
Counterexample-Guided Diagnosis
Heinz Riener∗

∗Institute of Space Systems,
German Aerospace Center, Germany

heinz.riener@dlr.de

Goerschwin Fey∗†
†Faculty of Mathematics and Computer Science,

University of Bremen, Germany
goerschwin.fey@dlr.de

Abstract—In this paper, we propose a counterexample-guided
diagnosis approach to identify faults in circuit designs described
as net-lists on the gate-level. Given a faulty net-list and a logic
specification of the correct, intended behavior of the circuit,
the diagnosis algorithm iteratively computes the exact set of
fault candidates, i.e., a subset of the circuit’s gates at which
all counterexamples can be rectified. The algorithm equips SAT-
based diagnosis with systematic counterexample generation. In
each iteration, an over-approximation of the fault candidates is
computed and a new counterexample is generated such that at
least one of the fault candidates can be excluded in the next
iteration. The algorithm terminates if no such counterexample
exists and no remaining fault candidate can be excluded. The
number of counterexample generated is not minimal and, thus,
we additionally provide a counterexample reduction algorithm
to post-process the set of generated counterexamples and obtain
some insight in how many counterexamples are sufficient to
exactly pinpoint a fault. We evaluate counterexample-guided di-
agnosis for a set of benchmark circuits and provide a comparison
to an exact algorithm that uses a state-of-the-art QSAT oracle.
The accuracy of both algorithms is per design equal, whereas
counterexample-guided diagnosis significantly outperforms the
QSAT-based diagnosis algorithm.

I. INTRODUCTION

Design debugging is a tedious and cumbersome process
that requires a substantial amount of human work and time.
The overall effort spent in debugging is often reported to
account for half of the total development time and a quarter of
the total development budget. Formal approaches to diagnose
faults based on Boolean satisfiability (SAT) [1] and quantified
SAT (QSAT) have been proposed. SAT-based algorithms over-
approximate the set of fault candidates considering a fixed set
of counterexamples; however, finding the right counterexam-
ples to obtain a tight over-approximation is complicated and
typically not addressed. Alternatively, QSAT-based algorithms
compute the exact set of fault candidates with respect to all
possible input assignments but do not scale well with the size
of the circuit.

In this paper, we propose a counterexample-guided diagno-
sis algorithm using a SAT oracle that computes the exact set
of fault candidates, but scales significantly better than QSAT-
based algorithms. Given a faulty circuit design described
as a net-list on the gate-level and a logic specification of
the correct, intended behavior, e.g., obtained from a golden
reference circuit or a test suite, the proposed algorithm uses
SAT-based diagnosis to compute an over-approximation of the
fault candidates from an initial set of counterexamples. The
over-approximation is then iteratively improved by system-

atically constructing new counterexamples, adding them to
the initial set, and recomputing the set of fault candidates.
Each counterexample is constructed in such a way that at
least one fault candidate is removed in the next iteration.
The algorithm terminates if no such counterexamples can be
generated anymore and thus the exact set of fault candidates
has been determined.

The advantages of the counterexample-guided diagnosis
algorithm can be summarized as follows: 1.) the algorithm
has anytime character, i.e., a first, coarse over-approximation
of the fault candidates is obtained fast and stepwisely improved
when time progresses. This is in contrast to QSAT-based
algorithms that compute the exact solution in one long-running
computation. Our algorithm can be interrupted by a user at
anytime, e.g., when the user has time constraints for debugging
the circuit, and an over-approximation of the exact set of fault
candidates is obtained. 2.) If a good initial set of counterex-
amples is known and provided for the first approximation
of the fault candidates, the algorithm performance can be
significantly improved similarly to SAT-based algorithms. 3.)
Counterexample-guided diagnosis computes the exact set of
fault candidates and significantly outperforms QSAT-based
algorithms.

We provide a prototype implementation of the proposed
counterexample-guided diagnosis algorithm that takes as input
an and-inverter graph (AIG) and computes fault candidates in
terms of a list of potentially faulty gates of the AIG as output.
We evaluate the run-time of our prototype implementation
for a set of selected combinational circuits and compare the
performance to an exact algorithm that uses a state-of-the-art
QSAT oracle.

The remainder of the paper is structured as follows: in
Section II and Section III, we present related work and prelimi-
naries, respectively. In Section IV, we give a brief introduction
to circuit verification and diagnosis including a motivating
example. Section V is dedicated to the counterexample-guided
diagnosis algorithm, whereas Section VI presents experimental
results. Section VII concludes the paper.

II. RELATED WORK

Approaches to debugging are manifold. Early attempts to
fault localization stem from diagnostic reasoning developed
in the field of artificial intelligence. These approaches are
inspired by ideas and notions from philosophy. Diagnosis from
first principles rests on the observation that when a change
applied to a system results in a system that no longer exhibits

the specification violation, the changed components can be
used as a characterization of the fault. From this perspective,
the changed components are one potential cause for the
observed specification violation. Reiter [2] showed that finding
changes of minimal size, called minimal diagnosis, is NP-
complete and proposed a hitting set algorithm to enumerate
all minimal diagnoses. The general theoretical framework of
diagnosis from first principles is flexible — a component may
be a gate of a digital circuit or a sub-circuit — and only
requires that the system has to be described in a suitable
logic. Smith et al. [1] developed a diagnosis procedure for
circuits that uses a SAT oracle. Today, techniques following
similar ideas are typically categorized as SAT-based diagnosis
techniques. In this context, many heuristics [3], [4], [5] to
improve the accuracy of diagnosis have been proposed. In
this paper, we develop a counterexample-guided diagnosis
approach based on a SAT oracle. Our algorithm, in contrast
to standard SAT-based diagnosis, is exact and has anytime
character.

Most similar to our approach, Sülflow and Fey [5] gen-
erate counterexamples targeted to refute diagnosis. Instead
of applying a QSAT oracle, however, our implementation
“unrolls” the quantified Boolean formulæ and instantiates the
all-quantified variables with concrete values to obtain a SAT
instance. Moreover, all interaction with the SAT oracle are
done via API which enables incremental SAT solving.

Other applications of QSAT to fault diagnosis for circuits
include compacting the time frame for sequential circuits [6]
and extracting corrections [7] for circuits.

III. PRELIMINARIES

A. SAT and QSAT

Given a Boolean formula f over Boolean variables
v0, . . . , vn−1, the SAT problem asks whether an assignment
a = a0 · · · an−1 to the variables exists under which f evaluates
to true, i.e., f(a) = 1. If such an assignment exists, f is
satisfiable and otherwise unsatisfiable.

The QSAT problem generalizes SAT. Given a quantified
Boolean formula f , where some variables b0, . . . , bk−1 are
existentially (∃) or universally (∀) bounded and some variables
v0, . . . , vn−1 occur free, the QSAT problem asks whether
an assignment a = a0 · · · an−1 to the free variables exists
such that f evaluates to true. The SAT problem can be
understood as a special case of QSAT, where all variables
are implicitly existentially quantified. SAT is the canonical
complete problem for NP, whereas QSAT is the canonical
complete problem for PSPACE. Thus decision procedures for
SAT and QSAT unleash the power to express and decide all
instances of problems in NP and PSPACE, respectively.

Despite the problem’s complexities, effective decision pro-
cedures for SAT and QSAT, called oracles, have been de-
veloped for many years. SAT oracles operate on Boolean
formulæ in conjunctive normal form (CNF), i.e., a conjunction
of disjunctions of literals, where a literal is a variable or its
negation. QSAT oracles operate on prenex CNF (PCNF) of
form Q0b0 · · ·Qk−1bk−1.M(v0, . . . , vn−1, b0, . . . , bk−1) with

quantifiers Qi ∈ {∃,∀} and bounded variables bi, 0 ≤
i ≤ k − 1, and free variables vi, 0 ≤ i ≤ n −
1. The prefix Q0b0 · · ·Qk−1bk−1 is called the prenex and
M(v0, . . . , vn−1, b0, . . . , bk−1) is called the matrix.

B. Circuits and Specifications

A circuit is a net-list on the gate-level. For the sake of
simplicity, we only consider combinational circuits in this
paper; however, all presented algorithms can be generalized
to sequential circuits. A combinational circuit is a directed
acyclic graph with nodes corresponding to logic gates and
edges corresponding to wires connecting them. The sources
of the graph are the circuit’s primary inputs (PIs) and the
sinks are the primary outputs (POs).

Each circuit can be encoded as a Boolean formula in CNF
over Boolean variables, e.g., using the Tseytin transforma-
tion [8]. More succinct encoding, e.g., [9], have been proposed.
Let C be a circuit, we write C(x, y) to denote a Boolean
formula C in CNF over lists x and y of Boolean variables
that correspond to the circuit’s PIs and POs, respectively. In
the following, we will not distinguish between the circuit C
and the circuit’s CNF encoding C(x, y) when it is clear from
the context.

A logic specification is a Boolean formula that similarly
to a CNF encoding of a circuit describes an input-output
relation between PIs and POs. A specification may be the CNF
encoding of a golden, reference implementation of a circuit or
a logic encoding of a test suite that incompletely specifies the
correct outputs only for some inputs. The accuracy of auto-
mated diagnosis strongly depends on the completeness of the
specification. Faults that are not “detected” by the specification
cannot be identified with diagnosis. In the following, we do
not deal with finding a logic specification of a circuit, but
assume that a logic specification that allows to identify the
faults of interest is always available.

IV. VERIFICATION AND DIAGNOSIS

A. Formal Verification

Let C be a faulty circuit and R be a logic specification
that describes the correct, intended behavior of C. Formal
verification attempts to guarantee that the circuit adheres to
its logic specification, i.e., the POs of C and R have to be
equal when executed on the same PIs. This can be formalized
as

∀x.∃y.(C(x, y) ∧R(x, y)) (1)

and checked using a QSAT oracle.
In practice, instead of formally verifying the correctness of

a circuit, often model checking is applied to check whether a
counterexample to correctness exists, i.e.,

∃x, y, y′.(C(x, y) ∧R(x, y′) ∧ y 6= y′). (2)

Eq 2 avoids the costly quantifier alternation of Eq 1 and
allows to implement a decision procedure utilizing a SAT
oracle. Additionally, to deciding satisfiability, SAT oracles
typically also generate assignments to the variables as a

f

*

1

0
y

d

Fig. 1. Injection of Boolean values using abnormal variables.

certificate for the satisfiability of the formula. In terms of
Eq 2, an assignment (x, y′), i.e., a pair of an input assignment
that exhibits a specification violation and the corresponding
correct values at the outputs, serves as a counterexample. A
counterexample is then used as a starting point for manually
debugging the circuit.

B. Fault Diagnosis
In order to reduce the effort of manually debugging cir-

cuits, automated diagnosis algorithms have been developed.
Automated diagnosis, e.g., [1], attempts to highlight the “in-
teresting” gates of a circuit, i.e., those gates that should be
examined in debugging, for a designer by computing the subset
of gates that allow for rectifying the circuit’s input-output
relation when changed. However, diagnosis does not provide
a fix for the circuit.

Let C be a faulty circuit and R be a logic specification
that describes the correct, intended behavior of C. Diagnosis
algorithms deal with the identification of a subset of the
circuit’s components to be diagnosed, called diagnoses, that
when changed correct the circuit’s input-output relation such
that Eq 1 is satisfied. We consider gates as components and
the terms diagnosis and fault candidate are understood as
synonym. For each potentially faulty gate in the circuit to be
diagnosed, an additional abnormal variable is introduced. The
abnormal variables are used to inject non-deterministic values
for the corresponding gates when assigned to true. This can be
best understood as instrumenting the output of each gate with
a multiplexer controlled by the abnormal variable as shown in
Fig 1. Suppose that f is a gate (or a component) of the circuit.
When d = 0 the gate (or component) behaves normally, i.e.,
y is assigned to the output of f ; however, when d = 1 then
y is assigned to a non-deterministic Boolean value. During
reasoning the non-determinism is resolved when needed, i.e.,
y takes the “right” value to satisfy the constraints imposed
by Eq 1 if possible. In practice, the multiplexer construction
shown in Fig 1 is not implemented into the circuit, but added
to the CNF when encoding the circuit.

The diagnosis problem can then be described as

∃d.∀x.∃y.(C(x, y, d) ∧R(x, y)), (3)

where d represents the list of abnormal variables introduced
into the CNF encoding for diagnosis. An assignment to d is a
diagnosis for the faulty circuit, i.e., the set of gates with d = 1
is a fault candidate. Note that multiple faults are allowed such
that several gates together form a fault candidate. Following
Occam’s razor, simpler diagnoses are always preferred and
thus often an additional cardinality constraint |d| ≤ l is added
to Eq 3 to ensure that at most l variables are assigned to 1.

To obtain all possible diagnoses, Eq 3 is iteratively checked,
where each assignment obtained for d is blocked until no more
assignments exist and the formula becomes unsatisfiable. This
can be implemented utilizing an incremental QSAT oracle,
where additional constraints can be added after each check
for satisfiability.

As in verification, the costly quantifier alternation of Eq 3 is
undesirable. Thus, SAT-based approximations for Eq 3 exist.
Let C be a faulty circuit and suppose that a fixed-size list
of (x0, y0), . . . , (xn−1, yn−1) of counterexamples for C is
known, e.g., obtained by model checking or simulation of the
design. The diagnosis problem of Eq 3 can be approximated
as

∃d.(
n−1∧
i=0

C(xi, yi, d)) (4)

and checked with a SAT oracle. The CNF encoding of the
circuit is cloned n-times and the PIs and POs are con-
strained to the counterexamples, respectively. Note that the
abnormal variables d are shared over all clones to diagnose
the same gates considering all counterexamples but the non-
deterministic Boolean values injected at the diagnosed gates
may change for each counterexample. Again, to obtain all
diagnoses, respectively, all fault candidates, Eq 4 has to
be checked multiple times, where each time the extracted
assignment to d has to be blocked, until the formula becomes
unsatisfiable. Since Eq 4 considers only a fixed number of
counterexamples in contrast to Eq 3, an over-approximation
of the fault candidates is computed.

C. Motivating Example

In this section, we illustrate SAT-based diagnosis for a
simple example, a faulty realization of the circuit c17 from
the ISCAS’85 benchmark suite. The circuit has 5 PIs, 2 POs,
and consists of 6 NAND gates. The correct, golden reference
circuit is shown in Fig 2 (on the top) together with the
faulty realization to be diagnosed (on the bottom). The faulty
realization is annotated with a counterexample obtained from
model checking the circuit. The counterexample shows the
inputs and outputs of all gates (for the faulty realization in
red and the reference circuit in blue).

In order to over-approximate the fault candidates of the
faulty circuit with respect to the given counterexample, the
schema described in the previous section can be equipped:
the PIs and POs are assigned to the values of the counterex-
ample. All gates are considered potentially faulty and thus
instrumented with abnormal variables, conceptually shown in
Fig 3. As in Eq 4, an assignment to the abnormal variables
can be computed utilizing a SAT oracle.

The SAT oracle assigns d2 = 1 and computes a single
fault candidate for g2 when invoked. No other diagnoses are
obtained. This corresponds to the exact location of the fault.
Note that, due to the given counterexample, only the gates
g2, g4, and g5 are interesting for diagnosis; all other gates
of the reference circuit and the faulty realization produce the
expected outputs. Moreover, since both POs are affected by the

g0

g1

g2

g3

g4

g5

x0
x1

x2

x1
x3

x4

y0

y1

g0

g1

g2

g3

g4

g5

1/1

1/1

0/1

1/1

0/0
1/1

0/0

1/1
0/0

0/0

1/0

1/0

Fig. 2. The correct, golden reference circuit c17 (top) and a faulty realization
annotated with a counterexample (bottom).

g0

g1

g2

g3

g4

g5

1

0

1

0

1

0

1

0

1

0

1

0

0
1

0

1
0

0

0

0

*

*

*

*

*

*

d0

d1

d2

d3

d4

d5

Fig. 3. The faulty realization of Fig 2 instrumented for diagnosis.

fault, no diagnosis can be generated for g4 and g5, respectively,
and thus g2 is the only fault candidate obtained. In this special
case only one counterexample is enough to exactly pinpoint
the fault. For more realistic examples, often more than one
counterexample is needed.

V. COUNTEREXAMPLE-GUIDED DIAGNOSIS

In this section, the counterexample-guided diagnosis algo-
rithm is described that combines SAT-based diagnosis with
a systematic approach to generate counterexamples. The al-
gorithm iteratively improves an over-approximation of the
fault candidates until the exact set is obtained. The overall
diagnosis algorithm is described in Section V-A, whereas
counterexample generation and a post-processing algorithm to
reduce the number of counterexamples, called counterexample
reduction, are presented in Section V-B and Section V-C,
respectively.

A. Overview of the Diagnosis Procedure

Algorithm D describes the overall approach to
counterexample-guided diagnosis. The generation of
counterexamples is separately described as Algorithm G
invoked by Algorithm D.

Algorithm D (Counterexample-Guided Diagnosis). Given a
faulty net-list C and a logic specification R, this algorithm
determines the exact set of fault candidates ∆ for C with

respect to R.
D1.[Initialize.] Set ∆ := ∅ and T := ∅.
D2.[ModelCheck.] Encode C and R into a Boolean formula
(as in Eq 2) and apply a SAT oracle to compute an initial
counterexample that is added to T .
D3.[Diagnose.] Set F := ∅. Encode C for each counterex-
ample in T with abnormal variables d as a Boolean formula
(as in Eq 4). Apply a SAT oracle to decide satisfiability of
the Boolean formula. If satisfiable, extract the assignment to d
from the oracle’s certificate and add the set {i | di = 1} of gate
ids diagnosed to be faulty to F . Lastly, block the assignment
to d in the SAT oracle and goto D3. Otherwise, if unsatisfiable,
goto D4.
D4.[Refute.] If F\∆ = ∅, goto D5 . For each f ∈ (F\∆),
try to compute a counterexample by applying Algorithm G to
C, R, and f . If Algorithm G returns a new counterexample,
add it to T , and goto D3. Otherwise, if ⊥ is returned, add f
to ∆ and proceed with the next diagnosis.
D5.[Terminate.] Return ∆.

Note that initially a single counterexample is generated
by model checking the faulty circuit with respect to its
logic specification. Alternatively, if a set of counterexamples
is available, they can also be used as a starting point for
diagnosis.

B. Counterexample Generation

To refute a potential diagnosis d, that corresponds to a set
of gates in the circuit, a counterexample (x, y) is required that
reveals that the faulty circuit C and the logic specification R
produce different outputs regardless which values are injected
at the outputs of the gates in d. This can be formalized as

∃x.∀u.∃y, y′.(C(x, y′, u) ∧R(x, y) ∧ y 6= y′), (5)

where u denotes a list of fresh variables that corresponds to
the outputs of the gates in d. Each variable of u corresponds
to one specific gate in d.

Due to the quantifier alternation in Eq 5, a QSAT solver
is needed for refuting a diagnosis. However, the number of
gates in a diagnosis is typically low such that the all-quantifier
can be removed by reproducing the matrix of the quantified
formula 2|d|-times while replacing u with each of the possible
evaluations. The resulting Boolean formula can be checked
with a SAT oracle.

For instance, assume that d contains a single gate, then Eq 5
is semantically equivalent to

∃x, y, y′, y′′.(y 6= y′ ∧ y 6= y′′∧
C(x, y′, 0) ∧ C(x, y′′, 1) ∧R(x, y)).

(6)

Algorithm G describes an approach to generate a counterex-
ample to refute a certain diagnosis utilizing a SAT oracle.

Algorithm G (Refute Diagnosis). Given a faulty net-list C,
a logic specification R, and a diagnosis d, this algorithm
determines a counterexample c that refutes d when used in
SAT-based diagnosis or returns ⊥ if no such counterexample
exists.

D1.[Encode.] Encode C and R into a Boolean formula and
introduce for the gates in d a list u of fresh Boolean variable
that can be used to inject Boolean values at the output of
those gates (as in Eq 5). Unroll the Boolean formula by
instantiating u for all possible values (as in Eq 6) such that
the resulting Boolean formula needs no all-quantification of
u.
D2. [Check SAT?] Apply a SAT oracle to check the sat-
isfiability of the formula. If satisfiable extract and return
the counterexample (x, y) from the oracle’s certificate. If
unsatisfiable, return ⊥.

C. Counterexample Reduction

Algorithm D tries to refute each diagnosis and systemat-
ically reduces the number of fault candidates. However, the
number of counterexamples generated is not minimal. Newly
generated counterexamples may cover previously refuted diag-
noses. In an attempt to reduce the number of counterexamples
as a post-processing step, Algorithm S iterates through the
list of counterexample, removes one counterexample, and tests
whether the set of diagnosis shrinks.

Algorithm S (Reduce Counterexamples). Given a faulty net-
list C, a list T of counterexamples, and the corresponding
set ∆ of diagnoses produced with SAT-based diagnosis, this
algorithm attempts to determine a subset T ′ ⊂ T that generates
the same set ∆ of diagnosis.
S1. [Initialize.] Set T ′ := T .
S2. [Test.] For each t in T , apply SAT-based diagnosis to
C and T ′\{t} to compute diagnosis ∆′. If ∆ = ∆′, set
T ′ := T ′\{t}.
S3. [Terminate.] Return T ′.

Algorithms S invokes SAT-based diagnosis at most |T |-
times. The reduced list T ′ of counterexamples produced is
a local minimum, but depending on the order the algorithm
examines the counterexamples, and consequently does not
guarantee that the global minimum is computed. Alternatively,
to obtain the exact solution a minimal cover can be computed.

VI. EXPERIMENTAL RESULTS

The described exact counterexample-guided diagnosis ap-
proach was implemented and evaluated for a selected subset
of combinational circuits given as and-inverter graphs (AIGs).
The benchmarks were taken from the ISCAS’85 and EPFL
benchmark suites. The ISCAS’85 benchmarks were first trans-
lated from the BENCH format in functionally equivalent AIGs
utilizing ABC; the EPFL benchmarks are already provided as
AIGs. The number of PIs, POs, gates, and levels reported in
the following always refers to the translated AIG circuits. For
each circuit, 100 faulty versions were generated with random
fault injection. As fault model, we consider for all wires stuck-
at-0 and stuck-at-1 faults as well as missing or additional logic
negations. Each faulty version contains exactly one fault.

All experiments were conducted on a quad-core Intel R©
CoreTM i5-2520M CPU with 2.50GHz and 8GB RAM. As
SAT oracle, MiniSAT 2.2.0 was used. Since we concentrate

on single faults, cardinality constraints that restrict the search
to diagnoses of size 1 have been added.

A. Comparison to QSAT-based Diagnosis

To analyze the correctness of the approach, counterexample-
guided diagnosis was compared to an exact diagnosis algo-
rithm that implements the approach described in Eq 3 using
a state-of-the-art QSAT oracle. Different QSAT oracles have
been evaluated, however, DepQBF 5.0 [10] performed best in
our experiments. Nonetheless, the QSAT oracle timed out for
all considered circuit designs except for c17. The timeout was
set to 10 minutes per benchmark. The quality of the diagnoses
of the exact algorithm and counterexample-guided diagnosis
are equal, i.e., for all faulty versions, both algorithms compute
the same diagnoses. We compared and verified the results for
c17.

In an attempt to find a suitable time bound for the circuit
c432, we computed the exact set of fault candidates for one of
the faulty version of c432 without time restrictions in 7 hours
using DepQBF. Other QSAT oracles did not terminate within
the same time.

B. Evaluation for Combinational Benchmark Circuits

We have used a set of benchmarks to evaluate the run-time
of the counterexample-guided diagnosis approach. Table I lists
details for those benchmarks. The table is built as follows:
the first column names the benchmark followed by four
columns that describe the benchmark’s characteristics, that
are, the number of primary inputs (#PIs), the number of
primary outputs (#POs), the number of gates (#Ands), and
the number of levels (#Lvl) of the circuit. The next four
columns list the number of generated counterexamples and
the number of diagnosis, respectively, on average (µ) and the
standard derivation (σ). The last two columns list the run-
times required for model checking (MC), i.e., for generating
the first counterexample, and for diagnosis (D), i.e., generating
the fault candidates and refuting them.

In general, only a few counterexamples were sufficient
to exactly pinpoint the set of fault candidates, i.e., for all
benchmarks less than 10 counterexamples were generated. The
run-times for model checking and diagnosis were for all circuit
designs presented in the table acceptable. The counterexample-
guided diagnosis approach, however, timeouts for more com-
plex designs, e.g., the 16-bit multiplier circuit c6288 from
the ISCAS benchmark suite could not be analyzed. Although
model checking and SAT-based diagnosis (with respect to
multiple counterexamples) succeeds on the design in a few
seconds, generating counterexamples to refute a diagnosis is
too complex.

The number of counterexamples generated with
counterexample-guided diagnosis is not minimal and,
thus, we apply the counterexample reduction algorithm,
Algorithm S, described in Section V-C as a post-processing
step. Table II gives an overview of the results for the same
benchmark set. The table is built similar to Table I. The
characteristics of the benchmarks are identical to the previous
table and thus have been omitted. The first column names

TABLE I
DIAGNOSIS FOR SELECTED BENCHMARKS

Name #PIs #POs #Ands #Lvl #Cex #FC Time

µ σ µ σ MC D

int2float 11 7 260 16 1.72 0.85 9.38 6.78 0.00 0.07
priority 128 8 978 250 4.96 2.28 7.44 10.16 0.02 1.08
dec 8 256 304 3 1.26 0.44 1.27 0.45 0.01 0.01
cavlc 10 11 693 16 1.84 0.85 10.54 7.30 0.01 0.38
adder 256 129 1020 255 1.68 0.68 1.90 0.89 0.02 0.39
bar 135 128 3336 12 2.03 0.50 3.65 2.02 0.26 91.08

c17 5 2 6 3 1.43 0.50 1.50 0.58 0.00 0.00
c432 36 7 209 42 2.22 1.07 7.10 6.18 0.00 0.10
c499 41 32 400 20 3.36 2.22 5.88 8.76 0.01 0.76
c880 60 26 327 24 2.84 1.45 5.12 3.72 0.00 0.81
c1355 41 32 504 26 3.72 2.35 5.95 5.95 0.01 0.91
c1908 33 25 414 32 2.42 1.45 6.27 8.82 0.01 0.81
c2670 233 140 717 21 3.84 2.53 12.41 17.48 0.03 2.54
c3540 50 22 1038 41 2.22 1.23 8.26 7.03 0.10 12.65
c5315 178 123 1773 38 2.95 2.26 6.94 5.22 0.06 7.55
c7552 207 108 2074 29 3.76 2.38 10.25 12.59 0.06 18.53

TABLE II
COUNTEREXAMPLE REDUCTION

Name #Cex #CexR Time

µ σ µ σ

int2float 1.72 0.85 1.44 0.54 0.00
priority 4.96 2.28 3.66 1.64 0.10
dec 1.26 0.44 1.18 0.39 0.00
cavlc 1.84 0.85 1.48 0.56 0.01
adder 1.68 0.68 1.41 0.49 0.00
bar 2.03 0.50 1.41 0.49 0.05

c17 1.43 0.50 1.29 0.46 0.00
c432 2.22 1.07 2.63 1.52 0.00
c499 3.36 2.22 2.45 1.49 0.04
c880 2.84 1.45 1.92 1.01 0.01
c1355 3.72 2.35 3.05 1.89 0.05
c1908 2.42 1.45 1.91 1.08 0.01
c2670 3.84 2.53 2.62 1.68 0.07
c3540 2.22 1.23 1.69 0.69 0.02
c5315 2.95 2.26 2.28 1.66 0.11
c7552 3.76 2.38 2.63 1.52 0.24

the benchmark. The next four columns list the number of
counterexamples initially generated with counterexample-
guided diagnosis (#Cex) and after reduction (#CexR) on
average (µ) and the standard derivation (σ), respectively. The
last column lists the required run-time.

On average after reduction, only two counterexamples suf-
fice to exactly pinpoint all fault candidates. This experiments
indicates that only a few counterexamples are necessary to
pinpoint faults and if the fault candidates are selected in the
right order, e.g., by considering the circuit’s structure, several
SAT calls can be avoided.

VII. CONCLUSION

In this paper, we proposed a counterexample-guided diag-
nosis approach that computes the exact set of fault candidates
for combinational circuit designs described as net-lists on the
gate-level. A prototype implementation of the approach using
a SAT oracle was presented and evaluated for a set of selected

benchmarks taken from the ISCAS’85 and EPFL benchmark
suites. The experimental results indicate that the approach sig-
nificantly outperforms other exact algorithms based on QSAT
solving, while producing exact fault candidate sets. We assume
that the approach’s performance can even be improved when
a suitable heuristic for generating initial counterexamples is
applied.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the European Union
(Horizon 2020 IMMORTAL project, grant no. 644905).

REFERENCES

[1] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis
and logic debugging using Boolean satisfiability,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 10, pp. 1606–1621, 2005.

[2] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[3] G. Fey and R. Drechsler, “Finding good counter-examples to aid design
verification,” in ACM & IEEE International Conference on Formal
Methods and Models for Co-Design, 2003, p. 51.

[4] A. Sülflow, G. Fey, C. Braunstein, U. Kühne, and R. Drechsler, “In-
creasing the accuracy of SAT-based debugging,” in Design, Automation
and Test in Europe, 2009, pp. 1326–1331.

[5] A. Sülflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of SAT-based debugging,” in International Symposium on Circuits and
Systems, 2010, pp. 641–644.

[6] H. Mangassarian, A. Veneris, and M. Benedetti, “Fault diagnosis using
quantified Boolean formulas,” in IEEE Silicon Debug and Diagnosis
Workshop, 2007.

[7] S. Staber and R. Bloem, “Fault localization and correction with QBF,”
in International Conference on Theory and Applications of Satisfiability
Testing, 2007, pp. 355–368.

[8] G. S. Tseytin, “On the complexity of proofs in propositional logics,”
in Automation of Reasoning: Classical Papers in Computational Logic
1967–1970. Spinger, 1983, vol. 2, originally published in 1970.

[9] N. Eén, A. Mishchenko, and N. Srensson, “Applying logic synthesis
for speeding up SAT,” in International Conference on Theory and
Applications of Satisfiability Testing, 2007, pp. 272–286.

[10] F. Lonsing, F. Bacchus, A. Biere, U. Egly, and M. Seidl, “Enhancing
search-based QBF solving by dynamic blocked clause elimination,” in
International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, 2015, pp. 418–433.

