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Abstract—The design of hardware systems is a challenging
and erroneous task where about 70% of the effort in designing
these systems is spent on verification. In general, testing and
verification are usually tasks that are being applied as a post-
process to the implementation.

In this paper, we propose a new design flow based on
Behavior Driven Development (BDD), an agile technique for
the development of software in which acceptance tests written
in natural language play a central role and are the starting
point in the design flow. We advance the flow such that the
specifics that arise when modeling hardware are taken into
account. Furthermore, we present a technique that allows for
the automatic generalization of test cases to properties that
are suitable for formal verification. This allows the designer to
apply formal verification techniques based on test cases without
specifying properties.

We implemented our approach and evaluated the flow for an il-
lustrative example that successfully demonstrates the advantages
of the proposed flow.

I. INTRODUCTION

With the advent of computers the problems of bugs in
hardware and software arose. Since then the challenge of
“getting the bugs out” continues to grow due to the increasing
complexity of the systems. Hence, enormous effort has been
put into the development of methodologies reducing the bug
rates or even ensuring correctness.

Meanwhile for the development of software Test Driven
Development (TDD) [1] has become an important approach
which has its roots in agile programming [2]. Essentially, in
TDD testing and writing code is interleaved while the test
cases are written before the code. This ensures that each new
functionality is tested a priori. In doing so, testing becomes
part of the software development process and it is no longer
a post-process, which in practice is often omitted due to
strict time constraints. The advantages of TDD have been
demonstrated in several industrial studies. For example, [3]
reported a reduction of the defect density between 40% and
90% for four products. The author of [4] was able to show that
the application of TDD reduced the defect rate by about 50%
compared to a similar system that was built using an ad-hoc
unit testing approach.

Recently, an extension of TDD has been proposed. In
Behavior Driven Development (BDD) [5] the test cases are
written in natural language which enables the discussion
with stakeholders since they do not have to read code. The
used BDD language terminology focuses on the behavioral
aspects rather than on testing: The Given-When-Then sentence
structure of the tests connects the human concept of cause and
effect to the software concept of input/process/output in an
intuitive way [6].

In this paper we present a new flow for circuit design
and verification based on BDD. Our contribution is twofold:

First, we customize BDD for circuits modeled in a Hard-
ware Description Language (HDL). Therefore, we have to take
the specifics of circuits, in particular timing and testbenches,
into account. As a result, circuit components are iteratively
created and, based on the underlying BDD methodology, the
implemented functionality is tested in a structured way while
the tests are connected to natural language specifications.
Second, given the specific structure of the acceptance tests
we present a technique to automatically generalize these tests.
That is, we are able to generate properties from the written test
code. These properties are formally verified on the iteratively
developed implementation and hence enable to fully exhaust
the potential of the test cases. Both contributions are integrated
into a new flow enabling the following advantages:
• Circuit design starting from a natural language based

specification down to an HDL implementation
• Formal verification without manual specification of com-

plex properties
• Improved verification quality based on automatically gen-

erated properties
We have implemented the proposed flow. In the experimental
evaluation the hardware implementation of a vending machine
is presented. We discuss the design as well as the verification
of the system and demonstrate the advantages of our new flow.

The remainder of this paper is structured as follows: Sec-
tion II gives the background on BDD. Then, in Section III
the proposed flow is introduced while Section IV details
the implementation. An illustrative example is described in
Section V and Section VI discusses related work. Finally, the
paper is concluded in Section VII.

II. BEHAVIOR DRIVEN DEVELOPMENT

TDD is a design flow paradigm in which test cases are
provided as starting point and central elements along the whole
design process. First, all test cases are specified, however,
since no implementation is available, they will all fail initially.
Based on the error messages from the failing test cases, the
implementation grows incrementally until all test cases pass
eventually. Based on this design flow paradigm, BDD has been
recently proposed in which the test cases are specified using
natural language rather than source code thereby offering a
ubiquitous communication mean for both the designers and
stakeholders. The natural language ensures a common under-
standing of the system to be developed between all partners of
the project. In BDD, all test cases are called acceptance tests
and structured by means of features or feature files, where
each feature can contain several scenarios. Each scenario
constitutes one test case and is based on the Given-When-Then
sentence structure. Consider the following scenario:



Scenario: Adding two numbers
Given a calculator
When I add the numbers 4 and 5
Then I see the result 9

(1)

A calculator should be implemented and this particular sce-
nario describes the addition of two numbers. However, in order
to execute the scenario, we have to bind the sentences to actual
test code. This can be achieved using so-called step definitions
which are tuples of a keyword (such as Given, When, or Then),
a regular expression, and step code. Whenever a sentence (also
called step) of a scenario matches the regular expression, the
step code is executed. The step definitions for the scenario
described above are formalized as follows:
Given /^a calculator$/ do

@calculator = Calculator.new
end

When /^I add the numbers (\d+) and (\d+)$/ do |a, b|
@calculator.add(a.to_i, b.to_i)

end

Then /^I see the result (\d+)$/ do |a|
@calculator.result.should == a.to_i

end

For this purpose, we make use of Ruby [7], a flexible
general-purpose object-oriented programming language, that
puts a particular emphasize on the design of embedded domain
specific languages. Furthermore, we use Cucumber [8] as
underlying tool that invokes the BDD flow. Note, that the
general flow can be applied to other programming languages
and BDD tools accordingly. In Ruby, object instance variables
are prefixed by an ‘@’ and functions such as ‘Given’ can get
a block as parameter that is enclosed by ‘do’ and ‘end’. By
making extensive use of operator overloading, assertions can
be written intuitively such as in the last step definition using
‘should==’.

Consider the first step definition, that matches the first
sentence “Given a calculator” from the scenario in (1). Here,
a new instance of a class called Calculator is created. For the
remaining sentences, the sum of two numbers is calculated
by invoking the method add (When-sentence) and the result
is checked against the given test value (Then-sentence). As
can be seen, the step definitions can be re-used for similar
sentences since regular expressions are used to match the
steps. In this case, the precise numbers in the scenario can
be replaced without modifying the step definitions.

After all steps have been matched and the precise parameters
have been inserted, the following source code can be obtained
for the scenario:
@calculator = Calculator.new
@calculator.add("4".to_i, "5".to_i)
@calculator.result.should == "9".to_i

The step definitions are written before the implementation
phase has been started based on the scenarios given in natural
language. Thus, design decisions affecting the structure of the
implementation are taken while writing the step code for the
step definitions. For the scenario at hand, it has been decided
that there is a class called Calculator that has two methods add
and result.

During the implementation phase, the test cases are usually
executed whenever the implementation changes, preferably
using a background task running autonomously. When exe-
cuting the test cases, steps can only fail due to two reasons,
i.e. syntactic and semantic errors. The first class of errors
occur whenever a name cannot be resolved, e.g. when there
is no class called Calculator, or there are no such methods

as add or result available yet. The second class of errors
consists of errors that occur whenever values do not match
their expectations. This can only happen in assertions, i.e. step
definitions such as the third one given in (1).

After specifying the step definitions, when executing the test
cases, they will fail at the first sentence and stop with an error
message stating that the name Calculator cannot be resolved.
This points the developer to create a class Calculator. Follow-
ing this flow for the next two sentences, a code structure that
is implied from the code in the step definitions is implemented
as follows:
class Calculator
def add(a, b)
end

def result
end

end

With this code, the test cases will pass up to the third
sentence which is bound to the assertion expecting the return
value of the result method to equal 9. Consequently, an error
message is returned informing about the wrong result since
there does not exist a correct implementation for result and
add. As a result, at this point the designer is guided to
implement the required functionality:
class Calculator
def add(a, b)
@result = a + b

end

def result
@result

end
end

This ends the design process for this scenario. As can be
seen, the code does not have to be tested as a post-process
since the tests were run during the whole implementation
process. In fact, the tests have been guiding this process. In
the successive steps, more features and scenarios can be added
to complete the implementation of the overall system.

Often, one scenario should be checked against several test
assignments or corner cases. For example, if the scenario
described in (1) should also be applied to other addends, it
would be convenient to reuse the same scenario, since the
step definitions are already generic. For this purpose, feature
files allow the specification of scenario outlines which provide
parameterized scenarios enriched with example tables allowing
for several test assignments. A scenario outline for the scenario
in (1) for the pairs of addends (2, 8), (3, 9), and (100, 20) can
be written as follows:
Scenario Outline: Adding two numbers

Given a calculator
When I add the numbers <a> and <b>
Then I see the result <c>
Examples:

| a | b | c |
| 2 | 8 | 10 |
| 3 | 9 | 12 |
| 100 | 20 | 120 |

(2)

In the next section the proposed flow for circuit design and
verification based on BDD is introduced.

III. PROPOSED FLOW

Based on the BDD flow that has been described in the
previous section, the basic idea for the proposed flow is
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Fig. 1. Proposed Flow

introduced in this section, while details are outlined in the next
section. Our proposed flow consists of two main contributions,
i.e. (1) customizing the BDD flow such that it is suitable for
circuit design by handling the specifics that only exist in HDLs
and (2) generalizing the written test code to properties that
are suitable for applying formal verification techniques to the
implemented design.

A. BDD for Circuit Design

The main steps of our flow are depicted in Fig. 1. Following
the BDD process, in Step 1 the features of the hardware (or
hardware components) are described by acceptance tests in
natural language using the Given-When-Then sentence struc-
ture. This step does not differ from the conventional BDD
flow.

These acceptance tests should now be used to create a
circuit design using Verilog. The design process can be applied
to similar languages such as VHDL accordingly. For the
actual creation of the system, we enter the gray area of
Fig. 1 (Step 2). Here, the step definitions, the testbench, and
the implementation are developed iteratively (emphasized by
the circle in the figure). The first specific that arises in the
implementation using an HDL is the existence of a separate
testbench that allows for executing the circuit design. Recall,
that during this process each addition or modification immedi-
ately causes the test cases to be executed according to the BDD
process with the objective that the acceptance tests pass. If this
execution fails, code is missing and additional iterations are
necessary. By creating the step definitions, essential fragments
of sentences are mapped to code. In the beginning these
include the definition of I/O (input and output signals) for the
considered hardware component(s) while writing the first lines
of testbench code within the step definitions. In this situation
the next task is to add all necessary I/O to the implementa-
tion. This corresponds to fix all syntactical errors during the
execution of the test cases. To further get the test cases also
semantically correct, afterwards the respective functionality
needs to be implemented. Whenever the implementation is
modified, the testbench has to be changed accordingly.

Example 1: The following scenario describes the addition
operation of a simple arithmetic logic unit (ALU).

Background:
Given module alu
Given testbench alu_test

Scenario Outline: Adding
When I add the numbers <a> and <b>
Then the output is the sum of <a> and <b>
Examples:

| a | b |
| 2 | 5 |
| 3 | 4 |
| 0 | 6 |

(3)

This scenario additionally consists of a background section,
that is used to specify the name of the implementation and
the testbench. The step definitions in this background section
are predefined and do not have to be specified by the designer.

Given this scenario the following step definitions are written
in Ruby where the Verilog test code is embedded in the
step code using a here document, i.e. a string enclosed
by ‘<<VERILOG’ and ‘VERILOG’:
When /^I add the numbers (\d+) and (\d+)$/ do |a,b|
<<VERILOG
in1 = a;
in2 = b;
op = 0;

VERILOG
end

Then /^the output is the sum
of (\d+) and (\d+)$/ do |a,b|

<<VERILOG
$assert(out === a + b);

VERILOG
end

As can be seen, the designer takes decisions about inputs
and outputs of the ALU module. The step code is Verilog
code, however it cannot be instantiated directly but requires
a testbench body that encloses the test code. This testbench
body is written in the next step as follows.
module alu_test;
reg [7:0] in1;
reg [7:0] in2;
reg op;
wire [7:0] out;

alu a(in1, in2, op, out);

initial begin
$yield;

end
endmodule

In the testbench the user takes further decisions about the bit-
width of the input and output signals as well as the signature
for the actual module, i.e. the order in which the input and
output signals are provided. The ‘$yield’ command is no
Verilog command but a placeholder which is substituted by
the Verilog test code that is extracted from the step code in the
BDD flow (see step definitions above). Based on this, finally
the implementation is created which can then be checked
against the acceptance tests.

B. Generalization of Test Code
After all acceptance tests have passed, an implementation is

available that fulfills all requirements that have been specified
by them. However, due to their nature the acceptance tests
can never cover a scenario exhaustively. As a result, only a
subset of test patterns are applied via the example table of a
scenario outline. We propose to generalize the acceptance tests
by automatically generating PSL [9], [10] properties. Thus, the
scenario can be verified thoroughly using the existing state-
of-the art algorithms for formal verification. In order to obtain



the PSL properties, first the structural semantics of a scenario
is used by mapping the Given-When-Then sentence structure
to an implication property. On the other hand the expressions
of the property (statements in the antecedent and consequent)
are formed by using the “glue code” and the step code of
the step definitions. There, the respective variables as well as
symbolic relations can be extracted due to the organization of
the testbench code coming from scenario outlines.

Example 2: From the scenario outline and the respective
step definitions in Example 1, the following property can be
generalized automatically.
property adding =

always ( op == 0 )
-> ( out == in1 + in2 );

The idea is that test code from step definitions in the When-
sentences and Then-sentences is part of the antecedent and
consequent of the property, respectively. To resolve the re-
lation between variables appearing inside the antecedent and
the consequent, the glue code, i.e. the part of the scenario
outline and the step definitions that relates the variables and
placeholders such as <a> and <b> to the parameters inside the
step code, is used.

In the next section the implementation of our flow is
detailed.

IV. IMPLEMENTATION

The last section provided the general idea of how the BDD
flow can be customized to support the specifics that are given
due to the usage of HDLs as well as how the test cases
can be generalized as properties. This section provides more
details on the implementation of the proposed approach with
emphasizing in particular the latter task.

A. Customizing BDD for HDLs
When customizing the BDD flow for supporting HDLs, two

major issues need to be considered, i.e. (1) the separation of
the actual implementation and a special testbench and (2) tim-
ing information that arises when simulating hardware. For this
the following three tasks have to be performed.

1) Setting up Implementation and Testbench: The scenario
syntax for BDD allows for a special background section in
a feature file that consists of steps which are executed before
each scenario in that feature file. The testbench is prepared and
consists of a skeleton in which the actual test code from the
step definitions is inserted. The primary tasks are instantiating
the module and connecting the test signals to the signals of
the module. These test signals can then be assigned values in
the step code. It is possible to reuse this testbench skeletons
in multiple feature files.

2) Timing: When designing hardware with HDLs a cycle-
accurate simulation is of high importance. For this purpose,
the designer should add precise timing information to the test
code in the testbenches by prefixing a statement using ‘#t’
where t denotes the cycle after which the following statements
are executed. Due to the re-use of the step definitions the
respective step code can be assembled in different ordering
inside the testbench. Therefore, no absolute timing can be
specified. However, relative timing information is allowed and
implemented using an internal counter that stores the current
time initialized with 0. The timing information is then added
automatically to each Verilog statement when assembling the
step code. The internal counter can be incremented inside a
scenario using two different ways. First, the predefined step

“I wait t cycle(s)” can be used, which will increment the
internal counter by t:
When /^I wait (\d+) cycles?$/ do |cycles|

wait(cycles.to_i)
end

Second, the function ‘wait’ is provided by our API and
can also be called inside a user-defined step definition, e.g.:
When /^the output is (\d+)

after one cycle$/ do |result|
wait(1)

<<<VERILOG
output = result;

VERILOG
end

3) Executing the Testbench: In our proposed flow, the tests
are executed as follows. For each scenario in a feature file, first
the module and the testbench skeleton are determined from the
background section. Assuming that a scenario consists of n
sentences (steps), n testbenches are created that span over the
first 1, 2, . . . , n sentences of the scenario. This is required to
find the location of the error in a failing scenario, i.e. the
sentence that causes the test to fail. Before the step code is
inserted into the testbench skeleton, the timing information
is added to each inserted statement. The considered module
and assembled testbench are then compiled using a Verilog
compiler and after that executed using a Verilog run-time
engine. In our experiments, we are making use of the Icarus
Verilog suite [11].

Alternatively, other Verilog frameworks can be integrated,
in fact, using an interpreter the steps can actually be executed
in an iterative manner without assembling n testbenches for
one scenario.

B. Generalizing Properties from Test Code
For each scenario outline in the feature file, a property is

generated as follows.

Algorithm P (Property Generation). Given a scenario outline,
this algorithm generates a property from it.
P1. [Resolve dependencies.] Since inputs and outputs need to

be related, the parameters inside the step code must be
replaced by the placeholder variable from the scenario
outline.

P2. [Term rewriting.] Inputs and output signals are related
by the placeholder variable. Thus, expressions containing
inputs and placeholder variables need to be rewritten such
that they are expressed by the placeholder variable.

P3. [Timing.] Timing information from the test code is used
to adjust the properties by surrounding input and output
signals with ‘next’ and ‘prev’ temporal operators ac-
cordingly.

P4. [Test semantics.] In order to follow the same semantics as
in the test, the property is extended by expressions that
ensure the test semantics.

While Algorithm P briefly sketches the general outline of the
proposed approach, the following subsections will explain the
individual steps in more detail.

1) Resolve Dependencies: The step code inside the step
definitions assigns values to the inputs and checks outputs for
expected values. This is usually done in individual step defini-
tions where the respective values are passed as parameters to
the step code. In order to create properties from the test code,
it is necessary to relate the inputs to the outputs. However,



Given the digit <a><a> is between 0 and 9
When the circuit is reset
And I wait 1 cycle
When I type the first digit <a><a>
And I wait 1 cycle
Then the resulting number is <a><a>

(a) Feature file

Given /^the digit (\d+)(\d+) is between 0 and 9$/ do |arg1||arg1|
$assert( arg1 < 10arg1arg1 < 10arg1 );

end
When /^the circuit is reset$/ do

reset = 1;reset = 1;
end
When /^I type the first digit (\d+)(\d+)$/ do |digit||digit|

reset = 0;reset = 0;
in_digit = digitdigit;

end
Then /^the resulting number is (\d+)(\d+)$/ do |num||num|

$assert( number === numnumnumber === numnum );
end

(b) Step definitions

vunit typed(digit_reader) {
property type_first_digit = always (

reset == 1reset == 1
&& nextnext(reset == 0reset == 0)
&& next[2]next[2](reset == prev(reset)reset == prev(reset))
&& next[2]next[2](in_digit == prev(in_digit)in_digit == prev(in_digit))

) -> (
next[2]next[2](number == prev(in_digit)number == prev(in_digit))

);
property env_assume_0 = always (
next_a[0..2]next_a[0..2](in_digit < 10in_digit < 10));

assume env_assume_0;
assert type_first_digit;

}

(c) Resulting property

<a>

<a>

<a>

Fig. 2. Implementation

this is not possible from the step definitions alone since each
step is considered independently from the other ones.

In order to resolve the dependencies between the step
definitions to relate the inputs to the outputs, the placeholder
variables such as <a> and <b> that appear in a scenario outline
are used. Together with precise values given by means of rows
in the example table, these variables correspond to selected
test patterns that are assigned to the scenario. Since the same
placeholder variable names are used to target the same inputs
and outputs in the scenario, they allow for resolving the
dependencies in the step code. For this purpose, first the
parameters in the step code are replaced by the placeholder
variable name.

Example 3: Consider the scenario outline and step defini-
tions in Fig. 2a and Fig. 2b. As can be seen, the parame-
ters ‘arg1’, ‘digit’, and ‘num’ are all substituted by the
variable <a>. This is indicated by the blue arrows that connect
the parameter with the respective placeholder in the scenario.
Having this dependency, the parameter occurrences inside of
the step code can be annotated by the respective placeholder
variable.

All information necessary to resolve these dependencies are
highlighted using the light gray boxes.

2) Term Rewriting: Once all dependencies have been re-
solved, all statements in the step code of the form i = e
(where i is an input signal and e is an expression that consists
of a placeholder variable p) are first rewritten and then used
to relate the outputs to the inputs. That is, the expressions are
transformed in terms of p such that its right-hand side can be
used for substitution in the output expressions of the property.
More precisely, first the statement i = e is transposed to the
statement p = e′ with p being the placeholder variable in e
and e′ such that (i = e) ≡ (p = e′). Then, all placeholder
occurrences in output expressions can be replaced by e′.

Example 4: In Fig. 2b the statement ‘in_digit = <a>’
(i.e. i = e) is such an expression. It is first transposed
to ‘<a> = in_digit’ (i.e. p = e′), and afterwards
all occurrences of <a> inside statements that contain out-
put signals can be substituted using this expression. In
Fig. 2b, this is illustrated by the dashed arrows. Hence,

the step code inside the first step definition is translated to
‘$assert(in_digit < 10)’ and for the last step def-
inition to ‘$assert(number === in_digit)’ accord-
ingly.

There are some special cases that need to be considered
when applying this technique. When there are more statements
assigning an expression to an input signal always the last one
that would be invoked at test execution is used for substitution,
since the last statements override previous input assignments.

3) Timing: For timing consideration each statement in
the step code is annotated using a current time t starting
from t = 0 and incremented accordingly whenever this
internal counter is adjusted using the appropriate API calls
(see Section IV-A2). When assembling the property this timing
information is translated into respective ‘next’ and ‘prev’
temporal operators. Note that this information also needs to be
preserved when inserting code for relating the output signals
to the inputs. If the input has been assigned in a previous
step, the substituted code is surrounded by a respective ‘prev’
statement.

Example 5: In Fig. 2c all timing information has been
highlighted using white rectangles. As can be seen, the output
statement that is asserted using the Then sentence is executed
at t = 2, however the input ‘in_digit’ is assigned one cycle
before. All this information has been taken into account in the
consequent of the resulting property.

4) Test Semantics: When executing a test case, the signals
are assigned and asserted imperatively and also changing the
internal timing counter does not change the values of signals
unless explicitly specified. However, this imperative semantics
is not implicitly considered in properties for verification and
as a result these test semantics need to be ensured explicitly.
For this purpose, expressions for signals that do not change
are added to the antecedent.

Example 6: For the example in Fig. 2b the additional
expressions are given in the last two lines of the antecedent.
Since ‘reset’ and ‘in_digit’ do not change anymore after
the first cycle, expressions ensuring the test semantics are
added accordingly.



System requirements:
1) The typed numbers are shown on a display.
2) The price of a product is displayed after the numbers are

typed.
3) The current price of a product can be changed by service

personnel.
4) After the price is paid the product can be obtained.
5) Service mode uses the product numbers 1-19.
6) Product numbers range from 20 to 60.
7) Prices can vary from 0 to 200 cents in intervals of 10.
8) The machine accepts coins 10, 20, 50 for payment.
9) The machine return coins 10, 20.

Fig. 3. Requirements for a vending machine

5) Specifying the Domain of Test Patterns: When writing
tests using a scenario outline some test patterns are given
through the example table. However, when generalizing test
cases to properties all possible assignments to the considered
input signals that appear in the test case are assumed. As
a result, it is necessary to restrict the domain of the input
signals albeit the fact that all test patterns in the example table
adhere this constraint already. This additional information that
restricts the domain of test patterns can be specified using
Given-sentences and therefore integrates seamlessly into the
BDD flow.

Example 7: Consider again the example in Fig. 2. The
scenario includes a Given-sentence in line 1 that restricts the
digit <a> to be entered to the domain [0, 9]. In order to execute
the test a step definition has to be specified for that sentence
which is done in the first three lines in Fig 2b.

The Given-sentences are then transcribed to an independent
property. Because those sentences describe a global restriction
to the inputs, the property is assumed instead of asserted.

Example 8: In Fig. 2c the presented verification unit con-
tains a second property env_assume_0 which restricts the
possible values of the input in_digit to numbers in the do-
main [0, 9].

V. ILLUSTRATIVE EXAMPLE

In this section we demonstrate the new flow which has been
implemented on top of the Cucumber tool [8] in Ruby. Our
approach was applied to design parts of a vending machine
with system requirements as shown in Fig. 3. Due to page
limitation we only describe one scenario in detail. In particular,
we present the application of the approach for the third
requirement The current price of a product can be changed
by service personnel. Following the BDD approach several
scenarios are now developed for this requirement with one of
them being

“When the price of the product is changed by a service
technician to a new price and the respective product is
requested by a customer afterwards, then the shown price
should be the new price that was given before.”

(4)

As a first step this specified acceptance test is rewritten
to match the Given-When-Then template by identifying the
atomic parts of the scenario, e.g. the word ‘afterwards’ indi-
cates that the request of the customer happens in a following
cycle. We use the predefined step “I wait t cycle(s)” to express
timing constraints (cf. Section IV-A2). This results in the

following scenario:

Scenario: Change price and request the same product
When a service technician wants to change a price
And a product <product> and a price <price> is given
And I wait 1 cycle
And the same product is requested by a customer
And I wait 1 cycle
Then the price of <product> is <price>
Examples:

| product| price |
| 21 | 60 |
| 34 | 70 |

(5)

Having this scenario it can be executed using the Cucumber
tool which first informs about both a missing module and
testbench. For this purpose a background section is added to
the feature specification including the memory module as the
implementation to consider, since it saves the prices to specific
product numbers:

Background:
Given module memory
Given testbench test_memory

(6)

The sentences of the scenario are bound to testbench code by
means of step definitions and in particular this testbench code
implies naming for inputs and outputs of module memory:
When /^a service technician wants to

change a price$/ do
<<VERILOG
set = 1;
reset = 0;

VERILOG
end

When /^a product (\d+) and a price (\d+)
is given$/ do |arg1, arg2|

<<VERILOG
product = arg1;
price = arg2;

VERILOG
end

When /^the same product is requested
by a customer$/ do

<<VERILOG
set = 0;
reset = 0;

VERILOG
end

Then /^the price of (\d+) is (\d+)$/ do |arg1, arg2|
<<VERILOG
$assert(price_out === arg2);

VERILOG
end

Since the test code cannot be simulated independently, a test-
bench is required. The testbench body is written as explained
in Section III, i.e. an instance of the desired module memory is
created, the bit-widths of inputs and outputs are set and finally
the ‘$yield’ placeholder is inserted which will be replaced
with the test code from the step definitions during execution:
module test_memory;
reg[5:0] box;
reg[7:0] price;
reg set, reset;

wire[7:0] price_out;

memory mem(box, price, set, reset, price_out);

initial begin
$yield;



 module memory(
 input[5:0] product,
 input[7:0] price,
 input set, reset, clk,
 output reg[7:0] price_out
 );

 parameter ITEMS = 40;
 parameter SERVICE = 20;


 reg[7:0] map[0:(ITEMS)];

 always @(posedge clk) begin
 if (!reset)
 if ((product >= SERVICE)
 && (product < 60))
 if (set) begin
 map[product-SERVICE] = price;
 price_out = price;
 else
 price_out = map[product-SERVICE];
 end else
 price_out = 0;
 else begin
 //initialize memory ...
 end
 end
 endmodule

Fig. 4. Implementation of memory module

 vunit service_mode(memory) {

 property get_price = always (
 set==1
 && reset==0
 && next (set==0)
 && next (reset==0)
 && next (product==prev( product ))
 && next (price==prev( price ))

 && next[2](set==prev( set ))
 && next[2](reset==prev( reset ))
 && next[2](product==prev( product ))
 && next[2](price==prev( price ))
 ) -> (
 next[2](price_out==prev[2]( price ))
 );

 //verification-directive:
 assert get_price;
 }

Fig. 5. Generalized property for the memory module

end
endmodule

Given the testbench body, the scenario can be executed using
the Cucumber tool and fails since no implementation has been
created so far. However, the reasons for the failing test will
guide the designer in what to implement next such that all
steps in the scenario pass the test. The implementation of the
module memory is shown in Fig. 4. While implementing the
module, we insert a new module input for the clock signal,
that consequently needs to be inserted into the testbench.

Afterwards, a property is automatically generalized from the
scenario by means of the techniques that have been described
in Section IV-B. The generated property is depicted in Fig. 5
and generalizes the behavior described in (5), i.e. the behavior
is always valid under the given constraints formulated in the
test cases. More precisely, if the service mode is enabled in
the first cycle (line 4) and is not enabled in the second cycle

price 255

product

set

reset

price_out

(a) First counter-example

price 127

product 60

set

reset

price_out

(b) Second counter-example

Fig. 6. Trace view of counter-example

(line 6) while the price and the product number never changes,
then the result should be the price from the first cycle (line
15). We extended the Cucumber tool such that the property
checker can be called directly via the command line interface
as an option.

Running the acceptance test (5) with the current imple-
mentation all tests pass, however the property fails with the
counter-example shown in Fig. 6a. It can be seen that the
value 255 is assigned to the input price, but considering the
system requirements, prices only range from 0 to 200. As a
result, it is necessary to restrict the domain of the input signal
price using the Given-sentences as described in Section IV-B5.
From the counter-example and the design requirements the
subsequent additional sentence to the scenario yields:

Given the price <price> is between 0 and 200 (7)

For this sentence, also a step definition with test code has to
be created:
Given /^the price (\d+) is between 0

and 200$/ do |arg1|
<<VERILOG
$assert( arg1 < 201 );

VERILOG
end

Note that the step code of the step definition is executed when
running the test cases but unlikely to fail since it targets values
that are not present in the example table for the scenario
outline. Once the Given-sentence has been added to the design,
the resulting verification unit will contain another property that
describes the restrictions on the input signals.
property env_assume_0 = always (

next_a[0..2] (price < 201)
);

assume env_assume_0;

This property ensures that for each considered time step the
price is always less than 201.

After successfully implementing the step definition for the
Given-sentence, now the property does not hold because of
another domain restriction problem regarding the product
number range. For this restriction another Given-sentence is
added to the scenario analogously.

When our approach is run with both Given-sentences and
thus the correct restrictions for all input signals, the property
fails due to an implementation error. The counter-example
presented in Fig. 6b shows that product is assigned the
value 60. Consider the sixth system requirement where the
product number 60 is defined as a limit value. The module
memory presented in Fig. 4 uses this limit in lines 15 and 16
for conditional execution. If the number is not in the given
range, the module returns a price of 0, which price_out is
assigned to. Due to a corner case, the wrong value is assigned.



This is because of the erroneous condition, that does not con-
sider 60 as permitted value (product < 60). But since the
requirements state that 60 is also a valid product number, the
second part of the if-condition should be product <= 60.
After correcting the if-condition the property holds.

As can be seen, applying behavior driven development for
the design of hardware systems leads to a different design
flow in which the tests play a central role. The execution of
test cases guides the designer in which steps are to be taken
next in the implementation. However, although all tests pass
eventually, using property checking additional design bugs can
be found. Since the properties can be generalized automatically
from the scenarios and respective step code, the designer does
not have to write the properties manually but can think in
terms of test cases, which are more intuitive.

The considered parts of the vending machine design have
been specified by means of 14 scenarios, which resemble 51
test cases through their respective example tables. This resulted
in 14 properties and 41 domain restrictions needed to be
applied. Using the generated properties, we were able to find
6 major implementation errors in the design. Using the new
flow the greatest benefit has been the continuous feedback of
the property checker, which helped to create a “good” design
by considering every possible execution path.

VI. RELATED WORK

To the best of our knowledge the flow and the presented
implementation is the first application of BDD for the de-
velopment of circuits. Moreover, no integration with formal
verification – as supported by our test case generalization
technique – has been presented. However, TDD for hardware
systems has been considered in the past, e.g. based on C++ for
embedded systems in [12]. Furthermore, the topic is heavily
discussed in many blog posts [13]. SVUnit [14] incorporates
agile programming techniques for SystemVerilog to enable
TDD by means of unit testing.

The generalization of tests to a formal specification has
been proposed in [15]. This work considers Java as target lan-
guage and the specification is checked by generating runtime
assertion checkers in JML. The approach does not facilitate
an automatic generalization of tests, instead it is based on
user knowledge. Automatic generation of properties has been
described in [16]. However, in that work, properties and
constraints are generated from Production Based Specification,
which is a formal specification language based on regular
expressions. On the contrary, often the opposite case in which
test cases are generated from properties has been intensely
considered, see for instance [17], [18].

VII. CONCLUSIONS

Based on the success of BDD for software development, we
proposed a first implementation on how this agile technique
can be applied to chip design using HDLs such as Verilog. For
this purpose, we carefully handled the specifics that arise in
the design using HDLs and suggested ideas of how they can
be integrated in modern BDD tools. Furthermore, a technique
has been presented that allows for the generalization of tests as
functional properties suitable for formal verification. The new
flow enables a test driven development process that guides
the designer in the implementation phase while continuously
giving feedback in every step of the design flow. Based on
the generated properties the design is automatically verified
against all possible test patterns and not only to manually

specified ones. This allows for finding bugs that are only
observable for certain input assignments.

We implemented the proposed approach on top of the
Cucumber tool and demonstrated it by means of an illustrative
example. In future work we want to consider how more
advanced timing that is usually found in complex properties
can be lifted up to the level of acceptance tests and investigate
its application to designs at larger scale. In addition, we plan to
automatically analyze the counter-examples to understand the
cause of error, i.e. whether the failing of the property is caused
by too weak restrictions of the inputs or an actual implemen-
tation error. From a higher perspective, we want to integrate
natural language processing techniques to automate BDD as
proposed in [19]. Moreover, for correctness and efficiency the
concept of completeness driven development [20] is essential
for our flow.
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