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Abstract

Measuring the steady state leakage current (IDDQ) is
a very successful testing paradigm detecting faults not
discovered when considering standard fault models. Due
to increasing vector dependencies and process variations
IDDQ testing becomes more difficult.

We propose ATPG algorithms to control test vector
dependencies even before performing the IDDQ test. Ex-
perimental results show that leakage constraints can ef-
fectively be handled during test pattern generation without
decreasing fault coverage.

I. Introduction
The steady state leakage current (IDDQ) is a good

indicator to decide whether a circuit contains failures in-
troduced during production. Even faults that remain undis-
covered using functional testing based on fault models are
detected by IDDQ measurements [16].

With continuously shrinking feature sizes the IDDQ
current of devices increases. At the same time the IDDQ
current of good devices changes due to process variations
and test vector dependencies. Consequently, differentiating
good and bad devices by using a simple threshold value
for the IDDQ current becomes infeasible.

Instead, post-processing techniques are typically applied
to handle IDDQ variations. Current signatures [13] are
a sorted plot of measured IDDQ values. Discontinuities
in this curve typically indicate a fault. Delta-IDDQ [20]
is an improvement that compares the differences between
measurements and yields more accurate information. These
techniques and similar approaches [18] help to remove
certain effects coming from process variations and from
test vector dependencies.

In contrast to these approaches the technique of [10],
[11] is applied before the measurement during Automatic
Test Pattern Generation (ATPG). By this, leakage varia-
tions coming from test vector dependencies are drastically
reduced. An IDDQ model predicts the expected leakage
current for a given test vector. Then, a small range for the
IDDQ is defined. Only test vectors within this range are
created by the ATPG tool. Figure 1 shows the resulting
leakage signatures. No restrictions (α = ∞) yield test
vectors accross a wide range of leakage values. Tight
restrictions (α = 0.5) yield an almost linear curve with
a small slope while keeping high fault coverage. Conse-
quently, good and bad devices can be differentiated more
easily by IDDQ testing. But no complete ATPG algorithm
was given, instead a simple heuristic was applied to
generate test vectors. That approach cannot decide whether
no test vector within the defined range exists.
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Fig. 1. Leakage signatures of b19 [11]

Algorithms for input vector control [5], [12], [19] search
for the input assignment causing the lowest quiescent
current for a circuit. Thus, a single optimization problem
is solved. Typically the algorithms are applicable to small
circuits only due to the long run times. In contrast ATPG
under IDDQ constraints must solve a large number of
decision problems.

Here, we consider deterministic test pattern generation
under leakage constraints. Two approaches using differ-
ent reasoning frameworks are introduced: (1) based on
Pseudo Boolean Satisfiability (PBS, aka. 0-1 linear pro-
gramming) and (2) based on an integration of standard
ATPG with 3-valued simulation for IDDQ estimation. For
each approach several improvements are introduced. The
approaches and the improvements are evaluated on the
ITC’99 benchmarks. The experimental results show that
(1) the simulation based algorithm is very robust and (2)
even under tight leakage constraints fault coverage does
not decrease.

This paper is organized as follows: The following sec-
tion introduces preliminaries like fault model and leakage
model. Sections III and IV introduce the PBS-based and
the simulation-based approach, respectively, together with
improvements. Section V presents experimental results
evaluating the improvements and comparing the algo-
rithms.

II. Preliminaries
In the following the fault model, the leakage model, and

PBS are introduced.
Combinational circuits are considered. The type of a

gate denotes the Boolean function implemented by this
gate. A (full) assignment to the primary inputs of the circuit
is a vector t′ ∈ Bn. A partial assignment may contain
don’t care values and is given by a vector t ∈ ({X} ∪
B)n. The partial assignment t corresponds to the set of full
assignments derived by replacing all X values with values
from B. For convenience, we use a relaxed notation that
denotes vectors with don’t cares and the corresponding sets
of full assignments by the same symbol.
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Fig. 2. Example

Example 1: Let t = (0, X) = {(0, 0), (0, 1)} and s =
(X, 1) = {(0, 1), (1, 1)}. Then t∩ s = {(0, 1)}. Moreover
for the full assignment t′ = (0, 0), it holds that t′ ∈ t.

The approaches in this paper are explained with respect
to the Pseudo Stuck-At Fault (PSF) model [17]. Like in the
well-known stuck-at fault model a fault constantly fixes a
signal to 0 or 1. The effect of a PSF does not have to be
propagated to primary outputs, but is observed indirectly
using IDDQ measurement. Thus, ATPG for the PSF model
is simpler, but deciding whether a test vector for a PSF
exists is still NP-complete. An ATPG algorithm decides
testability of a PSF and returns a test vector for a testable
fault. Additional fault models are typically used for IDDQ
testing [14], the extension of the algorithms presented here
is straightforward.

The IDDQ model of [3] is applied where the leakage
current of a circuit is given by the sum of the sub-
threshold leakages of all gates. The leakage current for
a single gate depends on the type of the gate and the
assignment to inputs i = (i1, . . . , ik) of the gate. Table
2(a) gives the expected leakage values for an OR-gate1.
Here, l(g, i) denotes the leakage current of gate g under
input assignment i. Now, let x denote primary inputs of
the circuit and let ig(x) denote the vector of functions at
the inputs of gate g as a function of primary inputs. Then,
the leakage current of the circuit is the sum of the leakage
currents of all gates:

L(x) =
∑
g∈C

l(g, ig(x)) (1)

Given a full assignment to the primary inputs, the equation
is evaluated. The assignment to the inputs of a gate denotes
the state of the gate, e.g. a 2-input gate may be in one of
four states: 00, 01, 10, 11.

Finally, a leakage range is required for ATPG. The
approach suggested in [10], [11] is used – by random
simulation a distribution of leakage values is estimated.
Assuming a normal distribution an interval around the
mean leakage value µ is determined by the standard
deviation σ and a user-defined parameter α:

[µ− σα, µ+ σα] (2)

The smaller α the smaller is the interval and the smaller
the number of valid test vectors within the leakage range.
In the following lmin denotes the lower limit and lmax
denotes the upper limit.

Usually, faults are classified as testable or untestable
due to logic constraints. A fault may be aborted due to
resource limits for the ATPG algorithm. Testable faults
where no test vector within the leakage constraints exists
are classified as out of range.

1The values closely mimic the relations in a 90nm technology library,
real values are in the order of pA but cannot be given due to legal
restrictions.

An instance of Pseudo Boolean Satisfiability (PBS or
0-1 linear programming) is given by a conjunction of
PBS constraints [1]. A PBS constraint is an inequality
c1v1 + . . . cnvn ≥ cn+1 where ci’s are integer constants
and vi’s are Boolean variables. Transforming constraints
containing the comparators =, ≤ or 6= into the above form
is straightforward using simple algebraic transformations.
A PBS instance is satisfied under an assignment to the
variables that satisfies all PBS constraints in the instance.
An instance of Boolean Satisfiability (SAT) consisting of
clauses directly corresponds to an equivalent PBS instance,
e.g. a clause v1∨v2 maps to v1 +(1−v2) ≥ 1 or as a PBS
constraint 1v1 +(−1)v2 ≥ 0. Powerful solving engines are
available for PBS instances [1], [8].

III. Using Pseudo Boolean Satisfiability
The mapping of ATPG under leakage constraints onto

a PBS instance is introduced in the following. Then, two
optimizations to the simple mapping and an integration
with a standard deterministic ATPG engine are proposed.

A. Basic Mapping
The PBS instance consists of two parts: one part

models the ATPG problem, the second part models the
IDDQ constraints. Well known approaches solve an ATPG
problem by using SAT [15], [7]. According to Section II
this directly shows how to create a PBS instance. For our
purpose, the values at the inputs of all gates are required
for the leakage estimation. Therefore, the complete circuit
is translated into PBS constraints. We use the mapping of
[21]. For each gate with n inputs one variable and at most
k(n) constraints are required where k(n) depends on the
type of the gate (for XOR kXOR(n) = 2n, for AND, OR
kAND,OR(n) = n + 1). The length of a constraint for a
gate with n inputs is at most n+ 1. Thus, the size of the
first part is in O(|C| · k(n) · n). Having only gates with
two inputs yields O(|C|).

The second part maps Equation 1 onto PBS constraints.
The leakage current of a single gate depends on the state
of the gate, i.e. the values applied to the inputs of the gate.
We introduce a state variable tag for each state a of a gate
g. This variable is one iff g is in state a:

tag ↔ (ig = a) (3)

The values of variables in ig are constrained by the circuit
model in the first part of the PBS instance. Given the
state a of a gate g the leakage current for this gate is a
constant value l(g, a). Using the state variables for the state
of a gate, Equation 1 translates into two PBS constraints
(shown in a single equation):

lmin ≤
∑
g∈C

∑
a∈Bn

tag · l(g, a)) ≤ lmax (4)

Note, that PBS only handles integer constants. Therefore,
the values in l(g, a) are multiplied to be integers and
divided by their greatest common divisor.

For a gate with n inputs, 2n new variables are required,
leading to O(|C| ∗ 2n) new variables (for 2-input gates
4|C|). The two constraints for for Equation 3 contain 2 ·
2n · (n+ 1) literals per gate, i.e. O(|C| · 2n · n) literals in



total. Finally, Equation 4 contains O(2n · |C|) variables –
for 2-input gates 4|C|.

The analysis shows that the second part of the PBS
instance, the leakage constraints, may be even larger than
the first part, the model of the circuit.

Example 2: Consider the circuit shown in Figure 2(b).
The following constraints are required for gate g1 (for
convenience PBS constraints and Boolean constraints are
shown):

(i1 ∧ i2 ↔ g1)
(t00g1
↔ (i1 = 0 ∧ i2 = 0)) (t01g1

↔ (i1 = 0 ∧ i2 = 1))

(t10g1
↔ (i1 = 1 ∧ i2 = 0)) (t11g1

↔ (i1 = 1 ∧ i2 = 1))

Analogously, the constraints for g2 with inputs g1 and i2
are created. Finally, the PBS constraints from Equation
4 are added to the PBS instance, where the constants
l(g, a) are replaced by corresponding integers retrieved
from Table 2(a):

lmin ≤ t00g1
· 4 + t01g1

· 5 + t10g1
· 6 + t11g1

· 9
+ t00g2

· 4 + t01g2
· 5 + t10g2

· 6 + t11g2
· 9 ≤ lmax (5)

The PBS solver does not differentiate between ATPG
and leakage constraints. All untestable faults are classified
as being out of range.

B. Improvements
In the following improvements to reduce the size of the

PBS instance and an integration of the PBS approach with
a standard ATPG engine are proposed. Two optimizations
help reducing the number and size of the constraints
required to model leakage within the PBS instance (the
worst case analysis remains valid). First, a constant offset
is subtracted from the leakage current for each type of
gate. This offset equals the leakage current in one state,
that becomes 0 after subtraction. The state with 0 leakage
current is ignored and one state variable per gate is
removed. Summing the offset per gate over all gates in
the circuit yields a constant offset.

As a second improvement Satisfiability Don’t Cares
(SDCs) [6] are exploited. An SDC at the inputs of a gate
is an assignment to the inputs that cannot be justified due
to logic dependencies. In other words an SDC identifies
a state that cannot occur at the gate. The corresponding
state variable is dropped (it is constantly zero). In our
implementation candidates for SDCs are determined by
simulating random vectors and then validated using a SAT
solver.

Example 3: Again, consider the circuit in Figure 2(b).
According to Table 2(a) the leakage of the OR-gate is
minimal in state 00. The corresponding constant offset 4 is
subtracted from all other leakage constants. The leakage
constants for state 00 of both OR-gates become 0 – the
state does not have to be considered. For gate g2 the input
assignment g1 = 0 and i2 = 1 is an SDC. Thus, state 01
can be ignored for g2. This simplifies Equation 5 to:

lmin − 8 ≤ t01g1
· 1 + t10g1

· 2 + t11g1
· 5

+ t10g2
· 2 + t11g2

· 5 ≤ lmax − 8

Finally, the PBS based approach is integrated with a
standard ATPG engine. So far the formulation leaves the

ATPG problem and the current constraining to the PBS
solver. Alternatively, the simpler ATPG problem is solved
first by a standard engine. This yields a partial test vector.
Then, the PBS formulation of leakage constraints is used to
extend the test vector under leakage constraints. If no valid
extension is found, the next partial test vector is generated
and passed to the PBS solver. These iterations proceed until
all test vectors are exhausted or a valid extension is found.
Here, the ATPG engine also identifies logically untestable
faults.

Further reducing the specified bits in (partial) test
vectors means less iterations between ATPG and PBS. We
use the fast greedy approach of [9]. Given a test vector,
one input with a controlling value at any gate suffices to
justify the required value at the output (e.g. one input with
value 1 at an OR-gate). All other values are set to don’t
cares. In case of only non-controlling values no reduction
is possible. The order of inserting don’t cares influences
the number of don’t care values in the final partial test
vector. Our implementation assigns don’t cares as early as
possible while traversing the circuit from outputs towards
inputs.

Example 4: Consider the PSF g2 = 0 in the circuit
shown in Figure 2(b). The assignment i1 = 1, i2 = 0 sets
g2 to one and is therefore a test vector. Reduction yields
i1 = 1, i2 = X .

All of these improvements are evaluated in Section
V. Even when all improvements are applied, modeling
the leakage constraints in the PBS instance causes a
huge overhead by more than doubling the size. Moreover,
only the two constraints of Equation 4 are “real” PBS
constraints, all other constraints can directly be handled by
a SAT solver. The two PBS constraints are very regular. For
each gate of the same type the same number of variables
with the same coefficients is inserted and the constraint is
symmetric in state variables for all gates of the same type.
Such symmetries typically make conflict based learning
inefficient [2]. Also learning from partial assignments to
these PBS constraints seems difficult – only when almost
all variables are assigned additional values can be inferred.
Thus, the PBS engine derives implications typically from
the circuit structure instead of the leakage constraints.

IV. Integrating ATPG and Simulation-based
IDDQ Estimation

The following alternative complete approach is based on
ATPG and simulation. Due to learning during the search
and a lifting technique to generalize valid or invalid vectors
the algorithm is quite effective.

A. Algorithm
Figure 3 shows a flow diagram of the algorithm. Two

sets of vectors are maintained. Set I stores vectors known
to be within the expected leakage range while O stores
vectors known to be out of range. The algorithm starts
by retrieving a partial test vector t using an ATPG engine
(1). This vector may be further reduced as suggested at
the end of Section III-B. If no test vector is found (3),
the fault is out of range or untestable, if the first call to
the ATPG engine returned untestable already. Remember,
that a partial test vector can be considered as a set of
vectors (all possible replacements of the don’t care values
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Fig. 3. Complete algorithm

by actual values). Step (4) checks whether there is an
overlap between t and the vectors within the range in I.
In this case a full test vector is selected from this overlap,
the fault is testable (5). Otherwise, step (6) checks whether
any possible extension of t is known to be out of range,
i.e. the overlap between t and the complement of O is
empty. Then the algorithm returns to step (1) to retrieve
the next test vector.

Otherwise the loop to exhaust all extensions of t is
entered (steps (6)–(13)). Step (7) extends t to a full vector
t′ not yet known to be out of range, i.e. selects t′ ∈ t∩O.
The same step calculates the leakage current of t′ by event
based simulation as discussed below. If the vector is within
the range, the fault is testable (10). Otherwise, the next
extension is considered. After learning information in steps
(11)–(13) the algorithm loops to (6). The loop proceeds
until all extensions of t are known to be out of range (6).

Steps (9), (12) and (13) learn information by updating
the sets I and O, respectively. Since t′ is a complete
assignment to the primary inputs of the circuit, directly
adding t′ to the corresponding set does not prune the search
space very much. Instead, lifting is applied to t′ at first.

B. Lifting
Before explaining the lifting procedure, event based

simulation that includes leakage calculation is discussed.
Given a full vector t′, logic simulation determines the

internal values in the circuit and Equation 1 yields the ex-
pected leakage current. Event based logic simulation only
propagates value changes through the circuit. If the output
value of a gate g changes from x to x all successors are
updated as well. This is extended to leakage calculation.
Only when input values at a gate g change, the state and

consequently the leakage current of g may change. Given
a gate g in state a, event based logic simulation yields the
new state a′. In this case the following calculation updates
the expected leakage current L:

L = L− l(g, a) + l(g, a′)
Lifting uses a similar procedure to also handle don’t

care values. Don’t care values at the primary inputs of the
circuit may propagate into the circuit. Thus, some bits at
the gate inputs may be undefined and the gate may be
in one of several states. Within all these states minimal
and maximal leakage current for the gate are determined.
A partial input assignment a for a gate g is considered as
defined in Section II. Minimal leakage current l↓(g, a) and
maximal leakage current l↑(g, a) of g under a are given
by

l↓(g, a) = min{l(g, b)| b ∈ Bn and b ∈ a}
l↑(g, a) = max{l(g, b)| b ∈ Bn and b ∈ a}

Consequently, the expected leakage current of the cir-
cuit is within a certain range L↓ ≤ L ≤ L↑ when don’t
cares are present. Whenever the input values at a gate
change during three valued event based simulation, the
range may change. If the partial assignment of gate g
changes from a to a′ the following calculation updates
the range:

L↓ = L↓ − l↓(g, a) + l↓(g, a′)
L↑ = L↑ − l↑(g, a) + l↑(g, a′)

Example 5: Consider the assignment i1 = 0, i2 = 1 to
the circuit shown in Figure 2(b). Switching i2 to X puts
g1 into the set a = (0, X) of states, i.e. the gate may be
in state (0, 0) or (0, 1) with leakages of l↓(g1, a) = 4 or
l↑(g1, a) = 5. This yields L↓ = 8 and L↑ = 10 for the
leakage of the circuit.

Lifting happens using a greedy approach. Given a
full assignment, the algorithm selects one primary input
randomly and sets the value to X . If the leakage current
is not within the required range afterwards, the original
value is restored. Then, the next primary input is randomly
selected. Each primary input is considered once.

The algorithm of Figure 3 uses the lifting procedure to
generalize a valid test vector within the allowed range in
step (9) and to extend an invalid vector while it remains
below or above the range in steps (12) or (13), respectively.

C. Efficiency and Completeness
The procedure is guaranteed to terminate. Whenever a

new vector t′ is selected in step (7), this vector is selected
from t∩O. If t′ is not within the leakage range, lifting t′
in steps (12) or (13) yields a partial vector t′′ that includes
t′. Thus, by adding t′′ to O during successive iterations t′
cannot be selected again in step (7).

During successive calls to the algorithm the set O
is never released. By this, vectors known to be outside
the required leakage range are ‘learned’. Also during
successive calls the set I accumulates vectors that are
known to be within the leakage range. Of course, this kind
of learning causes some overhead required to maintain the
sets. The implementation stores the sets by means of the
characteristic functions in binary decision diagrams [4].
This allows for a compact representation and efficient set
operations.



V. Experimental Results
Experimental results for the PBS based approaches and

the approach based on simulation and ATPG are provided.
The improvements for all algorithms are evaluated.

The ITC’99 benchmark circuits were considered on an
AMD Athlon 64 X2 Dual Core 6000+ (4GB RAM, 3GHz,
Linux). Parameter α of Equation 2 was set to 0.2 forcing
a tight range for leakage current. All gates in the circuits
were decomposed into 2-input gates. To find faults that
are are hard to classify, random simulation was applied at
first. On faults remaining unclassified, the new algorithms
were run for 1 CPU second. Faults still unclassified were
considered under a time out of 2 CPU minutes.

Table I reports results for the time limit of 1 CPU
second. Up to 500 faults per circuit not classified during
random simulation are considered. Compared are PBS
(pure PBS-based algorithm), PBS ATPG (integration of
PBS-based approach and ATPG engine), and 3sim ATPG
(based on 3-valued simulation and ATPG without reduc-
tion, lifting or learning).

The table shows the name of the benchmark (column
circ), the algorithm (alg.), whether assignments were re-
duced for PBS ATPG in column (red.), the number of
SDCs applied in the PBS-approaches (#DC), and the
number of hard faults (#f). Next, numbers of faults in the
different categories are shown: testable (#t), untestable due
to logic constraints (#u), out of range (#o), and aborted
faults (#a) left unclassified within 1 second of CPU time.
Clearly, the goal is to keep the number of aborted faults
as small as possible.

Algorithm PBS classifies untestable faults being out of
range, due to the monolithic instance containing ATPG
and leakage constraints. PBS aborted on all faults for all
ITC benchmarks not reported in the table except for b01-
03, b05 and b11. PBS ATPG showed the same behavior,
but the integrated ATPG engine classified untestable faults.
SDCs often reduce the number of aborted faults for PBS.
Moreover, PBS is better than PBS ATPG in finding faults
out of range on b06. PBS ATPG aborts more faults than
PBS unless many untestable faults are contained in the cir-
cuit as in b15. SDCs and/or reduction of assignments may
enhance the performance (b10) or not (b08) of PBS ATPG.

Algorithm 3sim ATPG aborts either less faults than the
best PBS-based approach or the same number of faults
in all cases but b09. Algorithm 3sim ATPG was the only
one to also classify testable faults within 1 CPU second
on larger circuits than reported in Table I.

Next, hard faults that were not classified by any algo-
rithm within 1 CPU second are considered. The timeout
is increased to 2 CPU minutes and up to 50 faults per
circuit are considered. Table II reports some results. Data
for the PBS-based approaches are only reported if at
least one fault was not aborted. Columns are labeled
in the same way as previously. Additionally, different
configurations of 3sim ATPG are considered: with/without
reduction of assignments (red.), with/without lifting (lift),
and with/without learning (learn).

Obviously, 3sim ATPG is more effective than the PBS-
based approaches on these hard instances as well. In
some cases the plain algorithm 3sim ATPG performs best,
e.g. on b20 and b21 1. For some other cases the improve-
ments – reduction, lifting and learning – are required to
effectively classify many faults, e.g. for circuit b15 1.

TABLE I. Timeout 1 CPU second
circ alg. red. #DC #f #t #u #o #a
b04 PBS 0 0 41 0 0 6 35

0 160 41 0 0 6 35
PBS ATPG 0 0 41 2 6 0 33

0 160 41 1 6 0 34
1 0 41 0 6 0 35
1 160 41 0 6 0 35

3sim ATPG 0 0 41 31 6 0 4
b06 PBS 0 0 18 0 0 18 0

0 8 18 0 0 18 0
PBS ATPG 0 0 18 0 0 13 5

0 8 18 0 0 15 3
1 0 18 0 0 15 3
1 8 18 0 0 13 5

3sim ATPG 0 0 18 0 0 18 0
b07 PBS 0 0 43 5 0 0 38

0 90 43 17 0 0 26
PBS ATPG 0 0 43 7 0 0 36

0 90 43 5 0 0 38
1 0 43 3 0 0 40
1 90 43 6 0 0 37

3sim ATPG 0 0 43 39 0 0 4
b08 PBS 0 0 15 6 0 0 9

0 52 15 7 0 0 8
PBS ATPG 0 0 15 6 0 0 9

0 52 15 5 0 0 10
1 0 15 6 0 0 9
1 52 15 4 0 0 11

3sim ATPG 0 0 15 15 0 0 0
b09 PBS 0 0 4 4 0 0 0

0 39 4 4 0 0 0
PBS ATPG 0 0 4 0 0 0 4

0 39 4 0 0 0 4
1 0 4 0 0 0 4
1 39 4 0 0 0 4

3sim ATPG 0 0 4 3 0 0 1
b10 PBS 0 0 7 1 0 0 6

0 32 7 5 0 0 2
PBS ATPG 0 0 7 0 0 0 7

0 32 7 4 0 0 3
1 0 7 1 0 0 6
1 32 7 3 0 0 4

3sim ATPG 0 0 7 6 0 0 1
b13 PBS 0 0 10 5 0 3 2

0 56 10 5 0 3 2
PBS ATPG 0 0 10 4 3 0 3

0 56 10 3 3 0 4
1 0 10 3 3 0 4
1 56 10 3 3 0 4

3sim ATPG 0 0 10 7 3 0 0
b15 PBS 0 0 500 0 0 5 495

0 2633 500 0 0 6 494
PBS ATPG 0 0 500 0 12 0 488

0 2633 500 0 12 0 488
1 0 500 0 12 0 488
1 2633 500 0 12 0 488

3sim ATPG 0 0 500 288 12 0 200

Moreover, different configurations of 3sim ATPG typ-
ically abort on different faults. Table III shows which
configurations of 3sim ATPG aborted how many faults,
e.g. column S2 corresponding to the set {3s.+red.} shown
below the table gives the number of faults exclusively
aborted by 3sim ATPG with reduction. Column S7= {
3s., 3s.+red. } gives the number of faults aborted by two
configurations (1) without improvements and (2) with re-
duction, but classified by the two remaining configurations.
Learning and lifting are indicated by ‘+learn’ and ‘+lift’,
respectively.

In most cases each fault is classified by at least one
configuration. Only for four circuits some faults remain
unclassified, column S15 indicates the number. Except for
the very small benchmarks no faults are out of range.
Applying leakage constraints does not negatively influence
the fault coverage.



TABLE II. Timeout 2 CPU minutes
circ alg. red. lift learn #DCs #f #t #u #o #a
b14 1 PBS 0 0 0 0 21 2 0 0 19

PBS ATPG 1 0 0 1518 21 1 0 0 20
3sim ATPG 0 0 0 0 21 1 0 0 20

1 0 0 0 21 4 0 0 17
1 1 0 0 21 3 0 0 18
1 1 1 0 21 3 0 0 18

b15 PBS 0 0 0 0 16 1 0 0 15
0 0 0 2633 16 1 0 0 15

PBS ATPG 0 0 0 0 16 11 0 0 5
0 0 0 2633 16 11 0 0 5
1 0 0 0 16 4 0 0 12
1 0 0 2633 16 3 0 0 13

3sim ATPG 0 0 0 0 16 4 0 0 12
1 0 0 0 16 12 0 0 4
1 1 0 0 16 13 0 0 3
1 1 1 0 16 12 0 0 4

b15 1 3sim ATPG 0 0 0 0 50 32 0 0 18
1 0 0 0 50 35 0 0 15
1 1 0 0 50 33 0 0 17
1 1 1 0 50 50 0 0 0

b17 1 3sim ATPG 0 0 0 0 50 50 0 0 0
1 0 0 0 50 49 0 0 1
1 1 0 0 50 50 0 0 0
1 1 1 0 50 49 0 0 1

b18 3sim ATPG 0 0 0 0 50 50 0 0 0
1 0 0 0 50 50 0 0 0
1 1 0 0 50 50 0 0 0
1 1 1 0 50 48 0 0 2

b18 1 3sim ATPG 0 0 0 0 50 50 0 0 0
1 0 0 0 50 50 0 0 0
1 1 0 0 50 50 0 0 0
1 1 1 0 50 50 0 0 0

b19 3sim ATPG 0 0 0 0 50 40 0 0 10
1 0 0 0 50 43 0 0 7
1 1 0 0 50 40 0 0 10
1 1 1 0 50 31 0 0 19

b19 1 3sim ATPG 0 0 0 0 50 42 0 0 8
1 0 0 0 50 39 0 0 11
1 1 0 0 50 44 0 0 6
1 1 1 0 50 36 0 0 14

b20 3sim ATPG 0 0 0 0 50 48 0 0 2
1 0 0 0 50 48 0 0 2
1 1 0 0 50 41 0 0 9
1 1 1 0 50 39 0 0 11

b20 1 3sim ATPG 0 0 0 0 21 21 0 0 0
1 0 0 0 21 20 0 0 1
1 1 0 0 21 19 0 0 2
1 1 1 0 21 19 0 0 2

b21 3sim ATPG 0 0 0 0 50 49 0 0 1
1 0 0 0 50 49 0 0 1
1 1 0 0 50 45 0 0 5
1 1 1 0 50 49 0 0 1

b21 1 PBS ATPG 0 0 0 3220 24 1 0 0 23
1 0 0 0 24 1 0 0 23
1 0 0 3220 24 2 0 0 22

3sim ATPG 0 0 0 0 24 24 0 0 0
1 0 0 0 24 22 0 0 2
1 1 0 0 24 22 0 0 2
1 1 1 0 24 22 0 0 2

VI. Conclusions

Two algorithms and several improvements for deter-
ministic ATPG under leakage constraints were proposed.
Relying on a PBS solver as black-box engine to create test
vectors is only feasible for small benchmarks. But integrat-
ing efficient simulation based leakage estimation and an
ATPG engine yields a very effective algorithm handling the
largest ITC benchmark circuits. Even under tight leakage
constraints the fault coverage does not decrease for circuits
with a large gate count.

TABLE III. Sets of aborted faults
Circ. S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
b14 1 0 1 1 0 0 0 0 0 0 0 0 1 1 3 0 14
b15 2 10 0 0 0 0 0 0 0 1 0 0 0 0 1 2
b15 1 23 5 2 3 0 3 4 0 4 0 0 6 0 0 0 0
b17 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b17 1 48 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
b18 48 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
b18 1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b19 17 6 3 5 9 0 0 2 0 2 3 0 1 1 1 0
b19 1 21 5 5 1 8 2 1 0 1 3 3 0 0 0 0 0
b20 33 0 2 4 5 0 0 1 0 0 4 0 0 1 0 0
b20 1 19 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
b21 45 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1
b21 1 21 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
No aborts: S0= { };
One config.: S1= { 3s. }; S2= { 3s.+red. }; S3= { 3s.+red.+lift }; S4= { 3s.+red.+lift+learn };
Two config.: S5= { 3s., 3s.+red. }; S6= { 3s., 3s.+red.+lift }; S7= { 3s., 3s.+red.+lift+learn };

S8= { 3s.+red., 3s.+red.+lift }; S9= { 3s.+red., 3s.+red.+lift+learn };
Three config.: S10= { 3s.+red.+lift, 3s.+red.+lift+learn }; S11= { 3s., 3s.+red., 3s.+red.+lift };

S12= { 3s., 3s.+red., 3s.+red.+lift+learn }; S13= { 3s., 3s.+red.+lift, 3s.+red.+lift+learn };
S14= { 3s.+red., 3s.+red.+lift, 3s.+red.+lift+learn };

All config.: S15= { 3s., 3s.+red., 3s.+red.+lift, 3s.+red.+lift+learn };
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