Towards Comprehensive Verification of Hardware and Software
for RISC-V based Embedded Systems™

Niklas Brunsl, Sallar Ahmadi-Pourl, Soren Tempell, Rolf Drechsler!2
Institute of Computer Science, University of Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

nbruns@uni-bremen.de, sallar@uni-bremen.de, tempel@uni-bremen.de, drechsler@uni-bremen.de

Abstract

In this extended abstract, we present several approaches for the verification of embedded systems. First, we present four
cross-level approaches for processor verification at the Register-Transfer Level (RTL) using a cross-level setting with
an Instruction Set Simulator (ISS) as a reference model. Second, we present a comprehensive verification approach for

verifying embedded software with symbolic execution.

1 Introduction

With the rising complexity of modern embedded systems,
the verification gap becomes an essential factor in the de-
sign flow. As embedded systems deal with intricate in-
teractions between software and hardware, the verifica-
tion methods should consider these interactions as part
of the system under verification. Modern design flows
for such integrated systems can utilize Virtual Prototypes
(VP), which allow early software development before the
physical hardware exists. Early software development as
well as the functional reference for both software and hard-
ware engineers helps to reduce the gap between design and
development stages. The integration of verification meth-
ods throughout the design and development stages allows
the early mitigation of bugs. In this extended abstract, we
present our recent verification approaches that help bridge
the aforementioned verification gap and help verify the
complex interaction between software and hardware of em-
bedded systems.

In Fig. [T]we illustrate how our verification methods are in-
tegrated around a VP-based design flow. Our cross-level
processor verification approaches aim to verify the RTL
design under test, and use the ISS of the VP as functional
reference model. The test generation techniques of the pro-
posed verification approaches are based on random testing,
coverage-guided fuzzing, and symbolic execution. More
details on cross-level processor verification are provided
in Section E} Furthermore, we also leverage VPs for em-
bedded software verification. To this end, we have imple-
mented a custom ISS which symbolically executes the soft-
ware under test based on symbolic inputs injected via pe-

*This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under
contract no. 16ME0127.

ripherals provided by the VP. Symbolic execution allows
us to maximize path coverage and check for error condi-
tions on each executed path. Refer to Section [3] for more
information.

2 Cross-Level Processor Verifica-
tion

The modular and extensible open-source Instruction Set
Architecture (ISA) RISC-V [} 2], which is very popu-
lar in industry and academia, enables royalty-free proces-
sor design and implementation. However, this modular-
ity and extensibility adds verification complexity as ver-
ification tools must handle the large configuration space
and microarchitecture-specific optimizations. Recently,
approaches tailored explicitly for RISC-V verification have
emerged. The baselines are the official RISC-V unit and
compliance tests [3l [4], which are directed test suites.
An alternative approach is Google’s open-source RISC-V
Design Verification (DV) framework, which uses a co-
simulation that employs an ISS as a functional refer-
ence model for the RTL processor under test and applies
constraint-based specification techniques to generate in-
dividual RISC-V assembly test files. Execution results
between the ISS and RTL processor core are evaluated
through an execution log file comparison.

While RISC-V DV is very powerful in general, it still has
some significant weaknesses. It only uses short instruction
sequences, and the employed instruction set is restricted
to bypass problems with infinite loops and platform-
dependent memory access operations. Furthermore, it
has an extensive filesystem communication performance
overhead because each test file must be compiled, loaded,
and each executed test also creates a log file for compar-

(RISC-V Software]
Application

Embedded
Software
Verification

DMA Sensor

ye RTL SoC
~ -
== S~ ~ P Regs CSRs
Regs CSRs PLIC Memory Core
Memory I/F
Cross-Level ST TS PLIC Memory

Processor
Verification

Sensor

Figure 1 Conceptual overview of our hardware and software verification techniques for RISC-V embedded systems.

ison. Last but not least, the test generator is not guided
by coverage. We investigated the quality of generated
tests of RISC-V DV through a mutation-based comparison
between a reference ISS and a mutated ISS in [5]].

In [6], we addressed many of the abovementioned issues.
Our approach generates endless instruction streams and
tightly integrates the ISS with the RTL core with the
aid of in-memory communication. The setup allows a
restriction-free instruction generation, which enables a
very comprehensive test approach.

However, the approach still does not use the runtime
coverage to guide the test generation process. Instead,
it is based on a simple randomized test strategy that
makes it very difficult to continuously achieve a broad and
deep test coverage in endless instruction streams. In [[7],
we proposed a novel cross-level verification approach
that addresses this limitation by dynamically evolving
the instruction stream at runtime based on observed
coverage information. Furthermore, the novel concept
of coverage-guided aging is employed to smooth out the
coverage distribution over time. Our experiments with an
industrial RISC-V core demonstrate the effectiveness of
coverage-guided aging by achieving a much more regular
coverage distribution

A popular verification technique called coverage-guided
fuzzing employs mutation-based algorithms to generate
new inputs. Despite the great popularity and success story
in the software domain, the utilization in the hardware
domain is much more limited. In [8], we proposed to
leverage Coverage Guided Fuzzing (CGF) techniques for
cross-level processor verification at the RTL. The approach
is guided by the coverage of the reference ISS and the core

under test, and uses enhanced custom mutation procedures
for common instruction pattern generation. Our fuzzing
methodology revealed several bugs in the well-tested
RTL processor VexRiscv [9] and thus demonstrated its
applicability for processor verification.

While fuzzing is an effective technique, it is still suscepti-
ble to miss corner case bugs because it is an inherently in-
complete testing approach. Another promising technique
of the SW domain is the utilization of symbolic execu-
tion. It is a formal verification technique that uses sym-
bolic expression to represent concrete values. Thus, it en-
ables the exploration of large state spaces more efficiently
and comprehensively than fuzzing [10]. In [L1]], we pro-
posed to leverage symbolic execution techniques for cross-
level processor verification at the RTL. As a case study, we
presented results on the verification of the VexRiscv pro-
cessor as well as the processor of the open source RISC-V
PRV32 (MicroRV32) platform [12]]. pRV32 proposes an
accessible cross-level platform, providing an FPGA and
ASIC compatible RTL description alongside a correspond-
ing binary compatible Virtual Prototype (VP). The corre-
sponding VP is built as a configuration of the open source
RISC-V Vlﬂ The processor of the pRV32 offers config-
urable support of the RISC-V ISA extensions M (for mul-
tiplication/division) and C (for compressed instructions).
The SpinalHDL-based RTL description of the uRV32 pro-
cessor uses the corresponding VP as a reference. For our
cross-level processor verification case studies, we used the
ISS from the open source RISC-V VP as our functional
reference model. Our symbolic verification methodology

ISee http://wuw.informatik.uni-bremen.de/agra/
projects/risc-v/| for more information on our RISC-V related
work.

http://www.informatik.uni-bremen.de/agra/projects/risc-v/
http://www.informatik.uni-bremen.de/agra/projects/risc-v/

revealed several bugs in both RTL cores and thus as well
demonstrated its applicability for processor verification.

3 Symbolic Execution for Embed-
ded Software

Symbolic execution is an emerging dynamic software ver-
ification technique to enumerate reachable execution paths
through a program. The technique has shown success in
the conventional domain where it is being employed to un-
cover critical bugs in software for conventional operating
systems like Linux or Windows [13| [14]. Unfortunately,
this prior work on symbolic execution is not applicable to
the embedded domain, as it does not address challenges
specific to the embedded domain:

1. Heterogeneous Ecosystem: The software ecosystem
for embedded devices is much more heterogeneous
than the ecosystem for the conventional domain.
There is a huge variety of different operating systems
with different core characteristic and input interfaces
which needs to be supported by a symbolic execution
engine that is specifically tailored to the embedded
domain.

2. Peripheral Modeling: Embedded software interacts
on a low abstraction level with peripherals provided
by the utilized hardware platform. These interactions
need to be supported by the symbolic execution en-
gine in order to comprehensively test the software.

3. Error Detection: Common protection mechanisms
against the exploitation of software errors (e.g. those
based on hardware peripherals like MMUs) are not
widely available on embedded devices. As prior work
has shown, many errors therefore remain unnoticed
when testing embedded devices using automated soft-

ware testing techniques [15].

In order to address these challenges, we propose
SYMEX-VP, a symbolic execution engine which is specifi-
cally tailored to the embedded domain. SYMEX-VP lever-
ages SystemC-based virtual prototypes to provide an ex-
ecutable model of the SiFivel HiFivel, a RISC-V based
microcontroller. As such, SYMEX-VP can execute any
RISC-V software targeting the HiFivel and is thus capa-
ble of supporting a diverse software ecosystem. Further-
more, SYMEX-VP is tightly integrated with SystemC [[16].
SystemC is a library for the C++ programming language
which enables modelling of hardware on a high abstrac-
tion level using C++. It is widely used in both academia
and industry, and therefore a variety of SystemC models
for different hardware peripherals exist already. Through
its tight integration with SystemC, SYMEX-VP is capa-
ble of supporting low-level peripheral interaction and can
even support custom peripherals. Additionally, SymEx-VP

supports injecting symbolic test inputs into software sim-
ulation through a SystemC TLM extension mechanism by
injecting the test inputs through the MMIO peripheral in-
terfaces. This enables the verification of embedded soft-
ware as-is, with no software modification for the injection
of test inputs. SYMEX-VP is further described in [[17].
We have used SYMEX-VP as a framework for research-
ing several challenges related to the verification of embed-
ded software. Most importantly, we have proposed sev-
eral techniques for automatically uncovering spatial mem-
ory safety issues in embedded software. For this purpose,
we have leveraged prior work on HardBound [18]] which
enforces spatial memory safety in hardware through a cus-
tom peripheral. We have implemented HardBound using
SystemC and an LLVM compiler pass to combine it with
symbolic execution and thereby employed it as an error de-
tection technique for the embedded domain. This work has
been presented in [[19]. We have employed this technique
to uncover several previously unknown bugs in the popular
Internet of Things operating system RIOT [20].

In this regard, we have focused mostly on verifying the net-
work stack of the aforementioned operating system as—in
accordance with prior work—we believe it to be the biggest
attack vector. Unfortunately, employing symbolic execu-
tion to test stateful network protocol implementations is
challenging. Symbolic execution is—similar to other dy-
namic software testing techniques—subject to state space
explosion, as the number of paths through the program
grows exponentially with the number of branches in the
code. This problem is known as state space explosion and a
well-known limitation of symbolic execution engines. Due
to state space explosion issues, it is often unfeasible to ex-
plore the entirety of a tested program using symbolic ex-
ecution. Instead, symbolic execution is often performed
within a certain time budget. As such, it is important
that deeper, more interesting, parts of the tested code are
reached within that time budget to ensure that critical bugs
are not missed. To achieve this goal, we combined sym-
bolic execution with manually created protocol specifica-
tions in prior work [21} [22]]. This allowed us to uncover
previously unknown bugs in the MQTT-SN implementa-
tion of the RIOT operating system. In summary, the exper-
iments performed in prior work indicate that SYMEX-VP
is a capable framework for finding bugs in complex em-
bedded software like the RIOT operating system.

4 Conclusion

Based on our prior work, we have outlined verification
techniques, which cover both hardware and software as-
pects in this extended abstract. Together with a functional
reference model of a processor, techniques like CGF and
symbolic execution provide powerful processor verifica-
tion methods. Software that is executed on embedded sys-

tems relies on the interleaved interaction with the hard-
ware. Through our symbolic execution approach we en-
able early verification of embedded software in its native
environment. For this reason, the presented techniques are
well-suited for verifying embedded systems which consist
of complex software as well as hardware components that
need to be comprehensively tested prior to their deploy-
ment.

5 References

[1] RISC-V Foundation, The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Dec. 2019, Doc-
ument Version 20191213.

[2] ——, The RISC-V Instruction Set Manual; Volume I1:
Privileged Architecture, Dec. 2021, Document Ver-
sion 20211203.

[3] ——, “RISC-V ISA tests,” https://github.com/riscv/
riscv-tests.

[4] “RISC-V Compliance Task Group,”
//github.com/riscv/riscv-compliancel

[5] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “Con-
strained Random Verification for RISC-V: Overview,
Evaluation and Discussion,” in MBMV 2021; 24th
Workshop, 2021, pp. 1-8.

[6] V. Herdt, D. GroBe, E. Jentzsch, and R. Drechsler,
“Efficient cross-level testing for processor verifica-
tion: A RISC-V case-study,” in FDL, 2020.

[7] N. Bruns, V. Herdt, E. Jentzsch, and R. Drech-
sler, “Cross-Level Processor Verification via End-
less Randomized Instruction Stream Generation with
Coverage-guided Aging,” in DATE, 2022.

[8] N. Bruns, V. Herdt, D. GroBe, and R. Drechsler,
“Efficient Cross-Level Processor Verification using
Coverage-guided Fuzzing,” in GLSVLSI, 2022, pp.
97-103.

[9] “VexRiscv,” 2018, accessed: 2022-07-14. [Online].
Available: https://github.com/SpinalHDL/VexRiscv

[10] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution
techniques,” ACM Comput. Surv., 2018.

[11] N. Bruns, V. Herdt, and R. Drechsler, “Processor Ver-
ification using Symbolic Execution: A RISC-V Case-
Study,” in DATE. 1EEE, 2023, accepted.

[12] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “Mir-
coRV32: an open source RISC-V cross-level plat-

https:

form for education and research,” in Destion 21,
2021, pp. 30-35.

[13] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs,” in
OSDI, 2008, pp. 209-224.

[14] Vitaly Chipounov and Volodymyr Kuznetsov and
George Candea, “S2E: a platform for in-vivo multi-
path analysis of software systems,” in ASPLOS, 2011,
pp. 265-278.

[15] M. Muench, J. Stijohann, F. Kargl, A. Francillon,
and D. Balzarotti, “What you corrupt is not
what you crash: Challenges in fuzzing embedded
devices,” in NDSS 2018, ser. NDSS, San Diego,
California, Feb. 2018. [Online]. Available: https:
/fwww .ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_01A-4_Muench_paper.pdf

[16] System C Standardization Working Group, “IEEE
Standard for Standard SystemC Language Reference
Manual,” IEEE, Tech. Rep., 2012.

[17] S. Tempel, V. Herdt, and R. Drechsler, “SymEx-VP:
An open source virtual prototype for OS-agnostic
concolic testing of IoT firmware,” JSA, p. 12, 2022.

[18] J. Devietti, C. Blundell, M. M. K. Martin, and
S. Zdancewic, “HardBound: Architectural support
for spatial safety of the C programming language,”
in ASPLOS, ser. ASPLOS XIII. New York, NY,
USA: Association for Computing Machinery, 2008,
p- 103-114.

[19] S. Tempel, V. Herdt, and R. Drechsler, “Automated
Detection of Spatial Memory Safety Violations for
Constrained Devices,” in ASP-DAC, ser. ASP-DAC
’22,2022.

[20] E. Baccelli, C. Giindogan, O. Hahm, P. Kietzmann,
M. S. Lenders, H. Petersen, K. Schleiser, T. C.
Schmidt, and M. Wihlisch, “RIOT: An Open Source
Operating System for Low-End Embedded Devices
in the [oT,” IEEE Internet of Things Journal, vol. 5,
no. 6, pp. 4428-4440, Dec. 2018.

[21] S. Tempel, V. Herdt, and R. Drechsler, “SISL:
Concolic testing of structured binary input formats
via partial specification,” in ATVA, A. Bouajjani,
L. Holik, and Z. Wu, Eds. Cham: Springer Inter-
national Publishing, 2022, pp. 77-82.

[22] ——, “Specification-based Symbolic Execution for

Stateful Network Protocol Implementations in the
[0T,” IEEE Internet of Things Journal, pp. 1-1, 2023.

https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-compliance
https://github.com/SpinalHDL/VexRiscv
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_01A-4_Muench_paper.pdf

	Introduction
	Cross-Level Processor Verification
	Symbolic Execution for Embedded Software
	Conclusion
	References

