
Decision Diagram Optimization Using Copy Properties

Dragan Janković Radomir S. Stanković Rolf Drechsler

University of Niš University of Bremen
Faculty of Electronic Eng. Inst. of Computer Science

Yugoslavia Germany

Abstract

In this paper, we propose an approach to the reduction of
sizes of Multi-Terminal Binary Decision Diagrams (MTB-
DDs) [3] by using the copy properties of discrete functions.
The underlying principles come from copy theory of dis-
crete signals considered in [5, 6, 7]. We propose two mod-
ifications of MTBDDs, called Copy DDs (CDDs) and Half
Copy DDs (HCDDs), using the corresponding copy opera-
tions from copy theory.

Functions having different types of copy properties can
be efficiently represented by the proposed Copy DDs. Ex-
amples are Walsh and Reed-Muller functions as well as dif-
ferent binary codes.

1. Introduction

Decision Trees (DTs) for representation of discrete func-
tion can be considered as a graphical representation of an
enumeration procedure expressing lexicographically all the
elements in a sequence

�������
defining a discrete function

�
.

Decision Diagrams (DDs) are derived by the reduction of
DTs, obtained by sharing isomorphic subtrees and deleting
the redundant information from a DT. The reduction of a DT
into a DD is possible iff there are constant or mutually equal
subsequences

���
	��
in
�������

, since such subsequences result
in appearance of isomorphic subtrees in the DT. Smallest
isomorphic subtrees are constant nodes showing equal val-
ues. DDs with complemented edges [2] are a generalization
derived by considering as isomorphic subtrees representing
subsequences

���	
�
and � ��
	�� . The sign minus is considered

as logic negation in bit-level DDs, and as arithmetic nega-
tion in word-level DDs. Therefore, the equality up to the
sign, is a single relationship that is exploited in reduction of
DDs.

In this paper, we propose an extended library of relation-
ships between sequences producing isomorphic subtrees
permitting reduction of DTs and resulting in more compact
DDs.

2. Background Theory

Binary Decision Diagrams (BDDs) [1] are defined by us-
ing the Shannon expansion rule

������ 	 ���� � 	 ��� , where

���
and

���
are co-factors of

�
for � 	 ���

and � 	 ���
, re-

spectively. In a BDD, we denote outgoing edges of a node�
pointing to the co-factors

���
and

���
by � and � , re-

spectively. Therefore, a node in a BDD is represented by� �"! � ! �#� .
In BDDs with complemented edges (CEs) [2], we con-

sider as isomorphic two subtrees representing subfunctions�
and $, if $ � � , where bar denotes the logic complement.

We denote $ �&%'�(���
, where

%
is the operator of logic

complementation.
Therefore, in BDDs with CEs, the nodes are represented

as
� �"!*) � ��� !*) � �#�+� , with

)-,/.�01! %32
, where

0
denotes

the identity operator. Alternatively, the Shannon nodes
with CEs can be considered as a new type of node. Thus,� �"!4) � ��� !4) � �5�6�879� ��:;! � ! �5� .

Generalization to MTBDDs [3] is straightforward. For
example, if negation by logic complementation is inter-
preted in the integer domain as the multiplication by � � ,
we get MTBDDs with negated edges. In this case,

%
per-

forms multiplication by � � . Extension to other DDs is also
straightforward. For example, in Fourier DDs, it has been
suggested to use for

%
also the multiplication with the com-

plex unity < �>= � � ��� , complex-conjugation and proper-
ties of symmetry, sqew-symmetry, and Hermitean proper-
ties of matrices [9]. In matrix-valued Fourier DDs,

%
is

extended to consider as isomorphic the subtrees represent-
ing the complex-conjugate transpose matrices, Hermitean
matrices.

In optimization of MTBDDs with copy operations, we
consider as isomorphic subtrees representing

�
and $ �%?�(���

, where
%

is an operator in the set of copy operators
[11] defined below.

2.1. Copy Operations

In this section, we briefly present the basic notions from
copy theory [5].

As it is pointed out in [5], the copy feature is an im-
portant property of discrete signals. If it is assumed that
a discrete signal is represented by a sequence of numbers,
then there are two copy methods to generate a new sequence
(that means a new signal) from the starting sequence.

Definition 1 Given a sequence @ �A� @ � ! @CB !#D5D#D5! @CEGF � ! @CE � .
The even symmetry copy method transforms @ into the se-
quence @CH � � @ � ! @ B !#D5D#D5! @ EGF � ! @ E ! @ E ! @ EIF � !5D#D5DJ! @ B ! @ � �
(Figure 1-a).

s1 s2 sn-1 sn sn sn-1 s2 s1

original copy

s1 s2 n-1s sn s’n n-1s’ s’2 s’1

s1 s2 n-1s sn s’1 s’2 n-1s’ s’n s1 s2 n-1s sn s1 s2 n-1s sn

copyoriginal

.

d)

original copy

b)a)

original copy

.

.

.

c)

Figure 1. a) even symmetry copy b) odd symmetry copy c) minus shift copy d) plus shift copy.

Definition 2 Given a sequence @ �A� @ � ! @ B !#D5D#DJ! @ EIF � ! @ E � .
The odd symmetry copy method transforms @ into the se-
quence @��H � � @ � ! @5B !#D5D#DJ! @5EIF � ! @CE ! @��E ! @��EGF � !#D5D#D5! @��B ! @�� � �
where @��	 is the result of a suitably defined operation of nega-
tion ��� � , i.e., @��	 � ��� � � @ 	 � , (Figure 1-b).

Definition 3 Given a sequence @ �A� @ � ! @5B !#D5D#DJ! @5EIF � ! @CE � .
The minus shift copy method transfers @ into the sequence@5H � � @ � ! @ B !#D5D#D5! @ EGF � ! @ E ! @ � ! @ B !5D#D#D5! @ EGF � ! @ E � (Figure 1-
d).

Definition 4 Given a sequence @ �A� @ � ! @5B !#D5D#DJ! @5EIF � ! @CE � .
The plus shift copy method transforms @ into the sequence@ H � � @ � ! @CB !#D5D#D5! @CEGF � ! @CE ! @�� � ! @��B !5D#D#D#! @��EGF � ! @��E � where @��	
is result of a suitably defined operation of negation ��� � , i.e.,@��	 � ��� � � @ 	 � , (Figure 1-c).

3. Copy Operations and MTBDDs

Binary input integer output functions, short integer func-
tions, are given as mappings

. � ! � 2 E 7	�
. Integer func-

tions can be efficiently represented by Multi-Terminal Bi-
nary Decision Diagrams (MTBDDs) [3].

MTBDDs consist of nonterminal and terminal nodes.
Each nonterminal node, labeled with a variable � , has two
outgoing edges corresponding to the logic values 0 and 1 for� . Terminal nodes have integer values. In what follows, it
will be assumed that a MTBDD is ordered and reduced, i.e.,
variables occur in the same order along all the paths in the
DD and there are no isomorphic subgraphs. The following
example illustrates MTBDDs.

Example 1 Figure 2 shows the MTBDD for integer func-
tion

�
, given by the truth vector
 ��� � ! � ! � ! � ! � ! � !� ! � ! � !�I! � ! � ! � ! � ! � ! �������

x1

x2

x3 x3 x3

x4 x4 x4x4

x3

x2

1 0 2

0 1

0 01 1

0
1

1

0 0
1

0 1 1

0

0 0 0
1

f

1 1

Figure 2. MTBDD of function
�

in Example 1.

In MTBDDs, the smallest subtree consists of a non-
terminal node at the last level and two constant nodes. In
matrix notation, the copy operations applied to such sub-
trees can be described by the following matrices

������� ������! �"�#��� ��$%�$%� �! '& �#�(� $%� ��)$%�*
For application of copy operations to the subtrees rooted

at the nodes at upper levels in the MTBDD, we use the
second-order operators defined as follows [11], [10], [12],
[13].

Definition 5 Let + be a sequence of complex numbers. The
operators , , , , and � , are defined by

,-+ � +., � + !

,-+ � + , � + !� � , � + � + � � , �8��� + !
where + stands for the reversed sequence + , and

� + stands
for the reversed sequence + with sign of elements reversed.

Definition 6 The copy operator
� B is a second-order ma-

trix operator defined as

���%� ��� �
� $ � 	�

Definition 7 The shift operator
� B is a second-order oper-

ator defined as � � ��� � �� � �
4. Copy Decision Diagrams

By using the copy operations, we define three new nodes
that can be used in MTBDDs besides the Shannon nodes.

Definition 8 Given a Shannon node
�	

representing a
function $. The even symmetry node

� �
derived from�	

is a node that represents a function
����� � � $! $ H � � ,

where $ is the function corresponding to the successor of
the node

� �
and $�H is the function derived from $ by as-

signing the function values for $ in the reverse order, i.e.,$ H � ��� D#D5D ���8� $ �6��� D5D#D ��� , etc.

Example 2 Figure 3 shows an even symmetry node S0 de-
rived from a Shannon node

�	

. If a function $ represented

by
�

is given by the vector
� � � � � ! � B ! ��� ! ��� � � , then

the function
� ���

represented by
� �

is given by the vector
 ��� � � � � ! � B ! ��� ! ��� ! ��� ! ��� ! � B ! � � � � .

T1

f

S0 S1

g

f
S0

f
S1 T1

Figure 3. S0 node, S1 node, and T1 node.

Definition 9 The function corresponding to an odd sym-
metry node

� �
is given by

���I� � � $! $ �H � � , where $ is the
function corresponding to the successor of the node S1, and$ �H is the function derived from $ by ”complemented” values
(not(g)) in reverse order.

Example 3 Figure 3 shows a node
� �

derived from the
Shannon node

�	

. If a Boolean function $ represented by�	

is given by the vector
� � � � ! � ! � ! � � �

, then the func-
tion

� �I�
represented by

� �
is given by the vector

 �I� �� � ! � ! � ! � ! � ! � ! � ! � � �
if the operation ��� � is defined as a

Boolean operation NOT or as ��� � � � � � � � � if the logic
values for the Boolean function are interpreted as integers.

It should be noted that the complementation can be de-
fined in a different way, permitting consideration of differ-
ent generalizations of Shannon nodes.

Definition 10 The function represented by the plus shift
copy node � � is given as

� � �'� � $! $ � � � , where $ is the
function corresponding to the successor of the node

� �
while $ � is the function derived from $ by the complementa-
tion of the values for $, i.e., g’=not(g).

Example 4 Let a node T1 is shown in Figure 3 . If Boolean
function $ is given by the truth vector

� � � � ! � ! � ! ��� �
, the function

� � � is given by the truth vector

 � � �� � ! � ! � ! � ! � ! � ! � ! � � �

if the operation not is the Boolean op-
eration NOT.

Definition 11 A Copy Decision Diagram (CDD) is a DD
consisting of terminal nodes and nonterminal nodes from
the set

.��	
 !*� � !*� � ! � ��2 , where
�	

is the Shannon node,� �
is the even symmetry copy node,

� �
is the odd symmetry

copy node and � � is the plus shift copy node.

Note, that minus shift copy node is not introduced be-
cause it corresponds to the Shannon node having both edges
pointing to the same node. Such Shannon node is deleted by
the reduction rules for MTBDDs and it is denoted as ”cross
point” like other deleted nodes in MTBDDs.

Example 5 Figure 4 shows a CDD representing the func-
tion

�
given in Example 1 with the operation ��� � defined

as ��� � � � � � � ��� �C��� ��� � . It is shown the function
represented by each node in the CDD.

0

f

S0

T1

S1Sh

Sh
0 1

0

1

[0,1]

[0,0,0,1,0,1,2,1]

[0,0,0,1] [0,1,2,1]

[0,0,0,1,0,1,2,1,1,2,1,0,1,0,0,0]

Figure 4. CDD for function
�

in Example 4.

4.1. Half CDD

CDDs are a simple example of application of copy the-
ory to DDs. A further step in this direction can be done
if we modify the definition of CDD nodes in the following
way:

1x

2x
2x

1

f

3x

4x

0 1

0 1

1

1

0

0

p=0 p=0

p=0p=0

p=3p=2

0
p=0

p=1 1

p=0
p=0

Figure 5. HCDD for function
�

in Example 6.

Denote by � and
�

the low and the high successors of a
Shannon node

�
. A Half-Copy Decision Diagram (HCDD)

is a DD consisting of nodes representing the function
��� �� � ������� � �����+� �

where

� � � � �
��	 �
 �

! � � � !
��� � � � � ! � � � !
� H ! � � !
��� � � � H � !�� � � !

where ��� � and H denote the operation of negation and order
reversing. In this definition

�
is a parameter assigned to the

node, and it can be represented by a field assigned to the
node or as a label at the outgoing edge.

Example 6 Let
 � � � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � ! � � �
be the truth vector of the 4-variable Boolean function

�
.

HCDD representing
�

is shown in Figure 5. Parameter
�

is
given for each edge.

It should be noted that HCDDs for Boolean functions are
similar to BDDs with dual edges or dual markers as consid-
ered in [4].

5. Examples

In this section, we give some examples of functions that
have copy properties. Such functions can be efficiently rep-
resented by CDDs and HCDDs. We define the rules for the
generation of these DDs for the considered functions.

5.1. Representation of Walsh Functions

The Walsh matrix of order � , � � � , whose columns
are the Walsh functions in natural or Hadamard ordering

S0

T1

T1

W
53

1

T1

=W
(110101)

2

1 0

T1

Sh

Sh

R
52

0

1

1

0

Figure 6. CDD for the Walsh function ��� � and
CDD for the Reed-Muller function ���*B of order
6.

is given as������� ���� ��� � ��� � � �!�� �"�#� � � �� $%� %$
where & denotes the Kronecker product.

Example 7 The Walsh matrix of order 3 is given by

')(+*-,/.
0111111
2

3 3 3 3 3 3 3 335463 35463 37463 384633 374635463 3 354635463354637463 3 374635463 33 3 3 3746374635463546335463 354637463 35463 33 37463546374637463 3 3354637463 37463 3 38463

9;::::::
<>=

The CDD representing the ? -th Walsh function � 	 can be
generated by using the following rule.

Let
� ? � ! ? B !5D#D#D5! ? E � be the binary representation for ? .

@+A �	
 @CB � � $ at level D no node,@CB � � $ if preceding node was T1 put node S0 at level D $
if preceding node was S0 put node T1 at level D $
if preceding node is terminal node put node T1

at level D �
Example 8 The CDD for the Walsh function � � � �� � �+� � � �J� �+E , is shown in Figure 6.

Note that in this case the operation ��� � is defined as the
multiplication by � � .
Example 9 CDD and HCDD representing the set of Walsh
functions of order 3 are shown in Figure 7 a) and b), re-
spectively.

5.2. Representation of Reed-Muller Functions

The Reed-Muller matrix of order � , F � � � , whose
columns are the Reed-Muller functions is given asG �"�H� � �� �"�#� G � � � � �� ��� � � � �� � �

W0 W1 W2 W3
W4 W5 W6 W7 W0 W1 W2 W3 W4 W5 W6 W7

x1 x1 x1 x1

x3

x2 x2

p=1

a) b)

T1 S0 S0 T1

T1 S0

1 1

p=1p=0

p=0 p=1
10

p=1
1

p=0
0

p=0

p=1

p=0 p=1
p=0

p=1
p=0

0

0

0
1

1

00
1

1

1

T1

Figure 7. CDD(a) and HCDD(b) representing set of Walsh functions for � � � .

Let � 	 be the ? -th Reed-Muller function in the set of
Reed-Muller functions of order � . The CDD representing� 	 can be generated by using the following rule:

Let
� ? � ! ? B !#D5D#DJ! ? E � be the binary representation for ? .

@+A�� @ B � � $ at level D no node $@ B � � $ put node T1 at level D if
@;B

is ’0’ with the
smallest index in binary representation of

@ $�������
	�� @� � put the node Sh at level D �
Example 10 The CDD for the Reed-Muller function � �+B �� � �*� � � �+� �+E of order 6 is shown in Figure 6.

The number of nodes in the CDD representing an arbi-
trary Reed-Muller function of order � , is less or equal than� , while the number of nodes in the CDD representing the
set of Reed-Muller functions of order � , is equal to

 E � � .
5.3. Representation of Binary Codes

Some binary codes have copy properties and due to that
can be efficiently represented by CDDs. Consider the real-
ization of the natural code, Gray code, and K-codes given in
Table 1. Figure 8 shows the CDD representing these three
codes.

It can be shown that the number of nodes in the CDD
representing these three � -bit codes is � � � � �C��� .

The HCDDs for the natural code, Gray code, and K-code
are similar to the corresponding CDDs shown in Figure 8.
Each � � node is replaced with a node whose both edges
point to same node and the high edge performs the operation��� � , i.e., in this case,

� � �
.

Table 1. Natural, Gray, and K-code

natural Gray K-code
dec.in. ����� � � � � � � � � � � � � � ���

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1
2 0 1 0 0 1 1 0 1 1
3 0 1 1 0 1 0 0 1 0
4 1 0 0 1 1 0 1 1 1
5 1 0 1 1 1 1 1 1 0
6 1 1 0 1 0 1 1 0 0
7 1 1 1 1 0 0 1 0 1

T1 T1T1

T1 T1

T1

0

n 0 0 0 g1 n1 k1 g2 2 n2g, , ,k k

Figure 8. CDD representing 3-bit natural code,
Gray code, and K-code.

6. Procedures for the generation of CDDs from
MTBDDs

Starting from MTBDDs representing a given function
�

,
CDDs can be generated by using the following steps. Pro-
cedure Replace is called by the root node in the MTBDD
as an argument.

It is interesting to discuss the order of examining the
meaning of a node

�
. As is shown in Figure 9, we assume

the following hierarchy of nodes. We first check if
�

is a � �
node, than

� �
and at the last,

� �
. This fixed order ensures

the canonicity of CDD. In some cases, the node
�

can be
considered as the � � or the

� �
node. For example, a sub-

function
���5������� ���

can be represented by both � � and
� �

nodes, but if the order of interpretation of nodes is fixed, we
will use the node � � .

function S0(����� :node):boolean;
begin

if (� is terminal && � is terminal) return � .6. � ;
return S0(� = �����	�
� = ���

� �) && S0(� = ���
� ��
� = �����);

end;

function S1(����� :node):boolean;
begin

if (� is terminal && � is terminal) return � .6. ����� (� , ;
return S1(� = �����	�
� = ���

� �) && S1(� = ���
� ��
� = �����);

end;

function T1(���
� :node):boolean;
begin

if (� is terminal && � is terminal) return � .6. ����� (� , ;
return T1(� = �������
� = �����) && T1(� = ���

� ����� = ��� � �);
end;

procedure Replace(� :node)
begin

if(T1(� = ��������� = ���
� �)) then

replace � by T1-node; Replace(� = �����); exit;
if(S0(� = �����	��� = ���

� �)) then
replace � by S0-node; Replace(� = �����); exit;

if(S1(� = �����	��� = ���
� �)) then

replace � by S1-node; Replace(� = �����); exit;
Replace(� = �����);
Replace(� = ���

� �);
end;

Figure 9. Sketch for procedure Replace

7. Operations over CDDs and HCDDs

In this section we consider the algorithms to perform dif-
ferent operations over CDDs and HCDDs.

7.1. Level Exchange

Reduction of the size of DDs is possible by changing the
order of variables. The same applies to CDDs and HCDDs.
A suitable order of variables that reduce the size of a DD
can be determined by a level exchange (LE). Therefore, it
is interesting to consider the LE operation in CDDs.

It is obvious that performing LE operation is similar to
MTBDDs. However, it is not a local operation as in MTB-
DDs, since for some nodes we have to perform the com-
plementation or/and inversion. These operations are simple
and do not increase the number of nodes in CDD. The rules
for reverse operation are given in Figure 10. LE operation
over HCDDs is much more complex than over CDDs.

7.2. Binary operations over CDDs

Figure 11 shows the rules for performing a binary oper-
ations over two CDDs.

It is obvious that binary operations over CDDs are recur-
sive, however, in some cases, it is required to perform the
operations of reversing and negation of function values over
subgraphs.

8. Experimental Results

For the experimental estimation of properties of CDDs,
we developed a program in the CUDD environment [8], for
transforming MTBDDs into CDDs and HCDDs. The size
of CDDs and the corresponding MTBDDs from which they
are derived for some benchmark functions are given in Table
2. The used benchmark functions are Boolean functions,
therefore their MTBDDs are actually BDDs. We compare
the sizes of BDDs without CEs, BDDs with CEs, and CDDs
without sifting and with sifting. For CDDs, the number of
� � , � � , and

� �
nodes is given.

Since the experiments are performed for Boolean func-
tions, the operation ��� � is defined as the logic NOT.

Reduction capability of CDDs for Boolean function is
not so large but, in general for MTBDDs and integer-valued
functions, we expect the better results, since in this case CEs
are not usually used for many possible different values for
constant nodes.

Experimental results show that for large benchmark
functions the number of nodes � � , � � , and

� �
is reason-

ably large.
Experimental results for HCDDs are given in Table 3.

BDDs without CEs and HCDDs, without sifting and with
sifting are compared. The HCDD size is on the aver-
age 36.57% smaller than that of BDDs without sifting and
43.99% for BDDs with sifting. There are examples where
the HCDD size is more than 80% smaller than the size of
the corresponding BDD without CEs.

As we noted above, for Boolean function BDDs with
CEs and dual markers are a subset of HCDDs. Therefore,
results given in [4] can be used to estimate the complexity
of HCDDs. Since dual markers which increase the size of
BDD for some functions (for example for multipliers [4]),
the size of HCDDs is equal or smaller than the size of cor-
responding BDDs with dual markers.

9. Closing Remarks

This paper introduced the usage of copy properties of
functions in reduction of size of DDs. Initial definitions
of copy properties are taken from [5]. Based on those copy
properties two modifications of MTBDDs, called CDDs and
HCDDs, have been proposed.

Figure 10. Reverse operation rules.

Sh

0 1

a <op>b a <op>b’r

S0

a

<op> Sh

0 1

b c

Sh

0 1

a <op>b a <op>cr

a <op>b

S0

a

<op> Sh

0 1

S0

b

S0 S0

a

S1<op>

b a <op>b a <op>b’r r

Sh

0 1

a <op>b

S1

b

S1S1

a

<op>

a <op>b

T1

b

<op>Sh

0 1

a <op>b a’<op>cr

Sh

0 1

b c

<op>

Sh

0 1

d

<op> Sh

0 1

Sh

0 1

a <op>c b <op>dba c

T1<op>Sh

0 1

a b c

Sh

0 1

a <op>c b <op>c’

S0

a

T1<op>

b

S1

a

T1<op>

b a <op>b a’<op>b’r

T1T1

a

S1

a

Figure 11. CDD binary operation rules.

Table 2. Experimental results

without sifting with sifting
circuit in out BDD BDD-CE CDD T1 S0 S1 BDD BDD-CE CDD T1 S0 S1
add2 4 3 15 11 11 5 0 0 11 8 8 4 0 0
add3 6 4 42 29 29 10 0 0 20 13 13 6 0 0
alu2 10 8 257 230 227 6 2 1 248 161 160 12 1 0
alu4 14 8 1219 1181 1166 6 4 3 903 602 598 39 10 5
des 256 245 15281 11461 11216 293 163 135 13997 3053 2736 301 386 63
rd53 5 3 23 16 15 5 2 1 23 16 15 5 2 1
rd73 7 3 43 30 24 7 2 5 43 30 24 7 2 5
rd84 8 4 59 41 41 8 4 5 59 41 41 8 5 4
9sym 9 1 33 24 18 1 3 2 33 24 18 1 3 2
c880 60 26 346688 346659 346654 79 0 89 7084 7062 7042 36 0 6
5xp1 7 10 88 73 73 15 1 0 68 41 41 9 0 0
clip 9 5 254 225 225 8 2 0 108 86 84 8 0 6

Table 3. Experimental results for HCDD

without sifting with sifting
circuit in out BDD HCDD BDD HCDD
add2 4 3 15 10 11 8
add3 6 4 42 24 20 13
alu2 10 8 257 225 248 160
alu4 14 8 1219 1157 903 579
des 256 245 15281 6150 13997 2638
rd53 5 3 23 14 23 14
rd73 7 3 43 22 43 22
rd84 8 4 59 33 59 33
9sym 9 1 33 15 33 15
5xp1 7 10 88 61 68 27
clip 9 5 254 174 108 84

Experimental results show that reduction in size by using
HCDDs is better than for CDDs. In general, the size of
CDDs and HCDDs is smaller or equal to the size of the
corresponding BDD or MTBDD.

Disadvantages of CDDs and HCDDs is the non local
character of the level exchange operation. This means
that sifting cannot be used for minimization of CDDS and
HCDDs as efficient as for BDDs.

Besides copy operations that have been already defined
in copy theory [5], other copy operations can be defined by
exploiting structural properties of DDs. Therefore, further
reductions based on copy properties can be defined. This is
focus of current work.

References

[1] Bryant, R.E., ”Graph-based algorithms for Boolean
functions manipulation”, IEEE Trans. Comput., Vol.C-
35, No.8, 1986, pp.667-691.

[2] Brace, K.S., Rudell, R.L., Bryant, R.E., ”Efficient im-
plementation of a BDD package, In Design Automation
Conf., 1990, 40-45.

[3] Clarke, E.M., Fujita, M., McGeer, P., McMillan, K.L.,
Yang, J., Zhao, X., “Multi-terminal binary decision dia-

grams: An efficient data structure for matrix representa-
tion”, In Int’l workshop on Logic Synth., 1993, 6a:1-15.

[4] Miller, D.M., Drechsler, R., “Dual edge operations
in reduced ordered binary decision diagrams”, Interna-
tional Symposium on Circuits and Systems (ISCAS’98),
pp. VI:159-VI:162, 1998

[5] Minglu J., Qishan, Z., “Copy Theory of Signals and Its
Applications”, in Recent Developments in Abstract Har-
monic Analysis with Applications in Signal Processing,
Edited by Stanković, R.S., Stojić, M.R., Stanković, M.S.,
Nauka, Belgrade, 1996, 313-328.

[6] Minglu, J., Qishan, Z., “Shift copy analysis of signals”,
Proc. of ICT’94, England, Jan. 1994.

[7] Qishan, Z., “A summary of Bridge functions”, in Re-
cent Developments in Abstract Harmonic Analysis with
Applications in Signal Processing, Edited by Stanković,
R.S., Stojić, M.R., Stanković, M.S., Nauka, Belgrade,
1996, 305-312.

[8] Somenzi, F., CUDD: CU Decision Diagram Package
Release 2.2.0., University of Colorado at Boulder, 1998.

[9] Stanković, R. S., ”Fourier decision diagrams on finite
non-Abelian groups with preprocessing”, Proc. 27th Int.
Symp. on Multiple-Valued Logic, Antigonish, Nova sco-
tia, Canada, May 1997, 281-286.

[10] Stanković, R.S., Zhang, Q., “Complex Bridge func-
tions”, Proc. 4th Int. Workshop on Spectral Techniques,
March 15-17, 1994, Beijing, China, .

[11] Zhang, Q., Zhijing, M., “A group of three-valued func-
tions”, Proc. Int. Conf. on Signal Processing Beijing ’90,
October 22.-26. 1990, 1183-1186.

[12] Zhihua, L., Zhang, Q., “Introduction to bridge func-
tions”, IEEE Trans., Vol.EMC-25, No.4, 1983, 459-464.

[13] Zhihua, L., Zhang, Q., “Ordering of Walsh functions”,
IEEE Trans., Vol.EMC-25, No.2, 1983, 115-119.

