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Abstract—The complexity of modern chip designs is rapidly increasing.
More and more blocks from old designs are reused and third party
IP is licensed to fulfill strict time-to-market constraints. Often, poor
documentation of such blocks makes improvements and extensions of
the blocks a difficult time consuming task. In this paper we present a
technique for automatically localizing the parts of the code which are
relevant for a feature. With this a developer can better understand the
design and, consequently, can adjust the design more efficiently. The
presented approach uses mutants changing the code of the design at
a certain location. The code changed by a mutant is considered to be
related to a feature if the mutant is killed while the feature is used. The
use cases are generated using an automatic approach. This approach is
based on a description specifying how the different features are used.
Compared to two previous approaches the manual work is significantly
reduced and the localization is of similar or even better quality.

I. INTRODUCTION

Modern chip designs, especially System on Chip (SoC) de-
signs, grow with respect to their transistor count as well as their
functionality. In order to be able to fulfill strict time-to-market
constraints more design blocks from previous designs are reused
or third party IP blocks are licensed [1]. All those blocks provide
some features for the design. Following the definition of the IEEE
Standard 829 [2], a feature is a distinguishing characteristic of the
design. A feature is typically defined with respect to functionality,
robustness, or performance. In this paper we are especially interested
in functional features. If extensions or improvements are done or
bugs are fixed, this often relates to a set of those features. Normally,
a developer starts by identifying the parts of the design relevant for
the corresponding features. However, doing so can be a tedious task,
especially if the corresponding code is some third party IP, some
poorly documented legacy code or simply because the developer is
new in the team and inexperienced with the design. In this work
we propose an approach to automatically localize the code which is
relevant for a feature using mutants of the design. A mutant is a copy
of the design, which differs from the original design at one single
point.

The basic assumption underlying the proposed approach is that
if parts of the code are related to a feature, changes to that code
may have an effect on the feature. Based on a conceptual finite state
automaton of the design a set of use cases is created. During the
generation of the use cases the system stores when each use case uses
which feature. Those use cases are used for mutation testing. Based
on the results of the mutation testing a mapping between source code
and features is generated. In this work we are considering designs,
for which effects of using features can be observed at the primary
outputs of the design. We are not considering designs for which the
features only affect the internal state of the design.

Typically, feature localization uses a set of predefined use cases,
for which the features they are using are known [3]. Those use
cases then are executed and coverage information is gathered. In
the last step a heuristic is applied to the coverage information to
find the code which is relevant for the different features. When using
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feature localization, the quality of the result depends on the use cases
available for the computation. First, a good coverage of the design
under consideration is required. Second, classical feature localization
considers use cases as a whole, therefore each use case should use
as few features as possible. In this work we address both problems
by automatically generating use cases. The generation process is
based on a description, provided by the user, specifying how the
different features are used. Our automatic use case generation has
two advantages. First, automation allows to create many different
use cases, needed to reach high coverage. Second, for each of the
use cases we do not only know which features they are using but
also when they use which feature. Thus, we can lift the requirement
of use cases using as few as possible features.

The contributions of a this paper are:
• Mutation testing to conduct feature localization.
• A description format for specifying how the features of a design

are used.
The remainder of this paper is organized as follows: Section II

presents related work. Section III introduces terms and definitions.
The approach is presented in Section IV. Section V describes the
proposed description of how features are used and Section VI presents
the generation of use cases and optimizations during their execution.
Section VII evaluates the approach and Section VIII concludes the
paper.

II. RELATED WORK

Feature localization was first proposed for software systems [4].
Feature localization compares the coverage data of runs which use
the feature under consideration, with the coverage data of runs which
do not use that feature. A heuristic is applied in order to decide
which parts of the code are implementing the feature. In previous
work we implemented feature localization for hardware designs using
statement- and toggle-coverage [5]. Further, we implemented feature
localization for hardware design, using dynamic data- and control-
flow analysis [6]. Compared to those approaches, the approach pro-
posed in this work has several advantages: All previous approaches
consider complete use cases, which must be defined by the developer.
In contrast, the proposed approach uses automatically generated use
cases, targeting specific features. This allows a feedback between
the localization and the use case generation process to improve the
localization for parts of the code, where information is missing.
Further, the proposed approach considers each use of a feature within
a run independently, instead of the run as a whole.

Michael, Grosse and Drechsler proposed feature localization for
Electronic System Level (ESL) models [7]. The models they are
considering are written in SystemC, a class library for C++. This
allows them to use the standard feature localization approaches for
software languages based on line coverage. In contrast, we are
considering feature localization for HDL-designs. Further, they are
also only considering runs as a whole.

Another approach for reducing the code a developer has to con-
sider is program slicing [8]. We distinguish between static program
slicing [9] and dynamic program slicing [10]. For program slicing



one position in the system’s code is considered, called the slicing
criterion. Then program slicing computes those parts of the code
which are affected (forward program slicing) or affects (backward
program slicing) the slicing criterion. In case of static program slicing
this computation is done with respect to all possible use cases and
in case of dynamic program slicing with respect to one single use
case. Program slicing considers the relation of parts of the code,
with respect to the slicing criterion, in contrast feature localization
considers the relation of parts of the code to a feature.

Mutation testing [11] is an approach for measuring and improving
the quality of a test suite. For this several syntactically correct
versions of the design are generated, called mutants. Each mutant
differs from the original design at one single point in the source
code. Then the test suite is applied to this mutants and it is checked
if the test suite identifies the mutant as incorrect. The quality of the
test suite is defined as the ratio between killed and not killed mutants.
The technique presented here also generates mutants, but utilizes the
mutants in order to decide which feature uses which part of the code.

In [12] a coverage-driven layered testbench architecture for the
generation of randomized test cases is described. The Standard
Universal Verification Methodology (UVM) [13] describes a set
of classes helping to write a coverage-driven layered testbench
architecture as well as defining best practices for simulation based
verification. In this paper however, we propose an approach for
feature localization, for which the use case generation is only a part of
the approach. Further, coverage-driven layered testbench architectures
target (functional) coverage, which not necessarily relates to features.
Additionally, even if the functional coverage is defined in such a
way that it relates to features, only after execution it is known which
features were executed, but still without the knowledge when which
feature has been used. In contrast, our approach creates use cases
with specific features to use. This enables our approach to know all
used features in advance and even know exactly when which feature
is used. However, we believe that an existing coverage-driven layered
testbench architecture can greatly help in writing a feature description
as needed by our approach.

III. PRELIMINARIES

Let H be the hardware design under consideration. We consider the
initial state as part of the design. A use case u = (i0, i1, i2, ..., im)
of H is given by a sequence of assignments ik, k ∈ {1, 2, 3, ...,m}
to the primary inputs of H . We denote by oH [u] the output sequence
produced by H on input sequence u.

A feature f defines the behavior of the design for a set of input
sequences Sf . Let F = {f1, f2, f3, ...} be the set of all features of
H . A feature relates to some part of the design’s specification. A use
case u uses a feature f if there exists an input sequence sf ∈ Sf

such that sf is a subsequence of u.
We call a set of two or more features mutually exclusive, if those

features cannot be used together at the same time. Such mutually
exclusiveness typically exists between features which require access
to the same resources. Such resources can, e.g., be some computation
unit or primary inputs for which each valuation results in another
feature to be used. However, using mutually exclusive features in
sequential order is allowed.

Another relation between features is their orthogonality. Given
several sets of features F1, F2, ..., Fn with:

1) ∀x, y ∈ [1...n], x 6= y ⇒ Fx ∩ Fy ≡ ∅
2) ∀x ∈ [1...n], (|Fx| ≡ 1) ∨ (Fx is mutually exclusive)
3) ∀u ∈ U,∀x ∈ [1...n], (∃f ∈ Fx, u uses f)
⇒ (∀y ∈ ([1...n]\x), ∃f ′ ∈ Fy, u uses f ′)

We say the features in Fx are orthogonal to any feature in the sets
F1, F2, ..., Fx−1, Fx+1, ..., Fn. Further, the sets F1, F2, ..., Fn are
pairwise orthogonal.

Figure 1: Overview of our approach

Informally, the sets F1, F2, ..., Fn are pairwise disjoint and each
of the sets either includes only one feature or the features they are
including are mutually exclusive. If a user wants to use any of those
features, he has to choose one feature from each of those sets. Such a
case often appears in pipelined designs where one functionality from
a set of functions can be chosen at the different stages of the pipeline.

A mutation operator is a function, which takes a design as input
and returns another design which differs from the input design at one
single chosen location in the source code. The output of the mutation
operator is called a mutant of the original design. The change
applied by the mutation operator is syntactically valid, meaning if
the input design is syntactically correct then the resulting mutant is
syntactically correct as well.

A mutant M is killed by a use case u, if oM [u] 6= oH [u], i.e.,
when applying u, the values of the primary outputs of the mutant
differ from the values of the primary outputs of the original design.

IV. APPROACH

In this section we describe the proposed technique to localize
features. A basic assumption of our approach is that, if some parts
of the code are related to a feature, mutants of those parts are
likely to be killed by use cases which use that feature. For our
approach we automatically generate use cases of the design under
consideration. For these use cases we know which features of the
design are currently used by the use cases. We execute those use
cases on mutants of the design. If a use case kills a mutant, we
relate the code which has been changed by the mutant to the feature
currently used by the use case.

Figure 1 shows an overview of our proposed approach. The ovals
denote input from the user of our approach. Rectangles and diamonds
are automatic steps of our approach. These inputs and steps are
described in the following:

1) Design: The design under consideration is given in HDL-code.
For this work we are considering designs for which the effects of
their features are observable at their primary outputs.

2) Mutation engine: Mutation operators are applied to the design
in order to create mutants. Following mutation operators are used by
our approach:
• Operand mutation: An operand of an expression is either re-

placed by the constants where all bits are one, by the constant
zero, or by its negation.

• Operator mutation: The operator of an expression is replaced
by another operator of the same type, e.g. a bitshift-operator is
only replaced by another bitshift-operator.

• Condition negation mutation: The condition of a loop, an if-
condition, an event expression, or a switch-statement is negated.
In case of a switch-statement a bit-wise negation is used,
otherwise a logical negation.

• Assignment mutation: The right-hand-side of an assignment
is replaced by its bit-wise negation, the constant zero, or the
constant for which all bits are set to one.



• Basic block removal mutation: An always statement, initial
statement, an loop, or an conditional statement is removed
including all statements it is guarding.

3) Observation engine: For each position in the source code, an
observation module is generated. This observation module instantiates
the original design and all mutants of the corresponding source
code position. The observation module has the same interface as
the original design, broadcasts all its inputs to its sub-modules and
outputs the outputs of the original design, thus it can be used as
replacement of the original design.

4) Feature description: A description, created by the user of our
technique, specifies which features are supported by the design, how
those features are used, and under which conditions they can be used.
The description is given as an automaton capturing the constraints
for the activation of features. To describe how the different features
are used SystemVerilog tasks are utilized. For detailed information
see Section V.

5) Use case generator: Several use cases are created, using the
different features of the design. For the generated use cases it is
known when they use which feature. For detailed information see
Section VI.

6) Execution: The use cases are applied to the different observa-
tion modules and it is recorded which features were used while an
observer module detects a mismatch of the outputs of the original
design and a mutant. For information about the optimization we are
using during this step see Section VI.

7) Feature localization: The feature localization maps those parts
of the code to the features which were executed while a mismatch
between the corresponding mutants and the original design has been
detected.

8) Quality Check: The result of the feature localization is rated
regarding the quality and rules are used, to decide whether further
use cases are needed and which features should be used. The current
implementation uses following rules whether to stop the creation of
new use cases:
• The creation stops if either 95% of all observers have been killed

by at least one use case,
• or a user defined number of use cases is reached.
When creating a use case the first applicable of the following rules

are respected:
• Use a feature not used by any use case.
• Use a feature not having killed any mutants yet.
• Use a feature which is used less times than half the average

number of how often the other are used.
• Create a random use case.
9) Output: The computed result of the feature localization is

presented to the user.

V. FEATURE DESCRIPTION

We propose to model the feature interactions and activations with
an automaton on an abstract level.

Let F = {f1, ....fn} be the set of features; we introduce the
abstract automatonA = (S, S0, 2

F , δ) with δ ⊆ S×2F×S where 2F

denotes the powerset of F . The states in S describe the abstract states
of the system where particular features can be activated. Transitions
represent the execution of a subset of features.

Example 1. Figure 2 shows an example automaton with two states
and the features Reset and Check. If a Check fails, the design enters
an error state and a Reset must be applied.

The automatonA is a specification of features and their interaction.
We manually generate a refined automaton B = (S, S0, A, δ

′) with
δ′ ⊆ S ×A× S. The states S and the starting state S0 are identical
with those from A. Instead of sets of features B uses a set A of

Figure 2: The abstract automaton for our example

input sequences as alphabet. Those input sequences are represented
by SystemVerilog tasks. When refining A into B a set of features
is replaced by one or more SystemVerilog tasks, which together use
exactly that set of features. We do not allow non-determinism in
B. Two transitions with the same set of features may be refined
using different tasks in order to remove non-determinism. We are
using an implicit representation of the automaton B. The automaton
B is described using SystemVerilog tasks with additional keywords
defining the transitions of the automaton. The description format is
presented in the following.

A. Basic description elements
Essentially, the description encodes the transitions of B as actions.

The simplest type of actions are SystemVerilog tasks describing
stimuli of the design annotated with additional information, e.g.
the list of features they are using. This simple type of actions is
labeled by the keyword #action. We call those simple actions. New
keywords are introduced to capture the behavior of B. Each simple
action contains at least three sections. First, a unique SystemVerilog
task describes the input stimuli. The parameters of the task can be
restricted with the @range annotation. Second, @feature lists
the used features’ names. Finally, a @ready section detects the
completion of the action.

If the automaton contains more than one state, these states are
described using state variables. State variables are defined using the
#states keyword. An action may have a @req section. The @req
section describes requirements over the state variables, which must
be fulfilled in a state for the action to be allowed to be used in that
state. We say an action t is enabled in a state s ∈ S if s fulfills all
requirements of t. A simple action describes as many transitions as
there are states, which fulfill its requirements. An @effect section
describes the state change caused by the action. If the @req section is
missing, the action can be used in any state. If the @effect section
is missing, the action describes self-transitions.

A special type of action is the initialization action. This action is
described in the #init section. The initialization action is the first
action executed whenever the design is used and is never considered
to be enabled in any state. The initialization action may include a
SystemVerilog task, but this task must not have any parameters. If
state variables are defined the #init section is mandatory and its
@effect annotation must uniquely describe the starting state of the
automaton.

Example 2. In Listing 1 we see an excerpt of the description for
a controller implementing a communication protocol. The protocol
requires an initial handshake. The features of this design are: connect,
send, and disconnect. In this case, the send feature can only be used
if the design is currently connected. During the initial handshake
the data-rate of the connection will be negotiated. We assume that
only rates between 10,000 and 100,000 bytes per second are allowed.
Thus, we have a restriction of the parameter for the data-rate.

B. Advanced Description Elements
Simple actions are only able to encode at most one transition

per state in B. Additional modeling elements allow for a more



1 # s t a t e s : c o n n e c t e d
2
3 # f e a t u r e s : connec t , send , d i s c o n n e c t
4
5 # i n i t :
6 t a s k i n i t ( ) ;
7 r s t =1 ;
8 #2 r s t =0 ;
9 e n d t a s k ;

10 @e ff ec t : c o n n e c t e d =0
11
12 # a c t i o n :
13 @fea tu re : c o n n e c t
14 @req : ! c o n n e c t e d
15 @range : 10000 <= bps <=100000
16 t a s k c o n n e c t ( i n t e g e r bps ) ;
17 . . .
18 e n d t a s k
19 @e ff ec t : c o n n e c t e d =1
20 @ready : c o n n e c t _ i n t e r r u p t ==1
21 . . .

Listing 1: Example definition of features.

compact description. The additional description elements specify the
transitions for all combinations of orthogonal features1 in linear
space. The constrained random simulation creates single transitions
from those constructs whenever required during the generation of use
cases.

For describing orthogonal features we are using orthogonal ac-
tions. The idea for describing orthogonal features is that for each
feature a SystemVerilog task is defined. Additional rules describe
how to combine those tasks into a transition. We call those Sys-
temVerilog tasks partial actions. For describing orthogonal features
we use three additional types of sections: #partial, #group,
and #orthogonal. The type #partial defines a partial action
and optionally contains a list of features which the partial action
uses. We explicitly allow #partial sections without features, for
example to set primary inputs which do not decide the features,
but rather set the operands. A #partial section may further
contain a @ready annotation. The #group type contains a list of
partial actions. Basically, a #group describes a group of mutually
exclusive features. Each #partial section and #group section
has a unique name to reference it. The #orthogonal section
defines an orthogonal action and describes how the different partial
actions and groups can be combined into transitions. Additionally, the
#orthogonal section, like simple actions, may define requirements
and effects over the state variables. For describing the different
combinations of partial actions we use the following set of basic
combination operators:
• Parallel (|): The tasks start concurrently.
• Sequential (>): Each task starts after the previous task in the

defined order has finished.
• Unordered (^): Like sequential but using a random permutation

as order.
For describing the combination we are using following syntax:

FORMULA = " ( "OPERAND " | " OPERAND{ " | "OPERAND } " ) " |
" ( "OPERAND" >"OPERAND{" >"OPERAND } " ) " |
" ( "OPERAND" ^ "OPERAND{ " ^ "OPERAND} " ) "

OPERAND = FORMULA | unique_name

where unique_name means the name of a partial action or group.
The use of a group is interpreted such that a single randomly chosen
element of that group is used. In case of parallel tasks, the user is
responsible to ensure, that they do not write concurrently to the same
signal.

Example 3. In Listing 2 we see an excerpt from the description of
orthogonal features. Excerpts of each section type are shown.

1which is an exponential large amount of actions in the number of
orthogonal feature sets

1 . . .
2 # p a r t i a l
3 @name : s t a r t
4 t a s k s t a r t ( b i t [ 0 : 6 3 ] opa , b i t [ 0 : 6 3 ] opb )
5 . . .
6 e n d t a s k
7 @ready : # 1
8 . . .
9

10 # group
11 @name : a_op
12 @ l i s t : add , sub
13 . . .
14
15 # o r t h o g o n a l
16 @req : e r r o r =0
17 @formula ( ( a_op ^ r_mode ) > s t a r t )
18 @ready : r e a d y ==1

Listing 2: Example showing definition of orthogonal
features.

VI. USE CASE GENERATION AND EXECUTION

Each valid sequence of transitions is a use case of the design. First
the description is used to compute the automaton B. For this a simple
graph search algorithm, generating new states and transitions on the
fly, is used. Starting from the initial state, in each reached state the set
of enabled actions is computed. For each enabled action a transition,
annotated with that action, is created. This may create new states
which are checked later as well.

In the next step we compute which feature can be used from which
state. For this we map each feature f to a subset S′f ⊆ S of the states.
A state s ∈ S is included in S′f if and only if there exists an action
t such that t uses f and t is enabled in s.

The automaton B and the mapping are utilized to create a use
case using a wanted feature f as follows: First, we choose a state
s ∈ S′f which is mapped to f . Then, we compute a sequence of
actions p = (t0 > t1 > ... > tn), ∀x ∈ [0...n], tx ∈ Σ which
ends in the state s when applied to the starting state. To this path
we append an action tf which is enabled in s and uses f . For each
action t ∈ {t0, ..., tn, tf}, if t is an orthogonal action, we create
a random sequence of its partial actions fulfilling the combination
rule. If tf is an orthogonal action we have to take care, that the
resulting combination of partial actions uses f . In the last step random
parameters are chosen for each task in each action of {t0, ..., tn, tf}.
This results in a use case Up = (I > t0 > t1 > ... > tn > tf ),
where I denotes the initialization action. A random use case is created
by computing a random path through B.

The resulting use case is in principle a concatenation of calls to the
corresponding tasks. Additional code to wait for the ready conditions
and ensuring the combination rules for orthogonal actions is added.

While executing the use case on the different observer modules a
set of optimizations are used. This contains four optimizations. The
first optimization is commonly used for mutation testing and the other
three are new optimizations fitted to our approach:

1) Only execute a mutant with use cases covering the mutated
statement.

2) Do not execute mutants killed by the initialization action for
any further use case.

3) Do not execute mutants which are not killed by mutating the
control statement guarding the mutant.

4) Stop the execution as soon as a difference at the primary outputs
is observed.

VII. EVALUATION

In this section we evaluate our approach. For this evaluation we
compare the presented approach against previous approaches for
feature localization based on coverage metrics [5] and feature local-
ization based on dynamic dataflow analysis [6]. The first approach
uses statement- and toggle-coverage of different runs and applies



Table I: Comparison of the manual effort and the utilized use cases
for the different approaches.

Approach based on Manual effort # of use cases # of operations
Coverage 17,924 LoC 320 320

+ mapping use cases to features
17,924 LoC

Dynamic dataflow + mapping use cases to features 320 320
+ marking of primary inputs/outputs

Mutation 96 LoC 128 265

a heuristic to decide which statements and signals are related to a
features. The approach based on dynamic dataflow analysis computes
the data-path from the primary inputs, which decide the features to be
used to the primary outputs which provide the result of the features.
All parts of the source code on this path are considered to be covered.
Based on our previous experiments [5] we are using an adaption of
the Tarantula-heuristic [14] as heuristic for those approaches. This
heuristic uses the percentages of how often a part of the design was
covered while the feature was used and the percentage of how often
that part was covered while the feature was not used. The result is
a likelihood whether the code belongs to a feature and a confidence
value describing the probability that the likelihood is correct.

For the coverage based and dynamic dataflow based approaches
the manual work is considerably more time consuming than for the
approach presented in this paper. Both before mentioned approaches
require that a user writes use cases for the design and maps them
to the features. For the approach using dynamic dataflow analysis
the user additionally must mark whether primary inputs and primary
outputs are related to the feature or not. If the primary input and
primary outputs are not related to a feature all the time, this marking
must be done for each clock cycle which is especially tedious.

A. Design for evaluation
For the evaluation we use a Floating-Point-Unit (FPU) from the

OpenCores website2. This design consists of 1,710 Lines of Code
(LoC) in seven different modules, where each module is contained in
its own file. This design has eight features: the arithmetic operations
addition, subtraction, division, and multiplication; and the rounding
modes round to zero, round to nearest even, round to -infinite, and
round to +infinite. The set of rounding modes and the set of arithmetic
operations are orthogonal to each other.

B. Manual effort and use cases
Table I compares the required manual effort for using the different

approaches as well as the set of use cases used for creating the
localization. In the column Manual effort we show which work a
user had to do in order to use an approach. The manual effort for
writing the use cases or the feature description, respectively, is given
as non-empty, non-comment LoC. The column # of use cases gives
the number of use cases utilized for each approach and column # of
operations gives the number of operations executed by the use cases.
As operation we count any action which uses at least one feature of
the design. Reset and idle cycles are not counted as operations.

With the proposed approach, writing the feature description took
about ten minutes. Beside the orthogonal action describing all features
of the design, the description contains two simple actions one for reset
and one creating an idle clock cycle. The initialization action resets
the design. The following parameters are used for our approach: a use
case limit of 128 for the quality check step and a maximum length
of 8 transitions for the use case generation step.

The other approaches require user defined use cases annotated with
the features they are using. For those approaches we use a set of
20 different pairs of operand values. Each pair is applied to each
combination of arithmetic operation and rounding mode resulting in
320 use cases. For the approach using dynamic dataflow analysis we

2http://opencores.com/project,double_fpu

Table II: Ranking of the files for the different approaches

Feature documentation Coverage Dynamic dataflow Mutation
addition fpu_add fpu_sub fpu_double fpu_add

fpu_sub fpu_exceptions fpu_sub fpu_double
fpu_double fpu_double fpu_add fpu_sub

fpu_add
subtraction fpu_add fpu_add fpu_double fpu_double

fpu_sub fpu_double fpu_sub fpu_add
fpu_double fpu_exceptions fpu_add fpu_sub

fpu_sub
division fpu_div fpu_div fpu_div fpu_div
multiplication fpu_mul fpu_mul fpu_mul fpu_mul
round to zero fpu_round fpu_round fpu_round fpu_exceptions

fpu_exceptions fpu_exceptions fpu_exceptions fpu_sub
fpu_double
fpu_round

round to nearest even fpu_round fpu_round fpu_exceptions fpu_add
fpu_exceptions fpu_exceptions fpu_round fpu_exceptions

fpu_div
fpu_round

round to -infinite fpu_round fpu_round fpu_exceptions fpu_round
fpu_exceptions fpu_exceptions fpu_round fpu_exceptions

round to +infinite fpu_round fpu_round fpu_exceptions fpu_round
fpu_exceptions fpu_exceptions fpu_round fpu_exceptions

marked the primary inputs which decide the arithmetic operation and
rounding mode as start of the data path. As the end of the data path
we use all primary outputs of the design at the clock cycle where the
design indicates the end of the operation.

C. File ranking

All three approaches for feature localization allow to rank the files
of the design with respect to the likelihood whether they contain code
relevant for a feature. The documentation gives the relation between
features and code at file level. First, we compare the computed
ranking with the documented relation.

Table II shows the file ranking for the different approaches. The
ranking is shown until all files are included, which the documentation
relates to an feature..

For the addition and the subtraction feature, based on the sign of
the operands, the operation may be executed by the fpu_sub module
or the fpu_add module. The top module is contained in fpu_double
and is responsible for this decision. The file ranking prioritizes high
likelihood values. Therefore it is affected by false positives. This
effect can be seen for the coverage based approach with the addition
and the subtraction feature as well as for the mutation based approach
with the features round to nearest even and round to zero.

Based on the file ranking the approach using dynamic dataflow
analysis results in the best localization, with an optimal result for all
features. With six optimal localizations each, the coverage metric
based approach and the presented approach reach equally good
results.

D. Expression level

Next, we will compare the results on statement and expression
level. For this we chose two representative features and have an
in-depth comparison of the computed feature localization for these
features. The results for all arithmetic operations are similar to
each other, the same is true for the rounding modes. Therefore,
we chose multiplication as representative for the arithmetic modes
(Table III) and round to +infinite as representative for the rounding
modes (Table IV). We categorized the statements and expressions
with respect to two dimensions. The horizontal dimension categorizes
whether the localization considers them as part of the feature (part),
as part of all features (all), or as not part of the feature (not part). In
the vertical dimension we divide between a high confidence that the
categorization is correct (high) and a low confidence (low). The tables
give the percentage values for how much of the file is categorized
into which class. Statements not covered and mutants not killed for
any use case are placed in the class low confidence and not part



Table III: Results for the multiplication feature.

File conf. Coverage Dynamic dataflow Mutation

part all not
part part all not

part part all not
part

fpu_add high 0% 57% 0% 0% 0% 0% 0% 0% 0%
low 0% 0% 43% 0% 0% 100% 0% 0% 100%

fpu_div high 0% 41% 0% 0% 0% 0% 0% 0% 0%
low 0% 0% 59% 0% 0% 100% 0% 0% 100%

fpu_double high 12% 79% 0% 5% 17% 6% 5% 46% 2%
low 0% 0% 9% 0% 0% 71% 0% 2% 46%

fpu_exceptions high 8% 92% 0% 0% 11% 1% 9% 39% 0%
low 0% 0% 0% 9% 2% 77% 4% 6% 42%

fpu_mul high 65% 2% 0% 51% 0% 0% 49% 0% 0%
low 7% 0% 27% 5% 0% 44% 3% 0% 48%

fpu_round high 4% 96% 0% 0% 60% 0% 2% 45% 0%
low 0% 0% 0% 0% 17% 23% 0% 41% 12%

fpu_sub high 0% 30% 0% 0% 0% 0% 0% 1% 1%
low 0% 0% 70% 0% 0% 100% 0% 1% 97%

Table IV: Results for the round to +infinite feature

File conf. Coverage Dynamic dataflow Mutation

part all not
part part all not

part part all not
part

fpu_add high 0% 57% 0% 0% 0% 0% 8% 1% 0%
low 0% 43% 0% 0% 68% 32% 0% 58% 33%

fpu_div high 0% 41% 0% 0% 0% 0% 0% 28% 0%
low 0% 19% 39% 0% 47% 53% 1% 20% 51%

fpu_double high 0% 87% 0% 0% 24% 0% 0% 58% 0%
low 0% 13% 0% 0% 29% 48% 0% 24% 19%

fpu_exceptions high 2% 98% 0% 0% 12% 0% 2% 41% 1%
low 0% 0% 0% 1% 9% 78% 1% 13% 42%

fpu_mul high 0% 35% 0% 0% 0% 0% 0% 0% 0%
low 0% 39% 27% 0% 56% 44% 0% 50% 49%

fpu_round high 4% 96% 0% 0% 58% 4% 6% 51% 0%
low 0% 0% 0% 4% 15% 19% 4% 22% 16%

fpu_sub high 0% 30% 0% 0% 0% 0% 0% 29% 1%
low 0% 29% 41% 0% 50% 50% 0% 11% 58%

of the feature. The files which are related to the feature by the
documentation are indicated by a gray table background.

Let us discuss the multiplication feature first. All three approaches
identify the corresponding file as the primary part of the feature.
Classifying code from this file as not part of the feature has two
different reasons. First, the file contains a switch-case block of 54
branches, however no approach covers all branches. By default, code
not covered is considered as not part of any feature. Additionally,
the mutation based and dynamic dataflow based approach exclude
the code responsible for the reset from the localization. The code
localized in the files fpu_round and fpu_exceptions are mostly false
positives, however some code in fpu_round is correctly localized as it
creates interrupt signals in case of multiplication by zero or infinite.
The file fpu_double is the top module of the design and multiplexes
the input to the different sub-modules. Again, the approach based
on coverage metrics also marks the reset code of the corresponding
registers as part of the feature. Overall, the approach presented in this
paper and the approach based on dynamic dataflow create equally
good localizations in case of the arithmetic operation. The results
using coverage metrics are less good, as code for resetting the design
is included.

When considering the round to +infinite feature, first we see that
the approach using coverage metrics considers most code as part of
all features. The code considered as not being part of the feature is
code which is not covered. The code which is considered as part
of the feature is only considered so due to one signal in each of
the two corresponding files. This signals are high exactly when the
rounding mode is used. Besides the statements setting those signals
four additional statements, including the reset of those signals, are
marked as part of the feature. The same effect can be observed for
all other rounding mode explaining the good file ranking for all
rounding modes while using the coverage based approach. However,
this localization provides poor help for a developer. The code found
by the dynamic dataflow based approach is part of the feature.

However, that approach also misses large parts of the code belonging
to the feature. The mutation based approach finds the main parts of
the rounding feature, marks them as part of the feature, and also
correctly identifies the part that round to +infinite shares with the
other rounding modes. However, the mutation based approach marks
some code in the files fpu_add and fpu_div incorrectly as part of
the feature, i.e., includes false positives. Altogether, for the rounding
modes, the dynamic dataflow based approach provides an under-
approximation of the code of the features, while the mutation based
approach provides an over-approximation. Depending on the task of
the developer the one or the other is better. Overall the mutation
based approach and the dynamic dataflow based approach provide
similar good localizations.

VIII. CONCLUSION

In this paper we presented an approach for automatic feature
localization based on mutation testing and automatically generated
use cases. The only manual work required by the user is writing a
description of how the different features of the design are used. The
system then creates mutants of the design under consideration. A
set of automatically generated use cases is applied to the mutants to
check the use of which feature kills which mutants. Based on this the
code of the design is mapped to the different features of the design.

We compared the presented technique against two previous ap-
proaches one based on statement and toggle coverage and one based
on the analysis of the dynamic dataflow. Compared to the approach
based on coverage metrics, the presented approach provides the better
localization result, while requiring significantly less manual work.
The approach based on dynamic dataflow analysis creates similarly
good localization as the presented approach, but requires most manual
effort of all considered approaches.
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