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Abstract—High performance and on-time calculations of Ma-
chine Learning (ML) algorithms are essential for emerging
technologies such as autonomous driving, Internet of Things (IoT)
or edge computing. One of the major algorithms used in such
systems is Convolutional Neural Networks (CNNs), which require
high computational resources. That leads designers to leverage
ML accelerators like GPGPUs to meet design constraints. How-
ever, selecting the most appropriate accelerator requires Design
Space Exploration (DSE), which is usually time-consuming and
needs high manual effort.

In this paper, we present a novel automated approach, enabling
designers to fast and accurately estimate the performance of
CNNs for GPGPUs in the early stage of the design process. The
proposed approach uses static analysis for feature extraction and
Decision Tree regression analysis for the performance estimation
model. Experimental results demonstrate that our approach can
predict CNNs performance with an absolute percentage error of
5.73% compared to the actual hardware.

Index Terms—Edge Computing, Internet of Things, Convolu-
tional Neural Networks, Performance Estimation

I. INTRODUCTION

Convolutional Neural Networks (CNN) can handle massive,
unstructured data and are widely used in emerging technolo-
gies such as application-specific Internet of Thing (IoT) de-
vices or Edge Computing Server to perform various tasks rang-
ing from image and video recognition, and image segmentation
to natural language processing [1], [2]. CNN is one of the most
popular Deep Learning (DL) techniques used in autonomous
driving where real-time and high-performance computations
are essential [3]. However, they require high computational
resources, e.g., the convolutional layers, made up of 4-
dimensional convolutions, are responsible for over 90% of the
computation and require massive processing amounts of data
with potentially trillions of computations per second [4]. That
leads designers to use Machine Learning (ML) accelerators
like General Purpose Computation on Graphics Processing
Units (GPGPUs) to gain performance and meet the time-to-
market constraints.

In general, the DL life-cycle has two main phases, which
are 1) training, where the DL models are trained based on the
training data set, and 2) inferencing, where the finally trained
DL models (e.g. a CNN) are executed on real hardware. Since
the training phase is offline, high-performance computing
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devices (e.g., powerful data centers GPGPUs like the Nvidia
V100 and Nvidia A100) are usually used without restrictions
on non-functional design aspects. In contrast, the inferencing
phase is an online process where the non-functional design
aspects are vital in defining the overall design constraints.
For example, in the case of (small) IoT devices, the selected
accelerator directly impacts the design constraints such as low
latency and cost of the final product [5].

Hence, selecting the right DL accelerator (e.g., GPGPUs) in
this phase is of utmost importance to perform on-time com-
putations (e.g., in the case of autonomous driving) and meet
design constraints. Without a fast and automated approach,
designers must build several prototypes and test numerous
hardware platforms to find the right accelerator for the in-
ferencing phase, which is very time- and cost-intensive.

To overcome this issue, several automated methods have
been developed that can be divided into two main categories:
GPGPU simulators [6], [7] and ML-based estimation meth-
ods [8]–[10]. GPGPU simulators such as GPGPU-Sim [6],
or GPU-ocelot [7] are usually used to perform Design Space
Exploration (DSE) and obtain the performance of a given
application without the need for actual hardware execution.
They use a combination of performance counters and specific
hardware details to measure the performance of applications.
The obtained results have an accuracy between 10% to 20%
compared to the actual hardware execution [10]. However,
these simulators require a significant execution time to ob-
tain the results and thus are significantly slower than actual
hardware execution. On the other hand, ML-based estimation
methods provide designers with a fast solution to obtain the
design parameters of a given application, such as performance.
However, they either require specific performance counters,
kernel settings [9], [10], or detailed platform descriptions and
the scheduling of different CNNs operators on different plat-
form processing [8], which may only sometimes be available.

This paper focuses on the performance estimation of CNNs
for GPGPUs, one of the most popular DL models in various
domains. We present a novel approach, allowing designers to
predict a given CNN’s performance for GPGPUs quickly. In
contrast to the existing methods that rely on specific setups
(performance counters or kernel settings), the proposed ap-
proach is developed based on a simple ML model and easy-to-
extract features, namely CNNs number of trainable parameters,
number of Parallel Thread Execution (PTX) instructions, and



GPGPUs architectural information.
The experimental results demonstrate the effectiveness of

our approach in estimating the performance of CNNs for
GPGPUs where a Mean Absolute Percentage Error (MAPE)
of 5.73% with an R2 of 0.45 and an adjusted R2 of 0.19
in comparison to the actual hardware execution is obtained.
Moreover, our proposed approach is significantly faster.

In summary, the main contributions of this paper are as
follows:

• proposing a quick and highly accurate performance pre-
diction model of CNNs for GPGPUs with a minimal de-
pendency on the runtime performance counter compared
to the state-of-the-art methods. The proposed approach
has no runtime dependency for the final prediction,

• supporting the cross-platform prediction due to the con-
sideration of hardware features,

• comparing different ML algorithms to obtain the best per-
formance predictive model (i.e., Decision Tree regression
analysis),

• evaluating the proposed approach on estimating the per-
formance of different standard CNNs for various GPG-
PUs such as Nvidia 1080Ti, and V100S.

The rest of this paper is organized as follows. Section II
discusses the related works on performance estimation for
GPGPUs. Section III describes the preliminaries for CNNs
and Parallel Thread Execution (PTX). Section IV lays the
basic methodology of our approach. Section V discusses the
experimental results. Finally, Section VI concludes this paper
and provides an outlook.

II. RELATED WORK

Performance estimation significantly impacts performing
DSE in various domains, such as embedded software and
hardware/software co-design. In general, the performance es-
timation (number of Instructions Per Cycle (IPC)) of a given
application (e.g. CNN) for a target device (e.g. GPGPU) can
be divided into two main categories, which are 1) ML-based
methods which learn the relationship and complicated rules
from a set of training data in the training phase [10]–[14], and
2) statistical analysis of the application and devices [8], [15],
[16]. In the following, we explain some of the most relevant
literature to our work.

The method in [15] predicts the performance of the CNNs
training process on a single GPGPU. Since, in the training
process, the estimation of neural networks performance has
different aspects and features, the method cannot predict the
required number of cycles for a given CNN running on a given
GPGPU. The method in [15] uses linear regression and the
so-called Per Layer Model, which determines the computing
complexity of CNN training on a single GPGPU. In contrast,
we focus on estimating the performance of a trained CNN
running on different GPGPUs, often referred to as inferencing.

The method presented in [13] uses ML-based algorithms to
predict the performance of a CNN on a given GPGPU. The
method is applied to five different ML-algorithm: Multiple
Linear Regression, Multi-Layer Perceptions, Support Vector

Regression, Random Forest, and extreme Gradient Boosting.
It enables designers to estimate the performance of new
CNNs on a GPGPU. As predictors, a set of CNN attributes
ranges from the number of hidden layers, filter, and input
size to the total number of FLOPs. However, the method is
limited to a single device, with no device-specific features
and specifications as predictors. Therefore, for a given device,
a new model needs to be trained that can only predict the
performance of CNNs on this specific device.

Moreover, a new training dataset concerning the new device
is also required. Thus, several models must be trained to
cover, e.g., a decent design space. Hence, the main advantage
of our proposed approach is the support of cross-platform
estimation since we consider device features and specifications
as predictors like base frequency or L2 cache.

In [10], an estimation model based on various applications
run at different GPGPU configurations is introduced. The
model learns how applications to scale as the GPGPU’s con-
figuration changes from the measured performance and power
data. However, considering a general solution to estimate the
performance and power consumption of all application types
can reduce the accuracy of the final result. This is mainly
because applications from various domains have different
features and characteristics. Hence a single predictive model
usually needs clarification to find the relationship.

The method in [11] predicts the power consumption of
CNNs on GPGPUs with neural networks. The PTX instruc-
tions are categorized, and the total number per category, and
the GPGPUs’ architectural details, are used as predictors. The
method in [17] uses a K-Nearest Neighbors (K-NN) regression
and reduced feature space for power prediction. Due to the
feature selection technique, a similar accuracy with a faster
training time in comparison to [11] is achieved. However,
neither of the approaches can support performance estimation.

The ALOHA method [8] presents a statistic approach for
power and performance estimation of various applications
considering the impact on Neural Architecture Search (NAS)
on heterogeneous systems (e.g. GPGPUs and FPGAs). For a
given device and CNN, it can estimate operations and data
transfers and their deployment of computing and commu-
nication resources. This provides designers with important
information for NAS. Moreover, it reports CNN’s latency and
energy consumption on the platform. However, this method
requires an execution model for the different heterogeneous
systems provided; hence, the platform and the scheduling of
various CNN operations may only be available.

In [16], a time analysis framework for CNNs on multi-GPU
scenarios is introduced. The analysis framework can predict
the CNNs’ training time on multi-GPU parallel scenarios.
As mentioned earlier, features for analyzing a given CNN
training time are different from the execution (inferencing)
of the CNN on GPGPUs. Hence, the method cannot support
CNNs performance estimation.

Overall, although the results of the previously proposed
performance estimation methods are complementary to our
approach, they have some limitations in terms of lacking
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Fig. 1: The general architecture of a CNN model adjusted from
[19].

the support of multi-threaded systems (e.g. GPGPUs), cross-
platform prediction (i.e., the number of IPC for different
types of CNNs as well as different types of GPGPUs), the
need of details platforms scheduling as well as different
CNN operations or focusing on the training process of the
CNN. Hence, the main goal of this work is to overcome the
limitations mentioned earlier.

III. PRELIMINARIES

In this section, we explain some essential preliminaries
and introductory concepts of CNNs algorithm and structure,
i.e., trainable parameters, convolutional layers, stages, and
Parallel Thread Execution (PTX) code that are necessary to
understand the proposed approach and to make the paper stand
alone.

A. Convolutional Neural Networks

CNNs are mainly designed for image classification or
recognition but are used in many more areas. They differ in
size, accuracy, and complexity depending on the use case, the
number of layers, and neurons per layer [1], [2]. The so-called
trainable parameters are one option to describe the complexity
of a CNN. They are the number of connections of a neural
network [18]. Fig. 1 illustrates the general architecture of a
CNN model with n input neurons and m output neurons.
In a fully connected neural network, each layer node has
n connections, one to each node of the following layer.
Consequently, the fully connected layers at the end of the CNN
in Fig. 1 has n ×m weighted connections. The connections
between each model layer must be considered to obtain the
CNN’s total number of trainable parameters.

In the case of a convolutional layer, the trainable parameters
depend on the number and size of the kernel used in the
convolutional layer. A convolutional layer can have three
stages which are 1) convolution, 2) activation, and 3) pooling.
In the first stage, several convolutions are executed in parallel.
The second stage applies the linear activation function, such
as Rectified Linear Unit (ReLU) activation function. The
third stage performs a pooling function such as the max-
pooling [19]. This stage is optional and not included in all
convolutional layers. For example, the Alexnet has three max-
pooling layers and six convolution layers [20]. The max-
pooling function selects the highest value from a kernel or

1 / / G e n e r a t e d by LLVM NVPTX Back −End
2 . v e r s i o n 6 . 0
3 . t a r g e t sm 61
4 . a d d r e s s s i z e 64
5 . . .
6 . r e q n t i d 256 , 1 , 1{
7 . r e g . p r ed %p<14>;
8 . . .
9 mov . u32 %r13 , %c t a i d . x ;

10 mov . u32 %r14 , %t i d . x ;
11 s h l . b32 %r15 , %r13 , 1 0 ;
12 s h l . b32 %r16 , %r14 , 2 ;
13 or . b32 %r1 , %r16 , %r15 ;
14 s e t p . l t . u32 %p1 , %r1 , 718296;
15 @%p1 b r a LBB0 2 ;
16 b r a . u n i LBB0 1 ;
17 LBB0 2 :
18 l d . param . u64 %rd10 , [ fus ion 135 pa ram 0 ] ;
19 . . .
20 LBB0 1 :
21 r e t ;}
22 . . .

Fig. 2: Part of the PTX file of a CNN model.

window with n × m size. Technically, the second and third
stages do not have trainable parameters. However, to calculate
the trainable parameters for a fully connected layer following a
convolutional or pooling layer, it is necessary first to calculate
the output dimension of the convolutional or pooling layer.
Consequently, the architectural parameters of the pooling layer
are essential too.

B. Parallel Thread Execution (PTX)

Nvidia provides the Compute Unified Device Architec-
ture (CUDA) to execute general-purpose code on Graphic
Processing-Units (GPUs) [21]. Every application written in
CUDA is executed in so-called kernels1 on the GPGPU.
These are defined in the PTX code generated by compiling
the CUDA code with the nvcc compiler. The PTX is an
Instruction Set Architecture (ISA) for GPGPUs. It contains
all computational instructions (such as ADD, MUL, FMA,
etc.) and all memory accesses (write and read). One important
factor in defining a CNN’s complexity is considering the total
number of PTX instructions. However, the exact number of
executed instructions cannot be statically obtained from the
PTX code. Fig. 2 shows a part of the PTX file generated
from a given CNN. As illustrated in this figure, lines 15
and 16 demonstrate jumping operations (e.g. bra) in the PTX
file. Hence, a static analyzer cannot identify whether a block
of instructions is executed once or multiple times (due to
the dynamic dependency). Consequently, to obtain the exact
number of executed instructions, execution of the PTX file on
a real GPGPU, with symbolic execution or with a simulator,
is inevitable.

IV. PERFORMANCE ESTIMATION OF CNNS

The proposed methodology comprises two main phases
illustrated in Fig. 3. In the following, we explain each phase
of the proposed approach in more detail.

1Please note that these kernels are not related to the kernels of the CNN
mentioned above
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A. Training Dataset Creation

The performance (accurate number of IPC) of a given
CNN running on a GPGPU is significantly related to two
main factors: the architectural features of the GPGPU and
the complexity of the CNN model. The architectural features
(CUDA cores, memory, registers, or L2 cache) of a GPGPU
are defined based on the type, size, and number of components
the GPGPU consists of. Hence, the performance of a CNN
running on different GPGPUs is not identical and varies. We
extract these architectural features of GPGPUs that impact
the required number of IPC when a CNN runs on them.
When the training dataset is built, this information is used
as a predictor (inputs). This work considers two different
GPGPUs, the NVIDIA V100S and the NVIDIA GTX 1080Ti,
for the training phase. They have different specifications and
architectures to cover a variety of features.

The number of trainable parameters and the total number
of PTX instructions can specify the complexity of neural
networks. A trainable parameter is a weighted connection be-
tween the neurons, meaning more trainable parameters needs
more calculations to produce the final output. To obtain the
trainable parameters for a given CNN, we perform a static
analysis using the Static Analyzer module (Fig. 3), where
first, the trainable parameters for each convolutional layer are
calculated. Next, based on the number of layers, the total
number of trainable parameters for the CNN is achieved.

The Static Analyzer module performs all calculations for
all 32 CNNs used during the first phase illustrated in Fig. 3.
The results of the Static Analyzer module are unified with all
other predictors in the training dataset. Modern frameworks
like Pytorch and Tensorflow supply functions that can be used
to calculate the trainable parameter fast and accurately.

Tab I provides an overview of the CNNs used for all
experiments. They differ in various aspects, like the number
of layers, neurons, or input layer size. As the table shows,
most CNNs have the same input size. That is because most
are trained on the ImageNet data set. However, we ensure that
also CNNs with different input sizes are considered.

We use dynamic code analysis and symbolic execution to
calculate the number of PTX instructions needed to execute a

TABLE I: An overview of CNN models used in the experi-
ments

Model name Input Size Layers Neurons Trainable Parameters
m-r50x1 224 × 224 50 15,903,016 25,549,352
m-r50x3 224 × 224 50 143,111,080 217,319,080
m-r101x3 224 × 224 101 25,3408,168 387,934,888
m-r101x1 224 × 224 101 28,158,248 44,541,480
m-r154x4 224 × 224 154 611,981,544 936,533,224
resnet101 224 × 224 101 55,886,036 44,601,832
resnet152 224 × 224 152 79,067,348 60,268,520
resnet50v2 224 × 224 50 31,381,204 25,568,360
resnet101v2 224 × 224 101 51,261,140 44,577,896
resnet152v2 224 × 224 152 75,755,220 60,236,904
nasnetmobile 224 × 224 771 27,690,705 5,289,978
nasnetlarge 331 × 331 1041 290,560,171 88,753,150
densenet121 224 × 224 121 49,926,612 7,978,856
densenet169 224 × 224 169 60,094,164 14,149,480
densenet201 224 × 224 201 77,292,244 20,013,928
mobilenet 224 × 224 28 16,848,248 4,231,976
inceptionv3 299 × 299 48 32,554,387 23,817,352
vgg16 224 × 224 16 15,262,696 138,357,544
vgg19 224 × 224 19 16,567,272 143,667,240
efficientnetb0 224 × 224 240 25,117,095 5,288,548
efficientnetb1 240 × 240 342 40,150,331 7,794,184
efficientnetb2 260 × 260 342 50,908,981 9,109,994
efficientnetb3 300 × 300 387 87,507,971 12,233,232
efficientnetb4 380 × 380 477 180,088,531 19,341,616
efficientnetb5 456 × 456 579 358,290,427 30,389,784
efficientnetb6 528 × 528 669 605,671,091 43,040,704
efficientnetb7 600 × 600 816 1,046,113,195 66,347,960
Xception 299 × 299 71 62,981,867 22,855,952
MobileNetV2 224 × 224 53 21,815,960 3,504,872
InceptionResNetV2 299 × 299 164 81,201,907 55,813,192
alexnet 227 × 227 8 650,000 58,325,066

specific CNN. Therefore, our dynamic code analysis module
parses the PTX code of a CNN and generates a dependency
graph G = {E ,V } structure, showing all the data depen-
dencies inside the code. Each node n ∈ V represents one
instruction of the belonging PTX code. An edge e ∈ E is
added between to nodes n when a data dependency is detected
between the belonging PTX instructions. Based on these data
dependencies, a control flow is generated. Afterward, the
dynamic code analysis slices the instructions (e.i., subgraph
Gv∗ = (V ′, E′) of G = (V,E)) that need to execute to verify
which path at a branch to choose. By this, we overcome the
lack of speed of a traditional simulator since we only execute
a small part of the code (e.i., Gv∗ ). Moreover, this enables our
approach to calculate the total number of PTX instructions for
any CNN without executing it on an actual GPGPU. The total
number of PTX instructions – calculated by the dynamic code
analysis – is used as predictors (inputs) for the training data
set.

By running CNNs on GPGPUs, we can obtain the accurate
number of IPC considered as the training dataset’s response
(output). Thus, we are executing all of our 32 test CNNs
on different GPGPUs while measuring the number of IPC
with the nvprof profiler provided by NVIDIA. We ensure that
the 32 CNNs, used for the dataset generation have different
complexities and sizes.

An item of the final training dataset D is formally denoted
by a vector:

d = (y , p, c1 , .., cm , t) (1)

Where for each observation d , the input parameters p, c, t
identify the total number of instructions, the GPGPU architec-
tural features, and the CNN trainable parameters, respectively.
The output parameter y denotes the measured performance
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(number of IPC) of each CNN running on GPGPUs. D is the
set of all measured data points n and di, 1 ≤ i ≤ n denotes
the i-th training data. The training data set D is split into
Dt containing 70% of the data points for training and Dv

containing 30% of all data points for evaluation. Moreover, we
ensure that no data points exist in both data sets. Consequently,
all evaluation data points are completely new to the trained
model.

B. Predictive Model Generation and Evaluation

We evaluate five different standard ML algorithms, namely
Decision Tree, K-Nearest Neighbors (K-NN), Random Forest
Trees, Linear Regression and eXtreme Gradient Boosting (XG-
Boost). Machine learning aims to locate patterns in the given
set that provide the most straightforward explanation possible
of the phenomenon. That follows Occam’s razor, which states
that if several theories explain a given phenomenon, the one
making the least assumptions probably is the right one [22].

We selected the Linear Regression to justify if there are
linear dependencies between the output (e.g., number of IPC)
and the predictors. Moreover, we selected K-Nearest Neigh-
bors and Decision Tree regressions to consider algorithms
that can show non-linear dependencies. Since the Random
Forest Tree is an ensemble of Decision Trees, we consider
them an advanced method of the Decision Tree. Since the
execution time of our predictive model is important to speed
up the DSE, we take the XGBoost into account, a frequently
used boosting system, to improve execution time and accuracy
of tree classifications and regressions [23]. Furthermore, the
runtime of KNN is significant depending on the dataset
since the execution time increases linearly proportional to the
number of data entries in the training data set, which can cause
the necessity of faster techniques. Because the training dataset
is small, we do not consider neural networks for prediction.
To train neural networks, large training datasets are usually
needed.

As shown in Fig. 3, for a given new CNN (in the evaluation
step of the second phase), the GPGPU architectural features
and the CNN trainable parameters (inputs of the predictive
model) are extracted using the Static Analyzer module. The
total number of PTX instructions is extracted from abstract
PTX files by the dynamic code analysis module (as the PTX
contains dynamic information such as the length of loops or
jump instructions based on the comparison). Consequently,
no execution of the CNN on real hardware or cycle-level
simulators (which take much longer than real devices) is
required.

We evaluate our experimental results using the Mean Abso-
lute Percentage Error (MAPE) and the R2 coefficient. That
also enables us to compare our results to state-of-the-art
research. The R2 coefficient reports the correlation between
the predictive model and underlying data. It returns a value
between 0 and 1. An R2 near 1 means a high correlation
between the model and underlying data.

TABLE II: Comparison of four different ML-Regression al-
gorithms in terms of accuracy and execution time

Regression Model MAPE R2 adj. R2

Linear Regression 8.07% -0.0034 -0.4439
K-Nearest Neighbors 5.94% 0.34 0.08
Random Forest Tree 7.12% 0.22 -0.12
Decision Tree 5.73% 0.45 0.19
XG Boost 7.59% 0.14 -0.24

TABLE III: Predictors descriptions used by the Decision Tree

Features Brief description Importance
Executed Instructions Number of instruction to be executed 0.0141
trainable params Number connections between neurons 0.2599
Memory Bandwidth Available memory bandwidth 0.72583

V. EXPERIMENTAL RESULTS

Our experimental results demonstrate that the performance
prediction based on GPGPU architectural features, the number
of CNN instructions, and trainable parameters is promising.
We evaluate five ML-algorithm: Linear Regression, K-Nearest
Neighbors, Random Forest Tress, Decision Tree, and XG-
Boost. Table II illustrates an overview of the experimental
results. The Linear Regression achieves the worst results with
a MAPE of 8.07% followed by XG Boost with a MAPE of
7.59%. The Random Forest Tree, the KNN, and Decision
Tree are close with a MAPE of 7.12%, 5.94%, and 5.73%,
respectively.

The R2 and adjusted R2 of the Linear Regression indicate
no linear dependencies between output and predictors. The
other interesting point in this experiment is that the results
of the Decision Tree are better than Random Forest Trees.
The main reason could be that the decision is taken based
on the average value of all included Decision Trees for
Random Forest Tree. Therefore, the results could be distorted
if decision trees exist with poor accuracy.

All regression models considering nonlinear dependencies
show promising results based on the experimental results. Due
to the obtained results, we decided to build the predictive
model based on the Decision Tree algorithm. However, these
results can be improved by considering a more extensive range
of GPGPUs for the generation of training data sets.

Fig. 4 shows the predicted and original performance of
six randomly selected standard CNNs [20], [24], [25] (which
are entirely independent of the training phase) on our final
Decision Tree (predictive model). The results for the Decision
Tree are illustrated in 4a, for the KNN in 4b, for the XG Boost
in 4c and for the Random Forest Tree in 4d. As the figures
illustrate, all predictive models’ predictions are close to each
other and do not differ significantly. Compared to the real
hardware, namely Nvidia GTX 1080Ti, the proposed approach
achieves a MAPE of 5.73%, and in the best case, the exact IPC
value is predicted by the Decision Tree for the EfficientNetB7.
Table III reports the three predictors with the most impact
on the model. The Decision Tree predictors are chosen based
on performing the Gini Coefficient at the predictive model
training phase. As shown in this table III, we use one GPGPU
architectural predictor i.e. Memory Bandwidth and two CNN-
related predictors, i.e. number of executed instructions and
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(d) Random Forest Tree predicted

Fig. 4: Predicted performance compared to original performance

trainable parameters. Based on our analysis, the Memory
Bandwidth has the highest impact on estimating the number
of cycles.

Compared to the recent method presented in [13] with a
MAPE of 14.73%, our proposed approach provides designers
with 2.5 times better accuracy. This comparison also shows
that performance prediction based on CNNs topology, the
number of instructions, and GPGPU architectural information
with the Decision Tree algorithm achieves better results than
[13]. Moreover, as [13], [15] do not consider hardware details
as features for prediction; they cannot perform the cross-
platform estimation. Therefore, their models are limited to a
single GPGPU.

Assume a DSE scenario (as an application of the proposed
approach) where the goal is to obtain the performance of a
given CNN for n GPGPUs, the execution time of the proposed
approach is defined as Test = tdca + (n × tpm) where tdca
and tpm denote the time for our dynamic code analysis and
execution time of PM, respectively. In contrast, the total time

with real GPGPUs to obtain similar results (naive approach)
is defined as Tmeasur = tp × n where tp denote the profiling
time (e.g., with nvprof). Since both tpm and tdca are smaller
than tp (seconds vs minutes), Test is in most cases almost
equal to tp or smaller. In this case, compared to the execution
time of the naive approach Tmeasur , the proposed approach
is significantly faster. That enables designers to estimate the
performance of a given CNN at the early stages and perform
a fast DSE. To prove the concept, Table IV illustrates the
measured execution time of seven standard CNNs and their
profiling with nvprof on seven different GPGPUs (e.g., Nvidia
GTX 1080Ti, Nvidia V100S, and Nvidia Quadro P1000) for
the naive approach and our proposed approach. Our approach
achieves an average speedup of 33 times for one single GPU.
The speedup is even higher for more larger numbers n of
GPGPUs.
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TABLE IV: Execution time comparison of the proposed approach versus the naive approach for eight different CNNs in the
case of various GPGPUs

CNN Naive Approach (s) Ours (s)
tp n=1 n=2 n=3 n=4 n=5 n=6 n=7 tpm tdca n=1 n=2 n=3 n=4 n=5 n=6 n=7

efficientnet b3 663 663 1,326 1,989 2,652 3,315 3,978 4,641 11 24.8 35.8 46.8 57.0 68.8 79.8 90.8 101.8
efficientnet b4 778 778 1,556 2,334 3,112 3,890 4,668 5,446 9 24.0 33.0 42.0 51.0 60.0 69.0 78.0 87.0
efficientnet b5 950 950 1,900 2,850 3,800 4,750 5,700 6,610 8 40.3 48.3 56.3 64.3 72.3 80.3 88.3 96.3
efficientnet b6 936 936 1,872 2,808 3,768 4,680 5,616 6,552 8 60.2 68.2 76.2 84.2 92.2 100.2 108.2 116.2
efficientnet b7 1,037 1,037 2,074 3,111 4,148 5,185 6,222 7,259 1 6.8 7.8 8.8 9.8 10.8 11.8 12.8 13.8
Xception 314 314 628 942 1,256 1,570 1,884 2,198 8 23.6 31.6 39.6 47.6 55.6 63.6 71.6 79.6
MobileNet V2 343 343 686 1,029 1,372 1,715 2,058 2,401 8 12.2 20.2 28.2 36.2 44.2 52.2 60.2 68.2

VI. CONCLUSION

In this paper, we proposed a novel ML-based approach to
estimate the performance of CNNs for GPGPUs. We illustrated
how the performance of a given CNN for GPGPUs can be
estimated by analyzing the CNNs topology and instructions
as well as GPGPUs’ architectural information. Experimental
results sound promising. Our predictive model achieves a
MAPE of 5.73% in performance prediction (accurate number
of IPC) compared to real GPGPUs. Compared to the state-of-
the-art methods, the accuracy of our predictive model is up to
2.5 times better. Moreover, it empowers designers to predict
the performance of a CNN on different GPGPU architectures
without the need for retraining. The proposed approach can
also help designers perform NAS with hardware/software
co-design to predict the performance of different generated
CNN architectures for a wide range of GPGPUs’ architectures
without the need to execute the CNN on all of them. Hence,
the DSE process can be sped up significantly by using our
proposed approach.

As part of our future research, we plan to study other
relevant features of CNNs such as the FLOPs or Multiply-
Accumulate (MAC) operations and dynamic frequency scaling.
Moreover, we work on preparing more standard CNNs and
variations of well-known CNNs and GPGPUs to expand our
training dataset.
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