
Equivalence Checking of Majority-based Function Mapping on
ReRAM Crossbars
*Arighna Deb, **† Kamalika Datta,**† Rolf Drechsler
*School of Electronics Engineering, KIIT DU, Bhubaneswar, India
**Institute of Computer Science, University of Bremen, Bremen, Germany
† German Research Centre for Artificial Intelligence (DFKI), Bremen, Germany
airghna.debfet@kiit.ac.in,{kdatta,drechsler}@uni-bremen.de

Abstract

Recent developments in Resistive Random Access Memory (ReRAM) technology have led to the fabrication of large-scale
crossbar structures. The processor-memory speed gap in conventional computer architectures can be bridged using in-
memory computing on ReRAM crossbars, with suitable mitigation of unwanted sneak path currents. Synthesis of Boolean
functions and mapping them to such crossbars have been investigated by researchers. However, very little effort has been
put in towards verification of such mapping approaches. For smaller designs, the verification of mapping is typically
carried out through manual inspection and simulation. This is an important problem to address as real world designs
are complex and require proper design verification. As such manual inspection and simulation based methods for larger
designs are not practical. In this summary paper, we report an automated equivalence checking approach for majority-
based in-memory designs on ReRAM crossbars, which was published recently. First, we introduce an intermediate data
structure called ReRAM Sequence Graph (ReSG) to represent the logic-in-memory operations, which in turn is translated
into Boolean Satisfiability (SAT) formulas. These formulas are verified against the original function specification using
Z3 Satisfiability solver. The proposed approach has been validated by running on widely available benchmarks.

1 Introduction

Resistive Random Access Memory (ReRAM) or
memristor [1] is an emerging technology that has
opened up new possibilities in circuit design. In-memory
computing on ReRAM crossbars (in which several
ReRAM devices are arranged in a two-dimensional array
structure) can help to bridge the processor-memory speed
gap of conventional computing. Typically, the mapping
approaches translate a given functional specification into a
sequence of low-level micro-operations that can be directly
executed on the crossbar [2, 3, 4]. The metrics commonly
used to compare the approaches are: (a) number of cycles,
(b) size of the crossbar, and (c) energy consumption
to realize a function. Needless to say the complexity
increases with increase in the size of the function. Most
of these methods do not consider sneak path issues during
crossbar operations, which is an important problem to
address.
The existing mapping methods are based on an approach
where correctness of the process is ensured for smaller
circuit modules, and larger circuits comprising of the
smaller modules are assumed to be correctly mapped.
However, this process is not complete and does not cover
all possible scenarios. This emphasizes the need for
equivalence checking to prove that the crossbar micro-
operations generated from the mapping tools are equivalent
to the original functional specification. Thus far, few
verification approaches exist [5, 6] that can check whether
a mapping algorithm correctly realizes the desired function
on ReRAM crossbars, leaving the verification of ReRAM-

based designs largely unexplored.
In this paper, we present an automated equivalence
checking methodology for majority-based in-memory
designs on ReRAM crossbars1. In particular, we
systematically verify the micro-operations performed on
the crossbar against the golden functional specification as
Boolean Satisfiability (SAT) formulas. For this purpose,
we derive a ReRAM sequence graph (ReSG) from the
logic-in-memory designs represented as crossbar micro-
operations and then translate the ReSG into SAT formulas.
These SAT formulas are verified against the original
functional specification using Z3 solver. We validate our
proposed method on several benchmark functions.
The rest of the paper is organized as follows. In Section
2, we present a brief background on ReRAM crossbars
and Boolean Satisfiability (SAT). In Section 3, we present
the design and verification methodology. Section 4
summarizes the experimental results. Finally, we conclude
the paper in Section 5.

2 Background

In this section we briefly discuss about the ReRAM device
and crossbar, and logic operations that can be performed
on the crossbar. We also briefly discuss about the SAT.

1A more detailed version of this work is available in [6]



2.1 Resistive Random Access Memory
(ReRAM)

A ReRAM is a resistive memory device that consists of
an oxide layer sandwiched between two metal electrodes
(p,q) in a Metal-Insulator-Metal structure as shown in
Fig. 1(a). Such a device can be set to a low resistance state
(LRS or logic 1) or a high resistance state (HRS or logic 0)
by applying a suitable voltage across the device terminals.
The behavior of the ReRAM device is shown in Fig. 1(b),
where the values 0 and 1 at terminals p and q represent the
voltages required to switch the internal state r. Essentially,
the ReRAM device realizes the function rn = f (p,q,r) =
pq+ pr+qr, where rn denotes the next state of the ReRAM
device [7]. Fig. 1(c) shows the symbolic representation
of a ReRAM device. Such devices are typically laid out
in a compact fashion as a crossbar structure as shown in
Fig. 1(d), where p and q terminals of ReRAM devices are
connected to the vertical and horizontal wires, respectively,
of the crossbar. A vertical wire (or p terminal) is called a
bitline or column-line and a horizontal wire (or q terminal)
is called a wordline or row-line.

(a) ReRAM structure (b) ReRAM operation [7]

(c) Circuit symbol (d) ReRAM crossbar

Figure 1 ReRAM device and crossbar structure

To realize a Boolean functions on the crossbar, we
sequentially execute several micro-operations in the
crossbar depending on the given function representation,
e.g. Majority-Inverter Graph (MIG) [8]. The micro-
operations are performed by traversing each node in the
corresponding MIG. Each node in a MIG (viz. MAJ3)
realizes a 3-input majority function f (a,b,c) = ab+ ac+
bc.

Example 1 Consider a full adder that takes three binary
inputs a, b and c, and generates two outputs sum = a⊕b⊕
c and carry = ab+bc+ ca. We express the sum and carry
functions as a MIG as shown in Fig. 2(a), which essentially
depicts a netlist comprising of three MAJ3 nodes (denoted
as circles) and two inverters (denoted as solid dots).
Fig. 2(b) depicts the equivalent Verilog description of the
MIG structure. To map the given MIG to a crossbar
circuit (of Fig. 1(d)), we traverse the MIG in a breadth-first
manner and realize node m1 as a sequence of operations
that include realization of b in crossbar located at row 1

(r1) and column 0 (c0) (denoted as 1x0) by applying input
b and logic 1 (TRUE) at wordline 1 (row 1) and bitline
0 (column 0) respectively, followed by the realization of
node m1 in the crossbar located at 1x2 (i.e. row 1 (r1)
and column 2 (c2)) by applying input a and b to wordline
1 and bitline 2 respectively, provided the device at 1x2 is
already initialized to input c (by applying logic 0 (FALSE)
and input c at wordline 1 and bitline 2 respectively). In a
similar manner, remaining nodes of the MIG are realized
as a set of operations. The complete crossbar micro-
operations realizing full adder are shown in Fig. 3(a). The
micro-operations in lines 5-10 in the format (w x y z)
indicate that the signal value x is applied to row w, and
signal value z is applied to column y, of the crossbar. When
we need to apply the state of a cell to a row or column,
the crossbar controller reads the cell value and applies the
corresponding voltage to the row or column. Further, the
execution of each micro-operation leads to the realization
of sub-functions in the crossbar as depicted in Fig. 3(b).

Figure 2 Full adder: (a) MIG, (b) Equivalent verilog
code

(a) (b)

Figure 3 Micro-operations realizing full adder: (a) set of
micro-operations, (b) resulting sub-functions in ReRAM
devices after each micro-operation

2.2 Boolean Satisfiability (SAT)
The Boolean Satisfiability (SAT) is the problem of
determining an assignment α to the variables of a
Boolean function F such that F evaluates to TRUE (Sat).
Otherwise, a proof is generated indicating that no such
assignment exists (Unsat). Typically, F is expressed in
Conjunctive Normal Form (CNF) consisting of conjunction
of clauses. A clause is a disjunction of literals, where each
literal is a normal variable or its negation.



3 Verification of in-memory Logic
Design

In this section, we discuss the intermediate data structure to
represent the operation sequence, and finally describe the
overall verification methodology.

3.1 ReRAM Sequence Graph (ReSG)
As shown in Fig. 3(a), every line in the micro-operation
sequence specifies the values applied to the word and bit
lines of the crossbar, but does not specify the present state
of the device. This makes the generation of functions
from the micro-operations a difficult task. To overcome
this, we use an intermediate data structure called ReRAM
Sequence Graph (ReSG), which is a directed acyclic
graph H = (V,E) composed of four types of vertices,
and represents the micro-operations in the crossbar. The
first two types of vertices have no incoming edges and
represent primary inputs with constant values of 0 and
1 respectively. The third type has no outgoing edges
and represents primary output (or terminal) nodes. The
fourth type has three incoming edges and an outgoing edge
realizing the function f (p,q,r) = pq+ pr+qr, with three
kinds of incoming edges: two regular edges representing
the inputs p and r, and a complement edge denoting the
negation of the input q.

Figure 4 ReRAM sequence graph (ReSG)

Example 2 Consider the micro-operations for a full-
adder shown in Fig. 3 to be transformed into the equivalent
ReSG. We traverse the sequence line-by-line from top
to bottom, and from left to right. The complete ReSG
is shown in Fig. 4. The regular incoming edges p
and r of a functional node are highlighted in red and
green respectively, while the incoming complement edge
is denoted by a dashed blue line. For line 3, the primary
input and two constant input nodes are inserted at level
1 of the ReSG. For line 4, we insert three nodes at level
2 with regular edge r connected to constant input node
FALSE. Once these initial operations are translated into
suitable nodes in ReSG, we consider the operations listed
from lines (5 - 10) realizing the sub-functions. To realize
operation at line 5, we apply 0x1 and TRUE respectively
to the complement and regular edges of the functional node
1x0_1 at level 2, thereby realizing the negation of primary
input b. For line 6, we apply FALSE and 0x2 to the
complement and regular edge p respectively of node 1x2_1

at level 2. As a result, the primary input c is duplicated
at node 1x2_1. For line 7, we add another node 1x2_2
at level 3, where we apply 0x0, 1x2_1 and 1x0_1 at the
regular incoming edges p,r and a complement edge q
respectively leading to the realization of primary output
carry. In a similar fashion, lines 8 to 10 are translated into
ReSG functional nodes at level 3 and level 4 as depicted in
Fig. 4. Finally, we add two terminal nodes sum (1x1) and
carry (1x2) at level 5 of the ReSG and connect them to the
appropriate functional nodes.

We label the functional nodes with the ReRAM crossbar
locations and a number separated by an underscore
(_). The number indicates the sequence number of
the operations being executed sequentially on the same
ReRAM device. For example, the node label 1x1_1
denotes that a sub-function is initially stored on the
ReRAM device located at 1x1, the node label 1x1_2
indicates that the second sub-function is overwritten on the
same ReRAM device, and so on.

3.2 Overall Verification Methodology
The verification methodology is depicted in Fig. 5, where
we consider that a given function is represented as a
Majority-Inverter Graph (MIG). The MIG and ReSG data
structures are considered as the golden and reference
representations respectively. A SAT-based equivalence
checker then determines whether the two representations
are equivalent or not.

Figure 5 Proposed verification methodology

The general idea of SAT-based equivalence checking
is to encode the problem as a Boolean Satisfiability
instance, and use a SAT solver to solve it. In the
present context, if the solver returns unsatisfiable, then the
golden and the reference representations are equivalent.
Otherwise, a counter-example is generated from the
satisfying assignment of the instance.
Every MAJ3 node in the MIG representation is expressed
as a set of clauses compatible with the SAT solver. To
encode the ReRAM micro-operations as a SAT instance,
every functional node of the ReSG is expressed by a set of
clauses. After encoding the MIG and ReSG into respective
SAT instances, we define a miter to check the equivalence
between a MIG and a ReSG.
A miter is a circuit structure composed of a set of 2-
input XOR gates in the first level and an OR gate in the
second level. By applying the input assignments to both
the circuits (viz. golden and reference), the inequality



Table 1 Experimental results

Equivalent cases
Benchmark MIG ReSG

Name PI/PO #Nodes #Clauses t1 (s) #Nodes #Clauses t2 (s) time (s)
sym10 10/1 79 80 0.003 114 343 0.007 0.062
t481 16/1 25 51 0.002 36 109 0.005 0.063
c6288 32/32 1867 1899 0.025 2347 7073 0.095 *
c1908 33/25 296 738 0.006 388 1189 0.018 10.636
c432 36/7 95 233 0.003 124 379 0.009 2.013
c499 41/32 292 762 0.006 356 1100 0.017 9.541
c3540 50/22 824 1989 0.013 1159 3499 0.075 **
*c6288 (time) = 22270.671 s, **c3540 (time) = 15600.673 s
Non-equivalent cases

Benchmark MIG ReSG
Name PI/PO #Nodes #Clauses t1 (s) #Nodes #Clauses t2 (s) time (s)
sym10 10/1 79 80 0.003 115 346 0.007 0.062
t481 16/1 25 51 0.002 37 112 0.006 0.063
c6288 32/32 1867 1899 0.025 2379 7169 0.11 *
c1908 33/25 296 738 0.006 385 1180 0.018 10.333
c432 36/7 95 233 0.003 131 400 0.009 2.331
c499 41/32 292 762 0.006 388 1196 0.021 10.673
c3540 50/22 824 1989 0.013 1151 3475 0.073 **
*c6288 (time) = 22273.673 s, **c3540 (time) = 15600.333 s

between the corresponding outputs are checked by the
XOR operations. In case of multi-output circuits, all the
outputs of XOR gates are combined by the OR operation.
If the OR returns a value 1, it means at least one XOR gate
evaluates to 1, and the MIG and ReSG representations are
non-equivalent; otherwise, they are equivalent.

4 Experimental Evaluation

We present the experimental results in this section. All
the benchmarks are obtained from ISCAS and IWLS. We
have implemented our proposed scheme of constructing
the ReSG, checking equivalence (i.e. miter structure) and
generating clauses in Python 3.6. For checking equivalence
based on Boolean Satisfiability, we have used Z3 solver [9];
however, any standard SAT solver could have been used
for this purpose. All the experiments have been run on a
2.8 GHz machine with a dual core processor and an 8 GB
RAM.
Table 1 summarizes the obtained results. The upper part
of Table 1 reports the cases where the MIG representation
and the corresponding micro-operations (or ReSG) are
functionally equivalent. The average run-time (t1) for
generating clauses from MIGs is very few CPU seconds.
Similarly, the average time (t2) for ReSG generation and
formation of the respective clauses is also a few CPU
seconds. The SAT-solver obtains the solutions very quickly
for all the considered benchmarks except c6288 and c3540,
for which the run-times are higher. Actually, these two
benchmarks have significantly larger number of clauses
as compared to the other benchmarks, resulting in higher
run-time. The proposed method must also detect the non-
equivalence between a given MIG and the corresponding
micro-operations when the latter is erroneous. For this
validation, we modify the micro-operations by randomly
inserting or deleting operations, while keeping the MIG
representation unchanged. As expected, the SAT-solver
indicates that the MIG and the modified micro-operations
are functionally non-equivalent. The lower part of the
table shows such non-equivalent cases. The run-times of
equivalent and non-equivalent cases are approximately the
same because we inserted/deleted a few nodes at the output
ends of the ReSGs.

5 Conclusions

An automated approach to verify the micro-operations
generated from majority-based mapping on ReRAM
crossbar against the original functional specification has
been presented in this paper. The intermediate ReSG
data structure is used for direct generation of the clauses,
which are then fed to the verification tool. The method
has been found to correctly verify the generated micro-
operations by running on several benchmark functions. As
a future work, the mapping approach can be improved
for crossbar circuits by applying various optimizations.
In addition, adequate measures to address the sneak-path
issue in crossbars shall be addressed.

6 Literature

[1] L. Chua, “Memristor – the missing circuit element,”
IEEE Trans. on Circuit Theory, vol. CT-18, no. 5,
pp. 507–519, 1971.

[2] S. Chakraborti, P. Chowdhary, K. Datta, and
I. Sengupta, “BDD based synthesis of boolean
functions using memristors,” in Proc. Intl. Design and
Test Symp. (IDT), pp. 136–141, 2014.

[3] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and
R. Drechsler, “Fast logic synthesis for RRAM-based
in-memory computing using majority-inverter graphs,”
in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 948–953, 2016.

[4] A. Zulehner, K. Datta, I. Sengupta, and R. Wille, “A
staircase structure for scalable and efficient synthesis
of memristor-aided logic,” in Asia and South Pacific
Design Automation Conference, p. 237–242, 2019.

[5] S. Froehlich and R. Drechsler, “Generation of verified
programs for in-memory computing,” in Digital
System Design (DSD-2022), pp. 815–820, 2022.

[6] A. Deb, K. Datta, M. Hassan, S. Shirinzadeh,
and R. Drechsler, “Automated equivalence checking
method for majority based in-memory computing
on ReRAM crossbars,” in Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 489–
494, 2023.

[7] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn,
R. Waser, A. Chattopadhyay, and G. De Micheli, “The
programmable logic-in-memory (plim) computer,” in
2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 427–432, 2016.

[8] L. Amarú, P.-E. Gaillardon, and G. De Micheli,
“Majority-inverter graph: A novel data-structure and
algorithms for efficient logic optimization,” in 51st
ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6, 2014.

[9] L. d. Moura and N. Bjørner, “Z3: An efficient
SMT solver,” in International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pp. 337–340, Springer, 2008.


