
Security Validation of VP-based Heterogeneous Systems:
A Completeness-driven Perspective *

Ece Nur Demirhan Coskuna, Muhammad Hassana,b, and Rolf Drechslera,b

aCyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
bInstitute of Computer Science, University of Bremen, 28359 Bremen, German

Abstract

The widespread use of modern, feature-packed heterogeneous systems has increased the need for robust security mea-
sures. A single bug may cause far-reaching and devastating consequences, blocking accessibility of various in-house
and third-party Intellectual Properties (IPs) and resulting in an entire system’s failure. In this regard, the concept of
Completeness-Driven Development (CDD) provides the promise of early detection of bugs and an accelerated design
process. The high-level idea is to use Virtual Prototypes (VPs) at the abstraction of Electronic System Level (ESL) as
the starting point for early hardware/software co-design and verification. Going down the abstraction levels, the next
abstraction in the design process can only be entered if completeness at the current abstraction level has been achieved.
Completeness refers to checking whether the entire behavior of the design has been verified. However, CDD was intro-
duced for functional verification of digital systems without considering security. In comparison, the modern systems are
heterogeneous and security is of utmost importance. In this paper, we look at security validation of VP-based heteroge-
neous systems from the perspective of CDD. We provide an overview of the current state of security validation techniques
and highlight the need for CDD to ensure the security. More concretely, we propose a novel Information Flow Tracking
tool – VAST, for complex heterogeneous systems using SystemC-AMS VPs. VAST targets availability of IPs as the threat
model. Our experimental results on real-world case-studies show the applicability and scalability of VAST.

1 Introduction

The integration of Software (SW), digital Hardware
(HW) with microcontrollers and microprocessors, and
Analog/Mixed-Signal (AMS) Intellectual Property (IP) has
boosted the functionality of heterogeneous embedded sys-
tems widely used in Internet of Things (IOT) devices.
However, as IoT devices store more private information
and perform security-sensitive tasks, the need for higher
security measures has risen in recent years. To ensure
complete security validation in such systems, a holistic ap-
proach is necessary, covering not just the SW or digital HW
but also the AMS IPs such as physical interfaces, sensors,
and actuators [1, 2, 3].
In this regard, Completeness-Driven Development (CDD)
[4] is often approached in which the design process is di-
vided into different abstraction levels, consequently, shift-
ing focus towards verification. The high-level idea is to use
Virtual Prototypes (VPs) at the abstraction of Electronic
System Level (ESL) as the starting point for early design
and verification process, and it progresses to the next ab-
straction level only after achieving completeness, i.e veri-
fying the complete behavior of the design at each level of
abstraction.
While originally CDD was introduced for functional ver-
ification, recent advances in security validation methods

*This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project AUTOASSERT
under contract no. 16ME0117.

in the digital domain using VPs [5, 6, 7, 8, 9] have been
successfully employed early in the design phase. These
methods use Information Flow Tracking (IFT) techniques
to focus on digital hardware from various security concerns
(e.g. confidentiality, integrity, and timing channel). IFT
allows for understanding the flow of information across
a system and identifies potential security flaws in design.
In principle, IFT tags data objects to represent security
classes, which have varying meanings based on the type
of Security Property (SP) being analyzed and verifies in-
formation flow properties, enforcing rules for secure in-
formation flow, such as confidentiality, integrity, isolation,
constant time, and availability. However, modern systems
are heterogeneous with stringent security requirements.
In this paper we provide an overview of security validation
of VP-based heterogeneous systems in the context of CDD.
We propose a novel IFT tool – VAST, for complex hetero-
geneous systems using SystemC AMS VPs [10]. VAST
uses a security property-based verification technique and
analyzes given VPs to detect security vulnerabilities early
in the design phase. We consider the availability problem
as the threat model, which requires IPs to be readily acces-
sible and usable for authorized users. In other words, if the
availability of IPs is not guaranteed, it can cause system
failures and block access to IPs. Our experimental results
on real-world case-studies show the applicability and scal-
ability of VAST.

Static Analyzer

Security PropertiesSystemC AMS Model

Call-Graph

Binding Information

Information Flow Analysis

Static Taint Analysis

Data Flow Analysis

Dependency SetControl Flow Graph

Data Dependency Graph

Clang

In
fo

rm
at

io
n

E
xt

ra
ct

io
n

Results

Figure 1 VAST overview for security validation of VP-
based heterogeneous systems

2 Methodology

This section gives a general overview of VAST and its
workflow. Figure 1 depicts the overall workflow of the tool
to perform IFT analysis for heterogeneous systems. First a
motivating example is provided to demonstrate the security
threat model it addresses. Afterwards, a brief overview of
VAST is provided.

2.1 Threat Model
Threat modeling plays a crucial role in ensuring the secu-
rity of a system, as a single vulnerability can result in its
compromise. In this paper, the considered threat model is
"availability", i.e. timely accessibility, of IPs. In the con-
text of heterogeneous systems, particular attention should
be paid to securing assets involved in AMS interactions,
such as sensors. No sensor input should be allowed to make
the system unusable or unavailable. This can be done by
ensuring the functionality of analog-to-digital and digital-
to-analog interfaces and protecting sensitive data during
transmission between different IP components.

2.2 Motivating Example
The motivating example is used to illustrate the principles
of our methodology. The example is a simplified ECG
monitoring device, which includes components such as
an Electrocardiography (ECG) sensor, an Analog IP with
Schmitt Trigger and Analog Trigger circuit, Digital Con-
troller, Bus, and Memory as shown in Figure 2. The ECG
sensor is connected to the Schmitt Trigger circuit before it
is sent to the Analog Trigger circuit, which decides if the

Memory

Bus

Analog Trigger

Schmitt Trigger
Analog IP

Digital Controller
Digital

ECG

Figure 2 The SystemC AMS design of the motivating
example – ECG monitoring device

signal should be stored in Memory. When ECG signals
surpass a set limit, the Analog IP will identify the irregu-
larity and send a request to the Memory for storage via the
Bus. The Digital Controller regularly carries out read and
write actions in the Memory. To ensure availability, neither
the Digital Controller nor the Analog IP should be able to
block access to the Memory. The ECG monitoring system
is implemented using SystemC-AMS.
Now consider a scenario that an access control policy has
been implemented in the Bus. The highest priority is given
to the Analog IP1 through the use of a priority encoder.
The detection of abnormal heart rate levels, for precaution-
ary or emergency purposes, is made possible through this
implementation. Due to the higher priority given to the
Analog IP, the information flow between the Digital Con-
troller and the Bus is indirect. This vulnerability can be
exploited by an attacker to block the Digital Controller,
making the Memory inaccessible. Detecting this type of
direct/indirect information flow between IPs can be chal-
lenging, especially without advanced automated analysis
techniques.

2.3 VAST - Static Information Flow Track-
ing Tool

In this section we briefly describe the functionality of
VAST. VAST performs static information flow tracking us-
ing security properties provided as input and requires only
a single execution to validate the security properties. It
starts by reading the specified SPs and determining the crit-
ical signals. Then, it uses IFT to perform Static Taint Anal-
ysis (STA), followed by Information Flow Analysis (IFA)
to validate the SPs.

2.3.1 Information Extraction
There are two main phases to perform the static informa-
tion flow tracking: Information Extraction and Static Anal-
ysis.
The Information Extraction phase starts with an SP speci-
fication with respect to the security goal of the entire sys-
tem. For example, if the goal is ensuring availability, i.e.
various IPs are required to be available in a timely manner
[11], SPs can be defined as follows:

SP =
{
(SI,SO)|SI ←{..= HS} ,SO←{..= AA}

}
(1)

In Eq. (1), SP has inputs with the High Security (HS) tag
and outputs that must be Always Available (AA) when
needed.
For instance, an SP of the motivating example can be de-
scribed as follows:

SP = ({st_in= HS} ,{grant_digital= AA}) (2)

In Eq. (2), the SP ensures that the signal grant_digital
sent by the Digital Controller to the Bus module must not
be dependent on the primary input st_in of the Schmitt
Trigger module.
After the definition of SP, the Binding Information (BI) is
extracted for the module connectivity. This information is

1It is a common practice to use such policies in interrupt controllers.

n3

n2n1

n9 n10

n4

n12

n17

n13

n14
n16

n15

n8

n7 n6

n5

Analog Trigger
Schmitt Trigger

Digital Controller

Bus
n11

n1: Schmitt Trigger input
n2: dz_hysteresis
n3: z_hysteresis
n4: Schmitt Trigger output
n5: Analog Trigger input
n6: dx_capacitor
n7: x_capacitor
n8: Analog Trigger output
n9: clock
n10: count
n11: Digital Controller out
n12: request from digital (Controller)
n13: request from digital (Bus)
n14: data from controller (Bus)
n15: request from analog (Bus)
n16: Grant for analog
n17: Grant for digital

Figure 3 A part of extracted DDG of the ECG monitor-
ing device

crucial for understanding how data moves through the sys-
tem and for constructing Call-Graphs (CG). The method
constructs the call-graph once at the beginning. The CG is
used to coordinate the analysis so that the information is
propagated to the correct function inside the AMS VP. As
a result, it makes use of the BI to appropriately identify the
function calls.
At the next step, Control Flow Graph (CFG) is extracted
from the Abstract Syntax Tree (AST) of the VP to un-
derstand the relationship between various statements (data
flow and control flow) of the design. Then, the Data De-
pendency Graph (DDG) is used to understand the relation-
ship between the variables in a design, including signals,
ports, and global and local variables of all modules [10]. It
provides information on how these variables are connected
to each other and how they interact in the design [5]. For
example, in Figure 3, a part of the DDG of the motivat-
ing example is shown visually with purple-colored nodes
representing input ports, yellow-colored nodes represent-
ing internal signals, and green-colored nodes representing
output ports. The BI is abstracted away.

2.3.2 Static Analysis
Static Analysis consists of Data Flow Analysis (DFA),
Static Taint Analysis (STA) and Information Flow Analysis
(IFA) as shown in Figure 1. The DFA algorithm is used to
identify the test objectives, i.e. definition-use (def-use), for
a given VP by performing intra-function analysis. A proce-
dure referred to as reaching uses is employed to determine
these def-use pairs for a VP, which effectively addresses
the question of "for each defined variable, which uses may
potentially utilize its values?".
Next, the STA algorithm is performed to generate the De-
pendency Set. It starts with a tainted source and adds
variables based on dependence data from the CFG, in-
cluding def-use pairs and use-to-dependence. The use-to-
dependence represents the dependence for variables in the
conditional statements of CFG blocks, where definitions
in the possible succesors to the conditional statements are
stored. For example, in Figure 3, we aim to show clearly
the critical path from the Schmitt Trigger input to the grant
digital with red arrows, which consist of nodes in the De-
pendency Set.

At the end, the IFA algorithm is applied to identify all
potential information flows in an AMS VP by using the
DDG, the CFG, and a set of SPs. The IFA algorithm traces
forward from secure input nodes in the DDG to the out-
put nodes (AA tag), to find out whether a variable is af-
fected by secure inputs (HS tags). The affected variables
are added to a sensitive list of secure inputs SLSI . Addi-
tionally, a backward tracing on the DDG is performed to
find out whether the final output receives its final value via
intermediate variables. Hence, the algorithm extracts the
variables of assignment statements that are explicitly or im-
plicitly related to the outputs with the AA tag. These nodes
are added to the sensitive list of secure outputs SLSO along
with the corresponding design variables. Then, the CFG
is analyzed to find sensitive control signals that affect the
occurrence of updates on variables with AA tags. The algo-
rithm extracts control variables from each condition node
in the CFG, such as if-else statements, and performs fur-
ther analysis if there is an overlap with the sensitive list of
secure inputs. The purpose of this analysis is to find as-
signment statements where the left-hand side variables are
in the list of secure outputs SO for explicit flow or the list of
sensitive secure outputs SLSO for implicit flow. If any flow
exists in the design, the condition and assignment nodes in
the CFG are reported back to the user.

3 Experimental Results

To evaluate the effectiveness of VAST on complex
heterogeneous systems, a car anti-trap window system
(26604 line of codes) is used [10]. In this experiment, the
system regulates the window’s movement (up and down)
while preserving the safety of the passengers. When an ob-
stacle such as a passenger’s finger is detected, the current
flow changes, notifying the controller to halt and prevent
hazards.
Regarding availability security concern, the detection of
the obstacle must be independent from unrelated signals
such as the up/down control buttons that change the move-
ment of the car window. In such a system, this security
breach may result in an attacker being able to take control
of the system. To assess the security of the design against
this attacker, we have defined five availability SPs. VAST
found that one of these SPs was unsatisfied, which is given
in Eq. 3.

SP = ({up_key_o = HS} ,{obstacle_detected_o = AA})
(3)

Eq. (3) checks if the flow of the obstacle_detected_o sig-
nal to the ECU is dependent on the other signals. Ac-
cording to the SP, the signals that are used for the detec-
tion of the obstacle, such as the obstacle_detected_o sig-
nal, must be available in the ECU regardless of the val-
ues of any unrelated signal, such as the up_key_o sig-
nal sent by the corresponding module. VAST found that
the variable clamping_protection_current_state was de-
pendent to up_key_o. Consequently, this variable was
a controlling variable of a switching block that affects
obstacle_detected_o, and caused the SP to fail. The exper-
iment was carried out on a PC equipped with 24 GB RAM

and an Intel Core i7-8565U CPU running at 1.8 GHz. The
run time for this example was 167.2 s.

4 Discussion and Future Work

One possible direction is to investigate the transferabil-
ity of the SPs. We believe that the proposed methodol-
ogy should be extended/expanded as per CDD concepts by
performing potential vulnerability analysis in subsequent
abstraction levels to cover all vulnerabilities. This may
deepen our understanding of the transferability of verified
SPs, with respect to the CDD flow [4].
Additionally, suitable completeness measures are needed
for each abstraction level to check the entire behavior of the
design. In this regard, security metrics and coverage met-
rics need to be explored. Furthermore, even if the security
metrics of the design are satisfied for an abstraction level,
going down to a lower level abstraction may introduce
new vulnerabilities. These are called "the transformation-
induced" changes in the design while moving between var-
ious abstraction levels (e.g., SystemC/RTL/Gate/Layout).
They can expose the design to additional vulnerabilities.
In this regard, the security properties should be adapted
for the next abstraction level, e.g., from SystemC AMS to
Verilog AMS or gate-level, new signals may appear in the
design. This requires an additional property definition to
maintain the security goal same as the security goal at the
system-level. As a next step, we aim to explore techniques
to assist accurate transformation and SP refinement.

5 Conclusion

We have introduced a novel VP-based IFT tool against
availability security properties for heterogeneous systems
in the context of CDD. VAST utilizes static information
flow tracking that operates directly on the SystemC-AMS
VP models. It includes data flow analysis and taint anal-
ysis to identify static paths that violate specified availabil-
ity properties. Vulnerabilities of the design are reported
back to the user for further inspection. The effectiveness
of VAST has been shown in real-world systems.

6 Literature

[1] I. Polian, “Security aspects of analog and mixed-
signal circuits,” in 2016 IEEE 21st International
Mixed-Signal Testing Workshop (IMSTW), Jul. 2016,
pp. 1–6.

[2] A. Antonopoulos, C. Kapatsori, and Y. Makris,
“Trusted Analog/Mixed- Signal/RF ICs: A Survey
and a Perspective,” IEEE Design & Test, vol. 34,
no. 6, pp. 63–76, Dec. 2017.

[3] M. Elshamy, “Design for security in mixed analog-
digital integrated circuits,” Ph.D. dissertation, Sor-
bonne université, 2021.

[4] R. Drechsler, M. Diepenbeck, D. Große, U. Kühne,
H. M. Le, J. Seiter, M. Soeken, and R. Wille,
“Completeness-Driven Development,” in Graph

Transformations, ser. Lecture Notes in Computer
Science, H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, Eds. Berlin, Heidelberg: Springer,
2012, pp. 38–50.

[5] M. Hassan, V. Herdt, H. M. Le, D. Große, and
R. Drechsler, “Early SoC security validation by
VP-based static information flow analysis,” in 2017
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov. 2017, pp. 400–407.

[6] M. Goli and R. Drechsler, “ATLaS: Automatic De-
tection of Timing-based Information Leakage Flows
for SystemC HLS Designs,” in 2021 26th Asia and
South Pacific Design Automation Conference (ASP-
DAC), Jan. 2021, pp. 67–72.

[7] M. Goli, M. Hassan, D. Große, and R. Drechsler, “Se-
curity validation of VP-based SoCs using dynamic in-
formation flow tracking,” it - Information Technology,
vol. 61, no. 1, pp. 45–58, Feb. 2019.

[8] M. Goli and R. Drechsler, “Early SoCs Information
Flow Policies Validation using SystemC-based Vir-
tual Prototypes at the ESL,” ACM Transactions on
Embedded Computing Systems, Jun. 2022.

[9] P. Pieper, V. Herdt, D. Große, and R. Drechsler, “Dy-
namic Information Flow Tracking for Embedded Bi-
naries using SystemC-based Virtual Prototypes,” in
2020 57th ACM/IEEE Design Automation Confer-
ence (DAC), Jul. 2020, pp. 1–6.

[10] E. N. Demirhan Coskun, M. Hassan, M. Goli, and
R. Drechsler, “VAST: Validation of VP-based Het-
erogeneous Systems against Availability Security
Properties using Static Information Flow Tracking,”
in 24th International Symposium on Quality Elec-
tronic Design (ISQED’23), Apr. 2023.

[11] E. Jonsson, “Towards an integrated conceptual model
of security and dependability,” in First International
Conference on Availability, Reliability and Security
(ARES’06), Apr. 2006, pp. 646–653.

