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Abstract—One major concern in the design of Very-Large-Scale
Integrated (VLSI) circuits is debugging as design size and com-
plexity increase. Automation of the debugging process helps to
decrease the development cycle of VLSI circuits and consequently
to achieve a higher productivity. This paper presents an approach
to automatically debug timing bugs at the design step. The
approach utilizes Boolean Satisfiability (SAT) in order to model
design timing bugs at the pre-silicon stage. The experimental
results show diagnosis accuracy and efficiency of the approach.
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I. INTRODUCTION

Due to the increasing design size and complexity of VLSI
circuits, the cost of VLSI systems verification and debugging
has significantly increased. Verification tools check the cor-
rectness of a design against its specification. Upon detection
of a design error, the error is returned as a counterexample.
Having a counterexample, the debug process starts localizing
and rectifying the bug. But this process is often a manual task
which needs a large effort. Thus, automated approaches to
design debugging are necessary to decrease the development
cycle of VLSI products.

Design bugs at RTL are classified into three major classes:
logic bugs, algorithmic bugs and timing bugs [1]. There is a
range of approaches to automate the debugging process for
logic bugs [2] [3] [4]. Algorithmic bugs can have a severe
impact on the correctness of a design and they usually require
multiple major modifications to be fixed. Timing bugs are
related to the correctness of the timing behavior in a design.
For most of the timing bugs, a signal requires to be latched a
cycle earlier or a cycle later in order to keep the correct timing
behavior of signals in the design [1]. The most common fix
for this class of design bugs is the manual addition or removal
of flipflops to satisfy the correct timing behavior of the circuit.
These bug models are called missing flipflop and extra flipflop.

In the pre-silicon stage, a design is verified against its
specification by verification tools. A specification describes the
correct timing behavior of a design. The work in [5] presents a
formal method to specify the relations between multiple clocks
and to model the possible behaviors. Then, a hardware design
is verified against the specified clock constraints. An efficient
clock modeling approach is presented in [6] to handle clock re-
lated challenges uniformly. Clock constraints are automatically
generated to avoid unnecessary unrolling and loop-checks in
Bounded Model Checking (BMC).
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The work in [2] presents a model based on Boolean sat-
isfiability to automate debugging of logic bugs. A circuit is
enhanced with correction logic in order to find the potential
fault candidates. The work in [3] uses randomly generated
counterexamples for debugging and applies automatic cor-
rection based on re-synthesis. An exact debugging approach
based on Quantified Boolean Formulas (QBF) is proposed in
[4]. That creates high quality counterexamples to find fault
candidates fixing any erroneous behavior. In [7], a pre-silicon
debugging flow is proposed for testbench-based verification
environments. The approach uses diagnostic traces to obtain
more effective counterexamples and to increase the diagnosis
accuracy. All of the mentioned works consider logic bugs in
order to automatically localize and to rectify an erroneous
behavior at the pre-silicon stage.

In this paper, we present an approach to automate the
debugging of timing bugs at RTL at the granularity of clock
cycles. First, timing bugs (extra/missing flipflop) are modeled
and converted into a Boolean satisfiability formula. Having
a counterexample given by a verification tool, our approach
automatically extracts potential fault candidates which explain
the erroneous behavior of the corresponding counterexample.
The erroneous behavior can be fixed by inserting or removing
some flipflops in the circuit. The experimental results show
effectiveness and diagnosis accuracy of our approach.

The remainder of this paper is organized as follows. Sec-
tion I presents our debugging approach and explains how to
model the correction of timing bugs in order to automatically
debug a design using Boolean satisfiability. Section III presents
experimental results on benchmark circuits.

II. APPROACH

At the design step, verification tools check the correctness of
an implemented circuit according to the specification. If there
is a contradiction between the behavior of the implemented
circuit and the specification, this contradiction is returned as
a counterexample.

Having an erroneous behavior (counterexample) caused by
a timing bug, debugging starts. First the circuit is unrolled
as many times as the number of clock cycles constituting
the corresponding counterexample. For example, if the length
of the counterexample is three clock cycles, the circuit C' is
unrolled three times: Cy, C1, and Cs. In this case, the input
of a flipflop from clock cycle i is connected to the appropriate
gates in clock cycle ¢ + 1. In the example circuit of Figure
1, there is a missing flipflop bug. The location of the bug is
shown by a red circle. To debug the circuit, it is copied three
times. The input of flipflop A at cycle i is connected to the
appropriate signal at cycle ¢+ 1. For debugging, we investigate
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Fig. 2. Debugging Instance for Extra FF Bug

at which point of the circuit a flipflop is missing. Therefore, we
need correction logic at each point of the circuit which is able
to model the behavior of a flipflop at the corresponding point.
The green part in Figure 1 shows this model. Multiplexers
are utilized to model a flipflop behavior at every point of the
circuit.

If select line s at point p is active (s = 1), a flipflop behavior
at point p is activated. Therefore, the input of the activated
flipflop at cycle ¢ is connected to the appropriate gates at cycle
i+ 1. If the correction logic is inactive (s = 0), the circuit at
point p has the behavior of a normal wire.

Having correction logic at every point of the circuit, the
inputs and output of the model are constrained according to the
inputs and output values of the corresponding counterexample.
Then debugging answers the following question by activating
the select lines: If a flipflop is added at point p, can the
erroneous behavior of the corresponding counterexample be
fixed? In this case, a SAT solver is utilized to extract all
possible fault candidates.

Figure 2 shows the model for the extra flipflop bug. In
the case, correction logic is applied at the location of every
flipflop in the circuit. Correction logic for the extra flipflop
bug has the reverse behavior in comparison to correction logic
for the missing flipflop bug. For this kind of bug, debugging
investigates if a flipflop is removed, can the erroneous behavior
of the corresponding counterexample be fixed?

TABLE I
RESULTS FOR SINGLE FAULTS

Benchmarks Missing FF Extra FF
Circuit | #Gates #FF #FC Time Mem #FC Time Mem
bo1 49 5 2 607 16 1 301 15
b02 25 4 9 1297 15 3 503 15
b04 707 66 4 2228 23 1 297 16
b05 1054 34 6 981 23 2 403 16
b08 177 21 2 1117 18 2 397 16
b10 211 17 1 1043 18 1 301 16
b1l 790 31 1 1184 24 2 421 17
b12 1062 121 8 19487 28 5 696 19
ged 1012 59 5 892 22 1 314 18
phase. | 1672 55 8 2838 35 2 467 21

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the effects of our debugging
approach experimentally. The techniques described in this pa-
per are implemented using C++ in the WoLFram environment
[8] and are evaluated on sequential circuits of LGsynth93
and ITC-99 benchmark suites. The single faults are randomly
injected by removing a flipflop (Missing FF) or by adding a
flipflop (Extra FF).

The experiments are carried out on a Dual-Core AMD
Opteron(tm) Processor 2220 SE (2.8 GHz, 32 GB main
memory) running Linux. MiniSAT is used as underlying SAT
solver [9]. Run time is measured in CPU seconds, and the
memory consumption is measured in MB.

Having a buggy circuit, the verification process returns an
initial counterexample. Then, our debugging approach finds
the timing fault candidates. Table I presents the experimental
results for single faults. The table shows the characteristics
of the benchmarks (columns 1-3), final number of fault candi-
dates (# F C), the required run time (7'#me), and the maximum
memory consumption (Mem).
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