l l S o l u t i o n s ( ) ;
26 remove c o n s t r a i n t UR;
27
28 add c o n s t r a i n t UC :=

(! f d & !cmpPOs & cmpFFs) = 1 ;
29 U ′ := e x t r a c t A l l S o l u t i o n s ( ) ;
30 remove c o n s t r a i n t UC;
31 remove c o n s t r a i n t ∀g ∈U ′ : pg = 0 ;
32
33 T ′ := U \ (S′ ∪ U ′) ;
34 add c o n s t r a i n t ∀g ∈ T ′ : pg = 0 ;
35
36 T := T ∪ T ′ ;
37 U := U ′ ;
38 S := S∪S′ ;
39
40 t := t +1 ;
41 remove cmpPOs ;
42 remove cmpFFs ;
43 done ;
44 re turn (T,S,U) ;
45 end f u n c t i o n ;

Fig. 4. Algorithm

1 f u n c t i o n e x t r a c t A l l S o l u t i o n s ( )
2 M := /0 ;
3 whi le ( s a t i s f i a b l e ) do
4 G = {g|pg == 1} ;
5 M := M∪G ;
6 add c o n s t r a i n t pg = 0 ;
7 done ;
8 re turn M;
9 end f u n c t i o n ;

Fig. 5. Retrieving all solutions

Now, the newly classified set of robust components is
available (Line 33). These components do not have to be
considered in further iterations and their fault predicates are
fixed to 0 (Line 34).

Finally, the sets T , S and U are updated by adding or
assigning the newly classified components, t is increased and
the additional logic to compare POs and states is removed
(Lines 36–42).

If non-classified components remain and td has not been
reached, the next iteration starts. Otherwise the algorithm
terminates and returns the three sets T , S and U .

V. OPTIMIZATION TECHNIQUES

This section extends the algorithm by some optimization
techniques that reduce the computation time.



A. Partial Reachability
As discussed at the end of Section II, the initial states

S(0) have to be constraint to reachable states to retrieve exact
results. Not adding these constraints may reduce the run time,
but introduce false negatives, i.e. robust components may be
classified as non-robust or cannot be classified. Therefore the
resulting bounds for the robustness may be lower than the
actual values. False positives cannot occur, as long as no
reachable states are excluded from the set of initial states.

We evaluate this trade-off by applying a partial reachability
analysis. This partial reachability analysis may be automated
[19] or alternatively constraints for the initial states may
be given manually as an invariant in some formal property
language. For some designs providing the invariant manually
seems to be reasonable, e.g. when the faulty state is identified
easily in the state of the design. Consider Triple Modular
Redundancy (TMR) – in the fault free state the three copies
are in the same state. This can be formulated easily as an
invariant. Both methods are studied in the experiments.

B. Fanout Free Regions
So far fault predicates have been associated to all compo-

nents in a circuit. By reducing the number of fault predicates,
the search space shrinks and consequently the run time
decreases. Here we exploit Fanout Free Regions (FFRs) in a
similar way as proposed for SAT based diagnosis [14].

Consider an FFR. Any fault occurring at an internal gate
of the FFR must be propagated along the single output of the
FFR to be observed at the POs or to manifest in the state
bits. Therefore the algorithm proceeds in two steps. First,
fault predicates are only introduced at outputs of FFRs. If
such an output is classified as robust, all components within
the corresponding FFR can be safely classified as robust as
well. Otherwise, the internal components of the FFR are
considered in a second step. Fault predicates are associated
to all of the internal components of non-classified or non-
robust FFRs.

The same argument applies to structural dominators in
general. However, our current implementation only considers
FFRs.

C. Clause Reuse
The reuse of learned information has been shown to

improve the performance in computer aided design, for
example in formal verification [20] or automatic test pattern
generation [21], [22], [23]. In particular, SAT solvers store
learned information in terms of conflict clauses that are
easily accessible. Moreover, the conflict graph registers the
reason for a conflict, i.e. the clauses that are necessary to
imply learned information. This information can efficiently
be exploited at a higher level [20], [24], [25]. If the clauses,
which establish the reason of a conflict, remain in the
problem instance, the corresponding conflict clauses can be
reused as well.

The algorithm proposed in Section IV proceeds incre-
mentally. During each iteration new copies of the circuits
are added for time frame t. The copies corresponding to
earlier time frames are not modified. Thus, a large portion
of the problem instance remains unchanged, and learned
information is kept. Only the logic to compare POs and states
and the blocking clauses for non-classified components are
removed after each iteration.

On an implementation level for example the interface of
the SAT solver Chaff [26] provides groups of clauses. For
each conflict clause the groups that were responsible for
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the conflict are recorded. This is less accurate than tracking
individual clauses as the reason, but more efficient with
respect to memory and run time. All clauses forming the
circuits C and C′ are contained in one group, while the
logic for comparison and clauses to block non-classified
components are summarized in another group.

VI. EXPERIMENTAL RESULTS

The experimental results are provided in the following.
First, we analyze the influence of td on the robustness.
Next we study the value of td necessary to classify all
components and the influence of using information about
reachable states. Finally, we consider the run time and
evaluate the optimization techniques presented in Section V-
B and Section V-C that do not bias the exactness but only
improve run time.

The benchmark suite contains different types of sequential
circuits:

• without fault tolerance,
• with Triple Modular Redundancy (TMR) and
• with fault detection.

The circuits without fault tolerance are taken from the
ITC’99 benchmark suite. As in the original benchmark suite
they are denoted by b01–b10. Using the circuits b01–b07,
fault tolerant TMR circuits were created. The circuit was
replicated three times and a majority voter was added as
combinational logic to drive the POs. As a result these TMR
circuits have the same sequential depth as the original circuit.

To create circuits with fault detection, the TMR circuits
were extended with a signal f d . While the states of the
three instances are identical, no fault is detected, i.e. f d = 0.
Additionally, the Hamming model introduced in Example 1,
provides fault detection.

In all cases gates were considered as components.
All experiments were carried out on an AMD Athlon

3700+ (2.2GHz, 1GB RAM, Linux). The SAT solver Chaff
[26] was used for the implementation, since this solver
provides a good interface to manage groups of clauses.

A. Influence of td

Figure 6 exemplary visualizes the bounds retrieved for
three circuits. The initial states were limited to reachable
states. Note, the initial bounds are marked with td =−1.

As already discussed in Section III, the exact value for
the robustness of the Hamming model is retrieved at td = 6



TABLE II
MAXIMUM td = 2

circuit |C| #FF td |U | Rlb % Rub %
b01 62 5 2 0 1.61 1.61
b02 33 4 2 0 3.03 3.03
b03 195 30 2 134 0.00 68.72
b04 821 66 2 88 0.00 10.72
b05 1198 34 1 0 5.59 5.59
b06 71 9 1 0 0.00 0.00
b07 512 49 2 72 0.56 14.65
b08 223 21 2 35 0.00 15.70
b09 197 28 2 45 0.00 22.84
b10 260 17 2 32 0.00 12.31

b01-tmr 210 15 2 3 1.90 3.33
b02-tmr 111 12 2 3 1.80 4.50
b06-tmr 273 27 2 0 3.66 3.66

hamming 282 7 2 169 5.67 65.60

TABLE III
INFLUENCE OF CONSTRAINTS ON INITIAL STATES

—all— —reachable—
circuit td Rlb % Rub % td Rlb % Rub %

b01 2 1.61 1.61 2 1.61 1.61
b02 2 3.03 3.03 2 3.03 3.03
b03 8 0.00 0.00 8 5.13 5.13
b05 1 5.59 5.59 a26 51.75 56.51
b06 1 0.00 0.00 1 0.00 0.00
b07 23 0.98 0.98 b36 7.23 7.42
b08 4 2.24 2.24 4 2.24 2.24
b09 8 0.00 0.00 8 0.51 0.51
b10 4 6.54 6.54 4 7.69 7.69

hamming 6 30.50 30.50 6 67.73 67.73
aMemory out: |U |= 57; bMemory out: |U |= 1

where lower and upper bound converge. In case of b05 and
b07 the bounds approach each other quite rapidly at the
beginning, but do not meet within 10 time frames. While
10% of the components cannot be classified for b05, only
1% remains non-classified for b07. This shows that the
convergence behavior of the bounds significantly depends
on the design. The incremental algorithm may be stopped as
soon as the bounds are close enough or no progress can be
observed.

Table II summarizes the results for td ≤ 2 for some
benchmark circuits. The table provides the name of the
circuit (circuit), the number of components (|C|), the number
of state bits (#FFs), the number of iterations t before
the algorithm terminated, the number of components not
classified (|U |), lower bound Rlb and upper bound Rub.

For two of the circuits only one iteration td = 1 was needed
to classify all components. Lower and upper bound have the
same value in these cases. Large differences for the bounds
can be seen for the circuits b03, b09 and b12 – a large portion
of components was not classified for td = 2 in these cases.
By increasing the value of td , the resolution can be increased.

B. Reachability Analysis

The influence of using constraints on the initial states
is studied. The reachable states are computed by two
approaches: (1) building a Binary Decision Diagram
(BDD)[27] and (2) manually providing an invariant for the
TMR circuits (see Section V). The non-reachable states are
avoided by extracting all BDD paths to zero, and blocking
them in the SAT instance.

Table III presents the experimental results for circuits
without TMR logic. No additional constraints are added on
the left (all), whereas non-reachable states are computed and
blocked using BDDs on the right (reachable).

TABLE IV
INFLUENCE OF REACHABLE STATES (td = 0)

—b06-tmr— —b05—
% Rlb % Rub % Rlb % Rub %

100 30.77 97.80 41.32 81.22
80 21.98 89.01 20.38 59.85
60 17.58 84.62 6.01 47.75
40 17.58 84.62 5.93 47.75
20 14.65 81.68 5.93 47.75
0 3.66 70.70 5.59 47.41

For four circuits the results of both approaches are iden-
tical. For the rest of the circuits using stronger constraints
leads to higher robustness, false negatives are avoided. In
case of b05 and b07 a memory out occurred, thus the al-
gorithm terminates leaving some non-classified components.
However, a very accurate estimation of the robustness in
lower and upper bounds results.

The trade-off between partial reachability analysis and ex-
actness is studied for the circuits b06-tmr and b05. Table IV
provides details. The percentage of randomly selected paths
from the BDD is given in column %. Exact reachability
analysis is performed if all paths are selected (100%). The
results show that a partial reachability analysis may helps to
improve the accuracy of the results when a full analysis is
too expensive.

Results for TMR circuits are shown in Table V. Yet
another approach is even more effective for this type of fault
tolerance: A manually provided invariant matches the initial
states of the three instances and forces them to be identical
(manual invariant). The circuits with the suffix f lt also
have fault detection logic. With a non-exact analysis (all)
the computed bounds are significant lower than the exact
(reachable, manual invariant) values. Exactness is not biased
using the manual invariant instead of a BDD approach. Both,
i.e. full reachability and the manual invariant, yield the same
bounds for the robustness.

Exact reachability analysis is known to be expensive.
Within 1800 CPU seconds the BDD could be computed for
the circuits b01, b02 and b06, only. The manual invariant
overcomes this limitation. No extra computation has to be
performed. Moreover, the manual invariant is more compact,
e.g. for b06-tmr only 36 clauses are necessary compared to
62 BDD blocking clauses. The number of literals in each
clause is greater or equal two in both approaches. As a result
for circuits with a large number of states, less clauses may
lead to further run time improvements. For b01, b02 and b06
no significant difference in the run time was observed.

Finally, for the practically very relevant case of circuits
with fault detection the algorithm is very efficient. Each
faulty component can be observed directly in the first time
frame, therefore td = 0 is sufficient to classify all components
and the robustness is in all cases over 97%. For other fault
detection mechanisms that have a similarly low latency,
similar efficiency is expected.

C. Run Time Improvements
The optimization techniques to improve the run time are

studied in this Section. Table VI shows the results – only run
times in CPU seconds are reported. Column basic refers to
the plain algorithm that neither reuses clauses nor exploits
FFRs. For column I learned information was reused, for
column F structural knowledge about FFRs was applied.
Finally, both techniques were combined for column I +F .

Most run time improvements are obtained by applying
incremental SAT techniques, but also considering FFRs leads



TABLE V
INFLUENCE OF CONSTRAINTS ON INITIAL STATES ON TMR CIRCUITS

—all— —reachable— —manual invariant—
circuit td Rlb % Rub % |U | td Rlb % Rub % |U | td Rlb % Rub % |U |

b01-tmr 2 3.33 3.33 - a18 34.76 99.05 135 a18 34.76 99.05 135
b02-tmr 2 4.50 4.50 - a49 23.42 99.10 84 a49 23.42 99.10 84
b03-tmr 8 1.26 1.26 - b - - - - 12 14.53 99.47 57
b04-tmr 2 0.62 10.90 264 b - - - - a2 62.19 99.69 963
b05-tmr 2 6.96 6.96 - b - - - - a1 59.68 99.08 1545
b06-tmr 2 3.66 3.66 - a22 60.44 97.80 102 a22 60.44 97.80 102
b07-tmr 2 1.55 14.96 216 b - - - - a4 5.46 99.50 1515

b01-tmrflt 0 4.69 4.69 - 0 99.06 99.06 - 0 99.06 99.06 -
b02-tmrflt 0 4.92 4.92 - 0 99.18 99.18 - 0 99.18 99.18 -
b03-tmrflt 0 9.31 9.31 - b - - - - 0 99.37 99.37 -
b04-tmrflt 0 2.40 2.40 - b - - - - 0 99.69 99.69 -
b05-tmrflt 0 7.04 7.04 - b - - - - 0 99.08 99.08 -
b06-tmrflt 0 46.13 46.13 - 0 97.89 97.89 - 0 97.89 97.89 -
b07-tmrflt 0 4.93 4.93 - b - - - - 0 99.50 99.50 -

aMemory out; bTime out, i.e. reachable states could not be computed within 1800 CPU seconds

TABLE VI
RUN TIME OPTIMIZATION

circuit basic I F I +F
b01 1.88 0.43 1.66 0.40
b02 0.65 0.13 0.64 0.12
b05 512.41 91.32 343.61 73.83

b01-tmr 17.98 5.04 15.89 4.12
b02-tmr 7.77 1.44 5.63 1.24
b06-tmr 19.06 5.31 16.01 4.11

hamming 73.88 14.79 70.46 13.86

to a faster analysis. The combination of both techniques
speed-ups the analysis by a factor of up to 7.

VII. CONCLUSIONS

We presented an approach to formally prove the robustness
of a circuit. The algorithm works on a bounded number of
time steps and consequently determines a lower bound and
an upper bound on the robustness. An incremental algorithm
and additional optimization techniques are provided for an
effective implementation. The results show that even if only
a small number of time steps is considered, an exact value
of the robustness can often be obtained. Otherwise a subset
of non-robust and robust components is provided, that can
be used for further design modifications. Especially, for
circuits with fault detection mechanisms accurate values are
determined efficiently.
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