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Abstract

This paper presents a methodology to model and analyze the functional behavior of logic circuits under timing
variations. In the framework, first a Time Accurate Model (TAM) of the circuit is constructed. The TAM represents
the behavior of the circuit in the functional domain under a discrete time model. Afterwards, Variation Logic is
inserted to apply the timing variation delays. Moreover, the circuit TAM is enhanced by Time Control (TC) logic
to model the circuit frequency. We apply the proposed methodology to analyze a circuit or an approximated circuit
under timing variations as well as to analyze a circuit under timing-induced errors for approximate computing.

1 Introduction

As Integrated Circuit (IC) technology continues to scale
down, variability is recognized to be a major challenge
in analyzing the circuits. In this case, delay deviations
are imposed by process variations such as uncertainty in
the parameters of fabricated devices and interconnects,
and by environmental variations such as temperature
and voltage [3] [2] [13].

Recently, there is a range of works that considers ti-
ming analysis of circuits under variations. A survey of
the works focusing on Statistical Static Timing Analy-
sis (SSTA) is given in [3]. The statistically-critical paths
under process variations are extracted by a bound-based
method in [22]. The extracted paths have the highest
probability to fail the timing constraint. The effects of
process variations on the delays of logic gates and ti-
ming errors are analyzed in [2] [9] [13]. Timing error
detection and correction has been proposed as an ap-
proach to bridge the gap between typical case and worst
case design, by allowing circuits to operate without any
margins [8] [19]. The work in [14] presents a frame-
work to evaluate how microarchitectural techniques can
trade off variation-induced errors for power and proces-
sor frequency.

On the other hand, in the recent years, significant pro-
gress in the areas such as approximate and probabilistic
computing has been achieved. Much of the computati-
ons addressed in these areas focus on good enough or
bounded results but not necessarily exact results [4]. In
these techniques, the requirement of exact numerical or
Boolean equivalence is relaxed to yield performance or
energy efficiency [15] [5] [20].

An approximate implementation of a circuit does not
exactly match the specification because of timing-
induced errors or functional approximations [4].
Timing-induced errors can be produced by voltage
over-scaling or overclocking.
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Systematic synthesis of approximate circuits is exploi-
ted in [16] [17] [12] to reduce circuit area and delay
as well as to increase yield. The work in [21] deve-
lops a logic optimization procedure that utilizes multi-
V; (threshold voltage) libraries to optimize a circuit for
higher frequency and throughput under timing error de-
tection and correction. The work in [10] uses a power-
aware slack redistribution that shifts the timing slack
of frequently-excercised, near-critical timing paths in
a power- and area-efficient manner. The work in [11]
presents an Error-Resilient System Architecture (ER-
SA) which combines unreliable cores with a small frac-
tion of reliable processor cores for running system soft-
ware, controlling application flow, and recovering from
errors generated on unreliable cores. Scalable effort
hardware design is proposed in [6] to identify mecha-
nisms at each level of design abstraction (circuit, archi-
tecture, and algorithm) which can be used to vary the
computational effort expended for generating the exact
results. These scaling mechanisms are utilized to im-
prove energy efficiency while maintaining an accepta-
ble result.

A systematic methodology for the modeling and analy-
sis of circuits for approximate computing is proposed
in [20]. The methodology is utilized to analyze a circuit
under timing-induced approximations as well as func-
tional approximations using multiple metrics. However,
timing variations are not considered. Since variations
can significantly perturb the timing of various paths in
a circuit, it is natural to expect that they will also signi-
ficantly impact which paths fail under timing-induced
approximations, and therefore the functional behavior
of approximate circuits. Therefore, it is essential to con-
sider the impact of variations during the analysis of ap-
proximate circuits.

In this paper, we propose a unified framework that can
be used to analyze how a circuit behaves under timing
variations, how a circuit behaves under timing-induced
approximations, and how an approximate circuit beha-
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Fig. 1 Overview of proposed methodology

ves under timing variations. By considering the functio-
nal domain, our approach is complementary to SSTA.
In the approach, we first convert the timing behavior of
a circuit into the functional domain according to a time
unit model. The newly constructed circuit is called the
Time Accurate Model (TAM) of the circuit. The TAM
represents the functional behavior of the circuit with re-
spect to the circuit delay and a precision of an arbitrarily
fine-grained but discrete time unit. Afterwards, Variati-
on Logic is inserted in the TAM to apply the timing
variation delays. The variation logic is applied at each
gate. The cumulative delay normalized to a time unit
may affect the correct behavior of the circuit. The be-
havior of the variation logic is determined by Variation
Control (VC) inputs. Moreover, the circuit is also en-
hanced by Time Control (TC) logic. TC is a flexible lo-
gic which controls the frequency at the inputs. TC mo-
dels timing-induced approximations like overclocking.
We use Boolean Satisfiability (SAT) as an underlying
reasoning engine to analyze the circuits.

The rest of this paper is organized as follows. Section 2
introduces preliminary information. Section 3 describes
our approach to construct the TAM, to insert variation
logic, and to enhance a circuit by TC and VC. Then,
experimental results on arithmetic units are presented
in Section 4. Section 5 concludes the work.

2 Preliminaries
2.1 Timing Parameters

We consider a time unit which is an arbitrarily fine-
grained but discrete unit of delay. The delays of gates
and interconnects are assumed to be an integer multiple
of one time unit. In a circuit where the shortest path de-
lay is Dy time units, and the longest path delay is D,
time units, the current output O; depends on the inputs
of I,_p,, It—p,~1, ..., I+—p,. Indices denote the ti-
mes of input with a step of one time unit. Each index is
also called time step.

A clock period is defined as T time units. In synchro-
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Fig. 2 Overall model created by the framework

nous circuits, the input to the combinational logic chan-
ges only once every clock period. If the circuit has a
clock period of T, the output at time step ¢ depends on
the inputs of the following clock periods:

Vija <i<b: L1, -y Li—(ig1)7)] (1)

a=[Ds/T]—1, b=[D;/T] -1

This formula partitions the times of input according
to the clock period T such that in each clock period,
the inputs are assumed to be fixed. For example, when
Dy, =1,D; =5, T = 5, O depends on input values
from time steps that fall within the previous clock pe-
riod [I;—1, It—2, It—3, I[t—4, I;_5], and in this clock pe-
riod, the inputs do not change: I;_1 = [;_o = [;_3 =
Iy = I;_5. When T = 2, O, depends on input values
from time steps that fall within the following clock pe-
riods: [Iy—1,I1—a], [It—3,li—4], [I1—5,Ii—¢]. Overall,
when T' < Dy, the clock is overscaled, i.e., the current
output depends on the inputs of multiple previous clock
periods. This case is also called overclocking. We note
that, for our purpose, voltage overscaling has the same
effect as overclocking, since the delays of the gates will
be scaled up based on the lower voltage, while the clock
period remains the same.

When the clock is overscaled, the longer paths fail be-
cause the input does not have enough time to propagate
to the output. In this case, the current output result de-
pends not only on the input of one previous clock period
but also on the inputs of multiple previous clock peri-
ods. The older inputs (the inputs of the clock periods
more distant from current time ¢) influence the output
through longer paths and the newer inputs (the inputs
of the clock periods closer to the current time ¢) affect
the output through shorter paths.

3 Methodology

The fine-grained timing behavior of a circuit is conver-
ted into the functional domain. Having the behavior of
a circuit according to a fine-grained time unit allows us
to utilize it for modeling races, glitches, etc. The fine-
grained timing model is also utilized to control and to
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Fig. 3 Converting original gates and wires to untimed
gates and wires

function TAM((In : untimed circuit, Out: TAM circuit)
time = 0

SIG = PO

while SIG # 0 do

{
SIG_temp =0
foreach sig € SIG do
{
gate = predecessor(sig)
copy(gate, it—time—1,Ot—time)
foreach input € I(gate) do

if input ¢ SIG_temp and input ¢ PI then
SIG_temp = SIG_temp U input

}
SIG = SIG_temp
time + +

end function

Fig. 5 Creation of Time Accurate Model

modify the frequency of a circuit during our analysis.
This fine-grained timing model of the circuit is called
Time Accurate Model (TAM). When the timing beha-
vior of a circuit is available in the functional domain,
formal verification methods can comprehensively ana-
lyze the timing effects of the circuit.

Figure 1 shows the overview of our approach. Firstly,
the gate level circuit (synthesized netlist) is generated
according to a cell library. Afterwards, the TAM engine
creates the time accurate model of the circuit which mo-
dels the fine-grained timing behavior of a circuit in the
functional domain. The TAM is generated according to
a fine-grained time unit. The time unit specifies the gra-
nularity of analysis and hence controls the accuracy of
frequencies and our evaluations. The delays of all gates
in the circuit are normalized according to the time unit.
Variation logic is inserted in the TAM according to the
maximum delay (D) induced under timing variations.
In the final step, Time Control (TC) and Variation Con-
trol (VC) are added. TC includes some constraints on
the inputs to control the clock period according to For-
mula 1. VC is a constraint to control the delays induced
under timing variations. By this, the model can be used
to analyze a circuit with respect to different frequencies.
Figure 2 shows the overall model created by our frame-
work for the analysis. The three main components of
the model are: TAM and variation logic, TC, VC. Al-
so the model includes two side components: spec and
miter. These two components serve different tasks in
different applications. Spec can be a golden specifica-
tion or golden properties of the ideal circuit behavior.
Miter measures the deviation of the circuit output result
against its specification. Here, we use a SAT solver as
an underlying engine to measure the deviations.

In the following, Section 3.1 describes how the TAM of
a circuit and its variation logic are created. The TC and
VC components are explained in Section 3.2.

3.1 TAM Engine

The TAM algorithm was inspired from the algorithm
presented in [20]. However, there are key differences
necessitated by the need to handle variations - we consi-
der a fine-grained time unit and also the variation logic
is added into the model.

The underlying idea is that a signal s; represents a
signal s of the original circuit at time step ¢. In the
TAM engine, first the delays of the original gates and
wires are converted into the functional domain accor-
ding to the chosen time unit. An original gate g with
delay n is converted to n successive untimed gates:
(9,Buf,_1,...,Buf;) (Figure 3(a)). The equivalent
untimed gates show the behavior of the original ga-
te with an accuracy of one time unit. Also a wire
w with delay n is converted to n successive buffers:
(Buf,,...,Buf,) (Figure 3(b)). The circuit with the
untimed gates and wires is called the untimed circuit.
After untiming the original gates and wires, the second
step of the TAM engine starts to convert the timing be-
havior of the overall circuit into the functional domain.
Figure 5 describes the algorithm in pseudo code. The
input data of this algorithm is an untimed circuit.

The algorithm starts from Primary Outputs (PO) and
traverses the untimed circuit graph backward (line 3).
By considering the precision of one time unit, the out-
put of an untimed gate depends on its corresponding
inputs one time step ago. These inputs are simply given
by the predecessor node of the output in the untimed
circuit graph (line 9). Given the output and its driving
inputs, a new gate is created in which the output and the
inputs have the timing difference of one time unit (line
10). The newly created gates are called TAM gates and
constitute a new circuit called the TAM circuit. The in-
puts of the current untimed gates are collected in the set
SIG_temp to be used for the next backward traversal
step (lines 12-14). If the input is a Primary Input (PI)
or already exists in the set STG_temp (fanout case), it
will not be added to the set SIG_temp (line 13).

We explain the algorithm by the example original cir-
cuit of Figure 4(a). For sake of simplicity, the de-
lays of original gates are considered to be 1. The-
refore, the untimed circuit (Figure 4(b)) is the same
as the original circuit. In the first step, the algorithm
starts from primary output e and copies the OR ga-
te: OR(cy—1, di—1, et). The copied gates (TAM ga-
tes) are shown in Figure 4(c). The dotted lines visuali-
ze the time steps. There, SIG_temp = {c,d} is crea-
ted. The second step is backward traversal of the unti-
med circuit from c and d. The NOT and AND gates are
copied: NOT(bt_Q, Ct—l)» AND(at_Q, Ct—92, dt—1)~
Having SIG_temp = {c}, the third step starts and
copies the NOT gate: NOT (b;—3, ct—2). As explai-
ned in Section 2.1, O, depends on the inputs of
Li_p,,It—p.-1,...,[+—p, where Dy =2and D; = 3
in this example.
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Fig. 4 (a) Original circuit and original gates (b) Untimed circuit and untimed gates (c) TAM circuit and TAM gates

(d) TAM and variation logic

function TAM + VariationLogic()
time = 0

SIG = PO

while SIG # 0 do

{
SIG_temp =0
foreach sig € SIG do
{

gate = predecessor(sig)
for 0<d <D do

copy(gated,it—time—1—d; Ot—time—d)
if sig is Original_Gate_Output then
for 0<d< D do
Insert_Variation_Muz4(in : gateq, - - -, gatep)

foreach input € I(gate) do
if input ¢ SIG_temp and input ¢ PI then
SIG_temp = SIG_temp U input

}
SIG = SIG_temp
time + +

end function

Fig. 6 TAM + Variation Logic

For investigating the behavior of a circuit under timing
variations, the Variation Logic is inserted in the TAM.
The variation logic skews a signal by a delay of d time
units. The delay is activated for each gate independently
by activating the select line of the variation multiplexer
of the corresponding gate. Therefore, in addition to the
value of a signal in the corresponding time, the value
of the signal d time steps ago is also needed. Figure 6
describes this algorithm which extends the algorithm of
Figure 5.

In lines 10-11 of Figure 6, when d = 0, the gate re-
lated to the corresponding time is copied. This gate is
called TAM gate. After that, the behavior of the gate up
to d time steps ago is also copied (lines 10-11, when
d # 0). These gates are called delay gates. Parameter d
is limited by a maximum variation delay D specified by
the user. Given a TAM gate (gateg) and its correspon-
ding delay gates (gateq, - - -, gatep), a variation multi-
plexer is added (lines 14-15). The variation multiplexer
can skew the normal behavior of a gate by a delay up to
D time units. The timing variation of each original gate
is modeled by its corresponding variation multiplexers
(line 13). Delay skews can also be applied on the delay

gates such that the total delay is less equal than D (lines
14-15, when d # 0).

Figure 4(d) shows the circuit generated by the algorithm
where D = 1. The dashed gates are the delay gates. For
each original gate, one variation multiplexer is inserted
at the output of its corresponding TAM gate. A varia-
tion multiplexer either selects the normal behavior of a
signal or the signal value one time step ago.

The size of the TAM depends on the topology and the
delay of reconverging paths of the original circuit. In
the worst case, the size of the TAM may be exponen-
tially larger than the original circuit. However, in our
experiments the increase in size was moderate.

3.2 Time Control (TC) and Variation
Control (VC)

Frequency and clock period are denoted by f and 7T,
respectively (f = 1/T). The task of the TC is apply-
ing a clock period 7' on the inputs with the accuracy of
one time unit. According to Formula 1, inputs are cons-
trained to have a constant value throughout each clock
period.

The task of the VC is controlling the select lines of the
variation multiplexers. The VC applies the maximum
variation delay by the following constraint:

S s <D @)
=1

where s; denotes the integer value of the select lines
related to one variation multiplexer.

Alternative constraints can also be added to model more
complex variations. For example to apply and to control
block-based variation models [3], variations of each re-
gion can be controlled by a constraint. In a hierarchical
manner, the variations of different regions in each level
of hierarchy (like quadtree partitioning [1]) can be cor-
related by having additional constraints in each level.
Our approach can also be extended to consider clock
skew. This can be done by adding some units for the
delay of the clock network and the sequential elements.



Our model is a conservative model in the sense that it
overapproximates delays induced under timing variati-
ons. The model allows delays to be activated indepen-
dently in every location of a circuit. The model can be
used to evaluate the worst case of a circuit functional
deviation under timing variations. Here, a SAT solver is
used to compute the maximum or the worst-case error
under induced variations.

4 Experimental Results

We apply the proposed approach to analyze arithme-
tic circuits under timing variations. The experiments
are carried out on a Quad-Core AMD Phenom(tm) II
X4 965 Processor (3.4 GHz, 8 GB main memory) run-
ning Linux. The techniques described in this paper are
implemented using C++ in the WoLFram environment
[18]. MiniSAT is used as underlying SAT solver [7].
We evaluate Ripple Carry Adder (RCA) and Carry
Look-ahead Adder (CLA) benchmarks. For the experi-
ments, the delays of NOT and BUF gates are considered
to be 1. AND and OR gates with n inputs have a delay
of [n/2] + 1. The delay of XOR gates is 5.

As Figure 2 showed, our framework includes two si-
de components: spec and miter. In the experiments, the
original circuit is considered as a specification. The in-
puts of the most recent clock period are applied to the
specification. For arithmetic circuits, we use a miter on
the outputs of the specification and the TAM to measu-
re the output deviation as the numerical difference. This
miter is an integer subtractor followed by a comparison
operation. In order to measure the maximum positive
error, the miter subtracts the specification output (O)
from the TAM output (O,): (O — O > L). To compu-
te the maximum negative error, the following miter is
used: (O — Oy > L). Our approach increases the pa-
rameter L by a step k to calculate the maximum error
(L=L+k).

The average run times required to compute the maxi-
mum error at one frequency with step £k = 1 for 4-bit
RCA and 4-bit CLA are 7 and 9 seconds, respective-
ly. The number of gates in the untimed circuit and the
TAM for 4-bit RCA and 4-bit CLA are (64, 150) and
(89, 167), respectively.

Figure 7 and Figure 8 show the maximum positive and
negative error computed for a 4-bit RCA and a 4-bit
CLA under overclocking and in the presence of timing
variations. The X-axis indicates the frequency f as the
inverse of the clock period T (f = 1/T). The mini-
mum frequency specified by the X-axis is related to
the maximum delay of the circuit considering the ma-
ximum delay variation D. The Y-axis indicates the ma-
ximum error as a result of the computed error divided
by the maximum output value. When D = 0, no timing
variation is activated. In this case, the diagram shows
the maximum error caused by clock overscaling. Whi-
le the frequency increases, the maximum error someti-
mes decreases. This is because the failing output bits

4-bit RCA
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Fig. 7 Maximum error for 4-bit RCA
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Fig. 8 Maximum error for 4-bit CLA

are functionally correlated as they may share certain
paths. Also, the maximum positive error and the ma-
ximum negative error may have different values at the
same frequency because overscaling modifies the func-
tionality and induces asymmetry in the circuit. When
the frequency increases for the CLA, the maximum er-
ror increases faster (Figure 8). This is due to the fact that
more MSBs have a closer delay. Thus, multiple MSBs
may fail together by overclocking. Therefore, the CLA
is more sensitive to overclocking. But for the RCA, the
maximum error increases slower than for the CLA be-
cause the MSBs have different delays. Therefore, they
fail gradually along overclocking. In Figure 7, the delay
of the circuit is 22 time units. Therefore when D = 0
and f = 1/22, there is no error at the output of the
circuit. When the clock is overscaled, for example the
frequency increases from f = 1/22 to f = 1/21, then
the maximum error 0.26 is observed on the outputs.

When D = 1, the constraint of Formula 2 is applied.
In this case, the maximum variation delay is considered
to be 1. The diagram shows the maximum error compu-
ted along the frequency axis while the variation delay
is activated. As the diagram shows, the maximum error
starts earlier. Also the maximum error has a different
progress in comparison to a non-varied circuit. In Fi-
gure 7, when D = 1, at the frequency f = 1/22, an
error is observed on outputs. The sumsg bit fails as the
delay of the sumsg critical path is 22 time units. When
D = 2, at the frequency f = 1/22, the cout bit fails as



the delay of cout is 21 time units. Therefore the maxi-
mum error observed for D = 2 is more than D = 1 at
the frequency f = 1/22.

5 Conclusion

This paper introduced a methodology to model and to
analyze the functional behavior of circuits under timing
variations. The framework includes three main com-
ponents: Time Accurate Model (TAM) and variation lo-
gic, Time Control (TC), and Variation Control (VC).
Our framework is utilized to analyze a circuit under ti-
ming variations, a circuit under approximation (called
approximated circuit), as well as an approximated cir-
cuit under timing variations.
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