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Abstract—Only formal methods can guarantee the correctness
of a circuit, but are usually very time and memory consuming.
Therefore, efficient formal verification is a key in the design
of complex circuits. Many verification techniques have been
introduced, which mostly fail to give bounds for the time
complexity of the verification process. To overcome this issue,
Polynomial Formal Verification (PFV) was introduced. This paper
introduces a novel approach to PFV of circuits, by leveraging
the concept of constant cutwidth. We divide the circuit into
subgraphs, one for every output.This makes the verification of
every subgraph only dependent on the cutwidth of the circuit and
independent of the bitwidth. One main problem we solve is the
passing of information between those subgraphs. The approach
enables formal verification in linear time for circuits with constant
cutwidth.

As many different types of adders have a constant cutwidth, we
can prove that those are verifiable in linear time. Those theoretical
findings are backed by experiments including different adder
architectures with up to 10k bit wide inputs.

Index Terms—Polynomial Formal Verification, Logic Synthesis,
Parameterized Complexity, Answer Set Programming, Model
Based Reasoning

I. INTRODUCTION

Circuit designs are constantly getting more complex due
to advancements in process technology. Moreover, in recent
time more custom designs are implemented to increase the
performance for regularly occurring computation tasks (i.e. for
Al or AES). To guarantee the correctness of those circuits
formal methods are needed. Due to increasing complexity, the
scalability of the verification process is highly relevant.

Various techniques have been introduced for the verifica-
tion of circuits, such as SAT-based approaches that encode
verification as a SAT instance using miter circuits [1], deci-
sion diagrams that represent the output function of circuits
for comparison to the specification [2], theorem proving for
manual verification of complex circuits [3], Symbolic Computer
Algebra (SCA) that is effective for multiplier verification [4],
and Answer Set Programming (ASP) that provides a compact
representation of logic functions [5]-[7]. However, the com-
putational complexity of these methods is often exponential,
such as with the NP-hard SAT problem, the exponentially large
decision diagrams, and the exponential size of polynomials
in SCA. To address these limitations, Polynomial Formal
Verification (PFV) [8], [9] methods have been introduced to
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guarantee a polynomial run time of the formal verification for
a specific class of circuits.

In this paper, our investigation is centered around circuits
characterized by a limited cutwidth [10], [11]. Cutwidth in the
context of formal verification denotes the minimum number
of layers that allow each wire to intersect at most one layer.
It simplifies the analysis and verification process, making it
easier to ensure the correctness of circuit designs. However,
it is important to note that not all circuits exhibit a constant
cutwidth. Therefore, our research focuses on the implica-
tions and advantages specific to circuits with this structural
property. Recent progress in efficient cutwidth computation
algorithms [12] for large graphs have underscored the growing
relevance of cutwidth for verifying complex designs.

Our paper presents a new method for verifying the specific
class of circuits with a constant cutwidth. The proposed ap-
proach involves dividing the netlist into subcircuits, which are
independently verified by an ASP solver. The subcircuits are
interconnected through cone nodes, employing a divide and
conquer strategy. Our results demonstrate that the proposed
method verifies circuits with a constant cutwidth in linear time.

This is particularly significant as the complexity of the
verification is mainly determined by the cutwidth between
the subcircuits. Moreover it aligns with previous research on
automatic test pattern generation [13]. The approach uses ASP
to model the subproblems, enabling a compact and straightfor-
ward approach to verification. While various techniques, such
as SAT or SMT solvers, can be used in conjunction with other
preprocessing approaches, the primary focus of this paper is on
introducing the proposed approach in combination with ASP.
Our work presents a novel approach in the field of PFV, being
the first to utilize ASP in this domain.

Our theoretical results for adders improve the state-of-the-
art. While it is known from practice, that adders can be verified
efficiently, the time complexity results are limited to [8], [14],
[15]. With BDDs adders can be verified in polynomial time.
Conditional Sum Adders (CSAs) can be verified in O(n?).
Serial prefix adders, Ladner-Fisher Adders (LFAs) and Kogge-
Stone Adders (KSAs) can be verified in O(n?), O(n*) and
O(n*), respectively. We extend this list by proving that Carry
SKip Adders (CSKAs) and Carry Look-ahead Adders (CLAs)
can be verified in linear time using our approach. The ex-
periments demonstrate the effectiveness of the proposed ap-
proach, examining its performance for different input sizes
and architectures. Moreover, we compare our approach against



Yosys [16] SAT-based approach, and show the feasibility of our
approach over the SAT-based one.

In Section II we introduce the adder functions as well as
the relevant the concept of ASP. Subsequently the modeling
of circuits in ASP is described in Section III. Our approach
for PFV by splitting the circuit is presented in Section IV.
Section V describes the complexity properties of our approach.
This is followed by an experimental evaluation in Section VI.

II. PRELIMINARIES
A. Adder Function

Let a, b be two inputs with size n bits, and carry_, be the
incoming carry bit. The adder function adds two inputs a; and
b; together with carry;_1 and its output are the sum sum; and
carry;, for all 0 < ¢ < n. The sum bits can be characterized
as follows.

sum; := a; O b; © carry;_1 (D

The carry bits can be characterized as follows.
carry; = (a; ANb;) V (carryi—1 A (a; ® b;)) 2)

Thus, the adder function has 2n+-1 input bits, and n+ 1 output
bits. This is due to the fact that it adds two n bit inputs together
with carry_j, while it results in n bits representing sum and
one carry output bit carry,,.

B. Answer Set Programming

ASP [17] is a declarative programming framework that is
widely used to solve difficult search problems, where the search
problems are reduced to computing answer sets.

The basic idea of ASP is to represent a given computational
problem by a logic program, whose answer sets corresponds
to solutions and use an ASP solver to find the answer sets of a
logic program. The logic program is built from basic notions,
that correspond to the language of first-order predicate calculus.

We follow standard definitions of propositional ASP [18],
[19]. Let [, m, n be a non-negative integers such that [ <
m <n, ai, ..., a, be distinct atoms. We refer by Literal to an
atom or the negation thereof. Literals are the basic building
blocks of logic programs.

Definition 1 (Logic Program): A Logic program Il over a
set A of literals is a finite set of Rules in the following form:

a1V ..Vap < 41,0y Qmy Qi1 -ony Ay

where | < m < n and each a; € A is a literal, where
1 < i < n. For a rule 7, we let H, := {ay,...,a;}, B :=
{ai+1,yam}, By = {am+1,...,an} and B, = B;}f U B, .
Let r be a rule of II. Then, r is said to be a fact, if and
only if B, := (). We denote the set of atoms occurring in
a rule 7 or in a program II by at(r) := H, U B;f U B,” and
at(Il) := Upen at(r). The answer set (stable model) semantics
is defined in terms of a reduct of a program II relative to a set
Q of literals.

Definition 2 (Gelfond-Lifschitz Reduct): Let II be a program
and Q be a set of literals. Then, the reduct II¢ of a program
II is defined as follows:

9 .= {H(r)« B |rc1,B, NQ = 0} 3)
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Fig. 1. Half adder logic diagram and its truth table.

To illustrate (3), a reduct II¢ of a program II under a set Q
of literals is the program obtained by first removing all rules
r with BT NQ = () and then removing all —a where a € B
from the remaining rules r. An answer set of a program II can
be defined as follows.

Definition 3 (Answer Set): Let II be a logic program and
be a set of literals. Then, @) is an answer set, if and only if
Q = On(I19).

We refer by AS(II) to a set of all answer sets of a program,
such that AS(IT) := {Q C at(Il) | Cn(1I?) = Q}. Intuitively,
an answer set contains the minimal set of atoms that satisfy
the program, and no subset of this set satisfies the program.
Therefore, the answer set represents a minimal model of the
given problem. It is important to distinguish this approach
from classical logic. Unlike in answer set programming, not all
models in classical logic are considered to be minimal models.

Example 1: Consider the program of the circuit in Fig. 1:

IT:= {s « a,—b; s + —a,b;a + —b;b + —aq;
ca,byaV a<;bV b}

The first four rules captures the xor gate, while the last
three rules captures the and gate. As can be seen in Table I,
ASM) = {{a,s},{b,s},{a,b,c}} wrt. a program II of
Example 1, since those are the only sets of literals that
satisfy the condition of being an answer set (Cn(I1?) = Q).
In Table I, some possible set of literals () are omitted, as they
are not satisfied by the answer set condition.

In the next section, we show how ASP can be used to model
a specific representation of an adder circuit. More precisely, we
restrict our focus to the And-Inverter Graph (AIG) [20] repre-
sentations that are well-known in synthesis of logic functions.

III. CIRCUIT MODELING USING ASP

The general idea is to represent the behavior of gates and
adder functions into ASP rules, and the connections between
gates together with the values of inputs as facts. Then, the ASP
solver is used to reason about the values of output gates and
to verify that each output gate value matches its corresponding

TABLE I
GIVEN A PROGRAM IT OF EXAMPLE 1, THE RESULTS OF COMPUTING A

REDUCT TI9 OF IT UNDER @, AND THE SMALLEST SET OF LITERALS
Cn(TIQ) PER A SET @ OF LITERALS.

Q % Cn(TI9)
{s+ a;s+ bja +;

{ b<;c<a,b;} {a,0}

{a} {s<a;a<;c<+a,b;} {a, s}
{a, s} {s<a;a;c<+a,b;} {a, s}
{b, s} {s < b;b+;c<a,b;} {b, s}
{a, b, c} {c+a,bja +;b+; {a,b,c
{a,b, s, c {ca,bja+;b <+ {a,b,c




logic function. For the encoding of the circuit as an ASP logic
program we rely on the input language of the ASP solver
Clingo [21], which is an extended version of Prolog [22].

To illustrate the encoding of a circuit, the AIG graph
representation of a simple adder architecture (e.g., Ripple Carry
Adder (RCA)) is used. First, it is essential to define the AIG
graph G formally. Let and, inv, input and output be a disjoint
sets of and, inverter, input and output gates appearing in G,
respectively. Also, let gates be a union of all gates. Given a
netlist on the reverse topological order (i.e., an output gate is
always in a higher order than its inputs), a graph AIG G can
be seen as a Directed Acyclic Graph (DAG), which is defined
as follows.

Definition 4 (AIG Graph): Let G = (V,E) be a directed
acyclic graph such that:

o V:i={v|wv e gates}.

o E:={(v,v)|v,v €V,v is reachable from v}.

In order to model the circuit, the behavior of gates is mod-
eled using ASP rules, such that gate behavior is defined based
on values on their ports. These ports provide a mechanism to
handle passing values between a gate and its connections. Let
P(G) be a unary function symbol representing a port of gate
G, and val(P(G),v) be a binary predicate symbol stating a
value v on a port P of gate G. A binary predicate symbol
conn(P1, P2) is used to define connection between ports P1
and P2.

Since an AIG graph has different types of gates, we use a
binary predicate symbol type(G,t) to label a gate G with a
type t. e.g., and. Fig. 2a illustrates an AIG for a ripple carry
adder with 2-bit inputs.

To convert facts and rules that are introduced in Eq. (3) into
the clingo language, we use the following mapping rules:

o A fact p + is mapped to p.

e Arule a < by,...,b, is mapped to a : —bq, ..., by,.
Clingo also provides an interface to represent logical oper-
ations. and, or, and xor logic functions are represented by
symbols “&”, “?7” and “”, respectively. Due to the restrictions
of the AIG representation, it is required to represent only
and and inverter gates. The and gate can be characterized as
follows:

val(out(G), X&Y') : —type(G, and),
val(inl(G), X), val(in2(G),Y). 4)

As the AIG graph is restricted to and gates with two
inputs and one output, the unary functions out(G),inl(G),
and in2(G) are used to represent the output, first and second
input ports, respectively. However, we only need one output
and one input to characterize inverter gate behavior. The unary
functions out(G) and in(G) are used to handle the output and
input ports, respectively. The inverter gate can be characterized
as follows:

val(out(G), 1" X) : —type(G,inverter),val(in(G), X)(5)

In Eq. (5), the xor logical operation is used to represent the
negation of the value of X. Finally, the connection between
two ports is defined as follows:

val(P2,V) : —conn(P1, P2),val(P1,V). (6)

The intuitive meaning of the previous rule is that if port P1
is connected to P2 and P1 has value V, then P2 has value V.
It is worth noting that the value of a port is restricted to 0 and 1.
Those values appear as constants in the program and are passed
from one of primary inputs that is connected to a gate port.
Therefore, we enable representing primary inputs as gates with
only one port, where they are characterized by facts indicating
their value. E.g., facts val(ag,0) and val(bg, 1) indicate that
gates ag and by have values 0 and 1, respectively. The primary
outputs are represented analogously, except that their values
are observed from the circuit. Informally, by Eq. (6), values
of ports are passed from the primary inputs to other gates
until they reach the primary outputs. Hence, to ensure the
correctness of an adder circuit, it is essential to check, whether
the value of each output gate satisfies the adder function as
shown in Eq. (1) and Eq. (2). Therefore, it is essential to encode
sum and carry functions into clingo. They can be characterized
as follows:

sum(sumg, V) : —val(a;, A),val(b;, B),
carry(carry;—1,C),V = A"B"C. @)
carry(carry;, V) : —val(a;, A),val(b;, B),
carry(carry;—1,C),V = (A&B)?(C&(A"B)).  (8)

Equations (4), (5) and (6) are very general and can
work independently of the circuit architecture, while Eq. (7)
and Eq. (8) are only related to adder circuits. How-
ever, in order to complete the model, we further have to
add facts representing the structure of the circuit. E.g.,
conn(out(and4),inl(andl6)) represents the connection be-
tween the output port of gate “4” and the first input port
of gate “16”. It is worth noting that those facts are cir-
cuit dependent. E.g., carry(carry_1,0), type(and2,and),
type(invl, inverter) and conn(out(invl),inl(and2)).

Finally, to enable the verification of output gates, it is
necessary to relate output gates with their expected logic
functions representing adder functions (see Eq. (7) and Eq. (8)).
Thus, we introduce one clingo rule per output bit to reach the
desired behavior. Considering Fig. 2a, the clingo rules for the
verification of all outputs can be summarized as follows:

verify(og) : —sum(sumq, X),val(og, X).
verify(o1) : —sum(sumq, X),val(o1, X).
verify(oz) : —carry(carryy, X),val(o2, X). 9)

The idea behind Eq. (9) is that for a given set of facts
representing an input sequence of the primary inputs, output
bit 4 is said to be correct, if verify(o;) appears in the answer
set of the program. This can be formulated as follows.

Definition 5 (Valid Sequence): Let S be a set of facts
representing an input sequence of n inputs. Then, S is said
to be a valid sequence, if and only if there exists an answer
set Q € AS(II) such that |J;'_,{verify(0;)} US C Q.

By Definition 5, if the input sequence is correct, their
verification atoms verify(o;) will appear in one of the answer
sets of the program II. Due to the fact that all input sequences
must be a valid sequence to be able to ensure correctness of a
circuit. The previous definition can be generalized as follows.



Definition 6 (Valid Graph): Let 11 be a program defined w.r.t.
AIG graph G of size n, F be a set of sets of facts such that
each s € F represents an input sequence, and |s| = n. Then,
G is said to be a valid graph, if and only if for every s € F,
there exists an answer set () such that s is a valid sequence.
Otherwise, G is an invalid graph.

It is worth noting that the search space is 2", and consequently
|F| =2". Also, |s| =n, for all s € F.

In the next section, we propose an approach for achieving
formal verification of a circuit in linear time, by applying
dynamic programming on graph G to obtain an upper bound
of the search space.

IV. POLYNOMIAL FORMAL VERIFICATION OF ADDER
CIRCUITS

In this section, we introduce an approach for splitting an AIG
graph G into subgraphs, which relies on the idea from [13] and
we propose a method for subgraph reduction. Subsequently,
we present an approach for passing information between the
subgraphs. Based on that, we define the verification of the
subgraphs. We assume familiarity with graphs and trees [23].

A. Graph Unraveling and Reduction

Given an AIG graph G = (V,FE) and a node v € V, a
subgraph (G, v) can be constructed as follows.

Definition 7 (Subgraph): Let G = (V, E) be a graph, v € V
be a node. Then, a subgraph (G,v) = (V,, E,) of G is obtained
such that:

o Vi, :={v}U{v € V| is reachable from v} U {v' €

V | 3z,y € V : z,y are reachable from v’, v}.

o B, ={(w,v)eE|u,v eV}

In graph theory, the cutwidth of a graph G = (V, E) w.rt. a
nodes ordering h is the smallest integer k£ such that for every
I =1,...,|V|—1, there exist at most k edges with one endpoint
in {v1,...,v;} and the other endpoint in {v;41, ..., vy}, where
{vl,...,vM} € V. In other words, the cutwidth for some
vertices ordering is the size of the largest cut induced by that
ordering.

We refer to the nodes induced by the cut as cone nodes.
We use the notion “node” to refer to a gate of the circuit.
AIG graph G can be seen as a multi-root tree such that each
root node represents an output bit. Therefore, it is possible to
split G of size n into n subgraphs by taking one node v € V'
representing an output bit and traversing all nodes v’, that are
reachable from v as shown in Fig. 2. It is worth noting that
there exist nodes that appear in several subgraphs. e.g., node
“4” appears in graphs (G, Oy), (G, O1) and (G, O3). We define
the set of cone nodes appearing in a sub-graph as follows.

Definition 8 (Cone Nodes): Let (G,v) = (V,, E,) be a sub-
graph of G = (V, E). A set C (¢, of cone nodes defined w.r.t.
(G,v) such that C(G,v) :={a €V, | (b,a) € E,bc V\V,}.
Let C; := ;- C(G,vi), and C(G) := Ui, C(G, i), where
n is the number of output nodes.

To check whether each subgraph is valid, the definition of
a valid graph from Definition 6 is used. However, the values
of cone nodes are evaluated multiple times. e.g., node “4” is
computed in all subgraphs.

To be able to bound the number of inputs of each sub-graph
and overcome the problem of evaluating the cone node more
than once, we propose a reduction of the sub-graph based on
C(G) to obtain such a bound.

Definition 9 (Reduced Subgraph): Let (G,v;) = (V,,, Ey,)
w.r.t. node v; representing output gate i, where 0 < ¢ < n. A
reduced subgraph R(G,v;) = (R(V,,), R(E,,)) is a sub-graph
of (G, v;) such that:

. R(sz) = {a S Vvi | a Q/ Ci—l}'

e R(E,,):={(a,b)|a,be R(V,,),b is reachable from a}.
By Definition 9, the nodes of the resulting subgraphs are
disjoint. To adapt the notion of the input node with the reduced
subgraph, we refer to any node of the reduced subgraph with
no successor as an input node. For simplicity, we use Rg, to
refer to the reduced subgraph R(G,v;), where i is referring
to output bit 7. We further denote the inputs of Rg, as IN;,
which is split into the primary inputs PIN; and the incoming
cone nodes from other subgraphs C'IN;. The primary output is
referred to as OUT; and the outgoing cone nodes as COUT;.

We adapt the notion of a k-bounded circuit introduced in [24]
to the case of graphs. Briefly, a circuit is said to be k-bounded
if its nodes can be partitioned into disjoint blocks such that
each block has at most k inputs. Thus, Definition 9 yields a
characterization of k-bounded circuit in terms of the graph.

Definition 10 (k-bounded Graph): Let G = (V,E) be a
graph of n root nodes. Then, G is said to be k-bounded, if
and only if for all 0 < ¢ < n, R(G,v;) has at most k input
nodes.

B. Information Passing

As we can see in Fig. 2, each cone node v is evaluated in
one of the subgraphs only. Also, any other graph that uses v
as an input, takes the value of v from the graph in which it is
evaluated. For example the node 74" is calculated in subgraph
(G,0p) but is also used in the reduced subgraph (G,O;).
Hence, the cone node values of reduced subgraphs must be
stored, so their values can be used in other subgraphs. The
value cannot be stored as a function over the primary inputs,
because this would pass the primary inputs from one subgraph
to the next and the last subgraph would be dependent on all
primary inputs. Following the example, if node 4” would
be stored as By A Ag, the reduced subgraph (G,O1) and its
outgoing cone nodes would be dependent on Ag, A1, By, B1
and the list would grow by two elements for every subgraph.
To overcome this issue we use the carry function to store
information about the cone nodes. A hash table relates the
values of the cone nodes with the corresponding value of the
carry function. This allows us to use the carry function in the
specification of the output for the subgraph. To define this table,
we first introduce an injective function f, which maps the input
sequence s € I N; of subgraph R, to the set of values COUT;

of outgoing cone nodes C(G;).
f:IN; —» COUT;. (10)

The surjective function g that maps ¢ € COUT; to the value
of the carry function.

g: COUT; — [0,1]. (11)



(a) an AIG graph of 2-bit RCA.
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Fig. 2. AIG of 2-bit RCA and the resulting (reduced) subgraphs (G, Og), (G,01) and (G, O2) that can be obtained from the AIG graph in Fig. 2a. The
nodes highlighted in red correspond to input nodes, and those highlighted in blue correspond to output nodes. Dotted nodes and edges are removed when the

subgraph is reduced

TABLE 11
7o FOR FIG. 2

COUTy Value
0} 0
1} 1

We refer by f(s) to the set of values representing cone nodes
C(G}) under the input sequence s € IN;. Also, by g(f(s)) to
the value of carry under f(s). The key of a hash table entry
is the value f(s) for which there is a value s € IN;, while
the corresponding value in the hash table is g(c). Equation 12
defines the hash table accordingly.

Ti ={(f(5),9(f(s))) | s € IN;}.

Let us examplarily create the hash table 7y for Fig. 2. There
are two possible values of f for input sequences s € COUT:
£(0,1) = {0} and f(1,1) = {1}. We do not have to consider
the other input sequences as both possible combinations for
the set of COUTj are already covered, because the set of cone
nodes only contains node ’4”. The carry function for subgraph
0is Ao A By. For function g we can obtain that g({1}) = 1 and
g({0}) = 0. The resulting hash table is presented in Table II.
Of course the hash tables get more complex, if the set of cone
nodes is bigger. To generalize the information passing from
adder functions to arbitrary function, the carry function can
be swapped with one or multiple functions, which describe
the information passed between the subgraphs. This does not
increase the number of entries in the hash table, as they are
bound by the number of cone nodes.

(12)

C. Subgraph Verification

For every subgraph R¢, two tasks have to be performed.
First it has to be verified that the output function of the
subgraph is correct and second the hash table 7; for COUT;
of the circuit has to be built.

The input IN; contains the primary inputs PIN; and the
cone nodes C'I N;. It is important to only allow combinations
from CIN; which are in 7;. The values of CIN; of Rg,
may be stored in any hash table 7', where j < 4. Thus, it is
required to go over all tables j to obtain such values. Therefore,

a relation has to be defined between two tables 7; and 7/ of
subgraphs, where j, j° < i. A relation X is used to define the
relation w.r.t. CIN; between two tables 7; and 7; such that
73' X 'Tj/ ={rur |re 7;‘,’/‘/ S %/,C(GJ) ﬁC(Gj/) -
CIN;}. Hence, we refer by X;(CIN;) to the resulting table
containing the values of C'IN; and defined as follows.

XZ(CINZ) = 7;,1 X ... X 76

Finally, every r € X;(CIN;) is populated with PIN; of Rg,
to obtain its input sequences.

Thus, each reduced subgraph R, can be checked indepen-
dently whether it is a valid graph (recall Definition 6), for all
0 < i < n, where n is the number of outputs. Moreover, the
outgoing hash table 7 of each subgraph can be built. In the
following section, we show the overall time complexity of the
proposed approach.

13)

V. TIME COMPLEXITY

We refer by II(R¢,) to a logic program constructed w.r.t.
a reduced subgraph Rg,, and by II(G) to a logic program
constructed w.r.t. the input AIG graph G. Then, checking the
graph validity of II(R¢,) depends on the number of its input
nodes IN;. Thus, we obtain the following theorem.
Theorem 5.1: Let R be a reduced subgraph. Then, II(R¢)
can be verified in time O(2//N1).
Proof: By Definition 6, R is a valid graph if and only if
for every s € F, we have that s is a valid sequence, where F
is the set of all input sequences. Also, the size of F depends
on the number of input nodes I N of Rg and the carry of its
previous subgraph (for the reduced subgraph R¢,, where ¢ >
0). Therefore, the overall number of input sequences is 2!/
and consequently, II(R) has search space of 21/l Hence,
II(R¢) can be verified in time O(217N1), [ |
Since each reduced subgraph R, could contain a node c
such that ¢ is a cone node and the values of ¢ are stored in 7
where j < i, the values of ¢ can be obtained from X;(CIN;)
(recall Eq. (13)). We assume that X;(CIN;) can be computed
in constant time. This assumption is done based on the fact
that the search operation in a well configured hash table takes



TABLE III
CALCULATED UPPER BOUND AND THE MAXIMUM NUMBER OF and GATES
AMONG ALL REDUCED SUBGRAPHS FOR DIFFERENT ADDER CIRCUITS.

Adder | Upper bound (K) | Maximum No. and Gates
RCA 3 7
CSKA 8 15

CLA 11 18

CSA N.A. N.A.

KSA N.A. N.A.

LFA N.A. N.A.

constant time. In the worst case the operation can take linear
time, but only if many collisions occur i.e. as a result of a bad
hash function. Consequently, X;(CIN;) can be computed in
constant time (denoted by P(X;(CIN;))).

Finally, the overall time required to verify I1(G) of the AIG
graph G can be characterized in the following theorem.

Theorem 5.2: Let G be an AIG graph constructed w.r.t. an
adder circuit. Then, II(G) can be verified in time O(n - 2K),
where n is the input bit width and K is the maximum size of
input nodes of all reduced subgraphs.

Proof: Let G be a graph of n input bit width, then n
subgraphs (G, v;) have to be constructed from G by Def-
inition 7, where 0 < ¢ < n. Also, the reduced subgraph
R, can be obtained from (G,v;) by applying Definition 9.
By Definition 9, R¢, is equivalent to (G, vg) (V,, = R(Vy,)
and E,, = R(E,,)). Thus, the set CI Ny = (). Therefore, R,
relies only on the primary input nodes PIN,. More precisely,
by Theorem 5.1, TI(R¢,) can be verified in time O(2!7/Nol),
However, in order to enable verifying the reduced subgraph
R¢,, it is essential to compute X;(CIN;) (Equation 13) where
0 < ¢ < n. This is due to the fact that for all Rg,, where
it > 0, and CIN; # (. Since X;(CIN;) is computed from
tables 7;, where j < i. Let P; be the constant time required
for a single access of table 7;. Then the overall time complexity
for computing X;(CIN;) can be calculated as follows:

i—1
Complexity(X;(CIN;)) := ZPj (14)

j=0
We refer by P(X;(CIN;)) to the time obtained from the
previous equation. By Theorem 5.1, II(Rg,) can be verified
in time O(2//N:l), where |IN;| := |CIN;| + |PIN;|. Thus,
the overall verification process of subgraph Rg, has a time
complexity of O(2/Nil + P(X;(CIN;))) = O(21N:l), where
0 < i < n. The overall time complexity for verifying II(G)
can be calculated as follows:

Complexity(II(G)) := > O(2"N:l)
i=0

Moreover, by Definition 10, G is said to be k-bounded if and
only if every reduced subgraph R, has at most k-input nodes.
Let K be the maximum size of input nodes of all reduced
subgraphs. Equation 15 shows that II(G) can be verified in
time O(n-2%). Hence, if K is constant, then the graph G can
be verified in a linear time. ]
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VI. EXPERIMENTAL WORK

To evaluate the upper bound K for the verification process of
adder circuits introduced in Section V and check the scalability
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Fig. 3. Runtime graphs per adder circuit. The x-axis refers to the input bit-
width, and the y-axis depicts the runtime sorted in ascending order for each
circuit type individually. The solid lines indicate the runtime obtained from
CutWidth approach, while the dotted lines indicate the one obtained from SAT
approach.

of our approach, we have implemented the ASP framework in
Python. It is worth noting that our approach is not restricted
to a specific architecture. The framework takes input circuit in
the standard AIGER format [25]. The verification is performed
independently for each subgraph. This allows us to detect an
incorrect circuit without necessitating a complete verification
of the entire circuit.

A. Experimental Setup

We mainly compare our approach (labeled as CutWidth) and
SAT-based approach (labeled as SAT) in terms of the wall clock
time and the number of timeouts. All instances are performed
on Intel(R) Core(TM) i7-11370 with 3.30 GHz. We set a
timeout of 2700 seconds and a limited available RAM to 16 GB
per instance. We use different types of bug-free adder circuits
of different sizes (RCA, CSKA, CLA, CSA, KSA, and LFA).
These circuits are generated using the ArithsGen tool [26],
where the design is synthesized using yosys.

B. Experimental Results

Table III shows the results of the upper bound of inputs (sec-
ond column) and the maximum number of and gates appearing
in reduced subgraphs (third column) for adder architectures
(first column) during the verification process. The value N.A.
indicates that the circuit does not have a constant cutwidth.
We can observe that the upper bound depends on the circuit
architecture. E.g. RCA has three input nodes, representing
two primary inputs and the previous carry. This is due to
the fact that each circuit has a different architecture, and
consequently the number of cone nodes that appear as inputs of
reduced subgraph is circuit dependent. A circuit with a constant
cutwidth has a fixed number of and gates.

Table IV compares the run time of each approach for each
adder architecture w.r.t. different input size, where the input
size is represented in the first column, while the other columns
indicate the runtime of the adder architectures under SAT and
CutWidth approaches. If an approach did not terminate within
the timeout limit, the runtime of this instance is set to 7.0.. It



TABLE IV
RUN TIME OF VERIFYING ADDER CIRCUIT (SECONDS).

Size Benchmarks
RCA CSKA CLA CSA KSA LFA
k= k= k= = k= k=
= = = ] 5 =
5 5 5 =] =] 5
@] @] @] @] @] @]
512 5.5 5.9 7.1 11.2 13.0 22.6 180.2 174.6 153.9 T.O. 12.2 1548.4
1024 17.6 11.5 22.1 22.1 44.9 46.3 962.1 631.4 1231.8 | T.O. 48.1 T.O.
2048 71.0 23.3 87.8 45.0 206.7 92.1 T.O. 2596.3 T.O. T.O. 228.7 T.O.
3072 184.0 35.5 214.9 69.4 501.3 142.3 T.O. T.O. T.O. T.O. 552.5 T.O.
4096 357.9 48.7 387.3 94.5 982.7 188.1 T.O. T.O. T.O. T.O. | 1053.2 T.O.
5120 596.4 63.9 612.3 119.6 | 1578.8 | 236.9 T.O. T.O. T.O. T.O. | 1700.9 T.O.
6144 850.3 71.5 917.9 147.8 | 2276.6 | 288.6 T.O. T.O. T.O. T.O. T.O. T.O.
7168 1198.1 93.0 1306.2 | 174.1 T.O. 341.5 T.O. T.O. T.O. T.O. T.O. T.O.
8192 1561.6 | 108.7 | 1673.8 | 203.1 T.O. 393.1 T.O. T.O. T.O. T.O. T.O. T.O.
9216 1979.8 | 124.6 | 2348.8 | 230.8 T.O. 445.5 T.O. T.O. T.O. T.O. T.O. T.O.
10240 | 2475.1 | 142.3 T.O. 260.3 T.O. 500.3 T.O. T.O. T.O. T.O. T.O. T.O.

shows that the CutWidth approach is faster for adder circuits
with a constant cutwidth than the SAT approach, while the
SAT approach outperforms the CutWidth one for the circuits
that have no constant cutwidth. E.g., the SAT approach was
able to solve instances up to 5k inputs, while the CutWidth
approach reached the timeout, starting from 1k inputs.

Moreover, Fig. 3 shows the run time of each approach for
each adder architecture per input size, where the run time
per input size is shown in Table IV. Hence, the curve of the
CutWidth approach for adders with a constant cutwidth is a
linear curve. Therefore, it aligns with the calculated complexity
bound obtained from Theorem 5.2 in Section V. Also, the curve
of SAT approach has an exponential behavior.

VII. CONCLUSION

In this paper, we have proposed a new PFV approach that
relies on the cutwidth of a netlist, where ASP was used to
verify subcircuits independently and reason about nodes that
are used in more than one subcircuit. Moreover, we have shown
that the verification of adder circuits can be done in linear time,
for a constant cutwidth K. Finally, the experimental evaluations
confirm the upper bound complexity of each circuit.

As future work, we will focus on extending this approach
for the PFV of combinational adder circuits to the case of
sequential adder circuits. Moreover, our study aims to exam-
ine various circuit types to determine, which ones exhibit a
constant cutwidth. Furthermore, we plan to apply different
verification techniques for the verification of the subcircuits.
While SAT solvers can be expected to behave similarly to
ASP solvers, using BDD is particularly interesting. The main
challenge will be adapting the hash table 7.
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