
Reachability Analysis for Formal Verification of SystemC
�

Rolf Drechsler Daniel Große

Institute of Computer Science Institute of Computer Science
University of Bremen Albert-Ludwigs-University

28359 Bremen, Germany 79110 Freiburg im Breisgau, Germany
drechsle@informatik.uni-bremen.de grosse@informatik.uni-freiburg.de

Abstract

With ever increasing design sizes, verification becomes
the bottleneck in modern design flows. Up to 80% of the
overall costs are due to the verification task. Formal meth-
ods have been proposed to overcome the limitations of sim-
ulation approaches. But these techniques have mainly been
applied to lower levels of abstraction. With more and more
design complexity the need for hardware description lan-
guages with a high level of abstraction becomes obvious.

We present a formal verification approach for circuits
described in SystemC, an extension of C that allows the
modeling of hardware. An algorithm for reachability anal-
ysis is proposed and a case study of a scalable bus arbiter
cell is given.

1. Introduction

Nowadays complex circuits can only be described on
a higher level of abstraction. Hardware Description Lan-
guages (HDLs), like VHDL and Verilog, are used to de-
scribe hardware on the Register-Transfer Level (RTL) or on
even higher levels based on C/C++-like languages [9]. One
very promising candidate for these descriptions is SystemC
[11], since it combines the hardware aspects with the abil-
ity of fast simulation. Several successful implementations
based on SystemC have recently been reported.

But as in other HDLs, verification is also a major issue.
Even though simulation can often be carried out faster than
for a corresponding design on the gate level, pure simula-
tion is not sufficient to guarantee the correct circuit behav-
ior (see e.g. [1]). So far, several verification approaches for
SystemC have been reported, but all of them are based on
simulation [10, 6] and do not consider the paradigms of for-
mal techniques, i.e. to prove the correctness of a circuit be-
havior.

As has been observed by many authors [5, 3, 7, 4, 13,
8], formal verification is very closely related to reachability
analysis of Finite State Machines (FSMs), if the underlying
circuit is modeled appropriately. This directly results from�

This work was supported in part by DFG grant DR 287/8-1.

the fact that for each state in the circuit it has to be checked
whether it is reachable from the initial (or reset) state to
argue about its correct or erroneous behavior.

In this paper we present a reachability analysis algorithm
for hardware systems described in SystemC. It is based on
symbolic computations using Binary Decision Diagrams
(BDDs). A case study of a scalable bus arbiter shows that
the algorithm works very well also for complex designs
with a high sequential depth.

The paper is structured as follows: In Section 2 BDDs
are briefly described and the basics on reachability analy-
sis are introduced. We describe how circuits are modeled
in SystemC. The formal verification approach is shown in
Section 3 and the experimental results are given in Section
4. Finally, the results are summarized.

2. Preliminaries

2.1. Binary Decision Diagrams

As is well-known a Boolean function
�������
	��

can
be represented by a Binary Decision Diagram (BDD) which
is a directed acyclic graph where a Shannon decomposition�
� ��������������������������� �"!$#&%(')%�*,+
is carried out in each node.

A BDD is called ordered if each variable is encountered
at most once on each path from the root to a terminal node
and if the variables are encountered in the same order on all
such paths. A BDD is called reduced if it does not contain
isomorphic subgraphs nor does it have redundant nodes.
Reduced and ordered BDDs are a canonical representation
since for each Boolean function the BDD is uniquely spec-
ified.

For functions represented by reduced and ordered BDDs
efficient manipulations are possible [2]. In the following,
only reduced and ordered BDDs are considered and for
brevity these graphs are called BDDs.

2.2. Reachability Analysis of Sequential Circuits

Definition 1 Let - �/. - �1032423240 -6587 denote a set of input
variables,

�/�9.3� � 0423242:0;� � 7 a set of present state vari-
ables, and < �=. < � 032423240 < � 7 a set of next state variables.



ReachabilityAnalysis
!�� !�� +:0����� !�� 0 < +$+).�	��

������� !���+ ����!���+

do
.
����

������������������� !�� +�� �	��

������� !���+
�
� ! < + �� �
!!�� � !�� 0 < +#" ����

������� !�� +;+�
� !���+)�$�%� ! < +'& (') �����

������� !���+ � �	�*
%�*�+��� !���+-,.�0/ !���+

7 while (
�	�*
%�*�+��� !���+	1� ����

�������2�	��������� !���+

)7

Figure 1. Sketch of reachability analysis

Further let 3 � � 554 � 	 � �
be the next state transition

function of a sequential circuit.

1. The transition relation
� � � � 5�476�8 ��	 �

is defined by
��� ! - 0$� 0 < +)� #:9 3 ! - 0$� + � < 0

i.e.
��� ! - 0$�,0 < +)� #

iff state < can be reached in exactly
one transition from state

�
when input - is applied.

2. The image of a set ;=< � �
according to

� �
is given

by
��/ 
2>%� !@? +:!BA +��C ED 0�� !GF � !BD&0�� 0'A +H"I?�!���+$+

.

Now the set of all reachable states can be computed as
a fixpoint iteration of image computation. It starts with
the set of all initial states

��! � +
and the transition relation��E� !��,0 < + �J - �E� ! - 0;�,0 < + because the existential quantifi-

cation of the input variables - has only to be done once.
The process stops as soon as no new states can be found. In
Figure 1 a sketch of the method is shown.

2.3. Modeling Circuits in SystemC

In this section we briefly describe the main features of
SystemC for modeling a circuit [10]:

1. Modules: Modules are the basic container objects
which can include ports, data and function members,
and other modules. Thus, a hierarchical design de-
scription becomes possible.

2. Processes: Processes are used to describe the function-
ality. They are declared as special functions of mod-
ules and can be reactive to any input signal or to a clock
signal.

3. Ports: Through ports a module can send or receive
data. SystemC supports single-directional and bi-
directional ports. Ports determine the direction of data
from one module to another.

4. Signals: Signals represent physical wires and intercon-
nect modules. Signals carry data without information
about directions.

5. Clocks: Clocks are special signals and the timekeepers
during simulation.

SC MODULE(AndGate)
.

sc in<bool> in1;
sc in<bool> in2;
sc out<bool> out;
void entry();

SC CTOR(AndGate)
.

SC METHOD(entry);
sensitive << in1 << in2;7
void end of elaboration()

.
symb->reportAND(name(),out,in1,in2);77 ;

void AndGate::entry()
.

out.write(in1.read() && in2.read());7

Figure 2. AND gate

Because SystemC is an extension of C++, all C++ concepts
can be used to describe the behavior of a circuit. Various
levels of abstraction are possible in SystemC.

At RTL we define as basic gates AND, OR, NOT and
flipflop, which enables a description of any sequential cir-
cuit. As an example the AND gate is shown in Figure 2.
The important command for our approach can be seen in
the method end of elaboration(). The relevance is
discussed in Section 3.1.

3. Reachability Analysis in SystemC

To be able to compute the set of reachable states as in-
troduced we have to construct BDDs for the outputs and the
transition functions of the flipflops. Therefore we first need
a complete description of the circuit and second a topologi-
cal order of the underlying netlist.

3.1. Netlist and Topological Order

We start with an outline on how the description of the
circuit is transformed to a model that can be used for reach-
ability analysis.

After instantiating and properly connecting all modules
in sc main(), primary inputs of the circuit have to be
registered via registerInputs() to the class Symb.
In this class all data structures and methods for reach-
ability analysis are collected. An important task to be
solved was the link between the defined SystemC basic
gates and the internal representation of this gates in class
Symb. Intuitively, one might try to use the constructor
SC CTOR of a module for this purpose, because only the
type of gate and its interconnection to other gates is needed.
The problem here was that at that time the constructor of
a SystemC module is called not every structure of Sys-
temC is totally initialized, e.g. the interface of a port is



int sc main(int argc, char* argv[])
.

// make clocks, signals,
// connect modules, etc.
...
registerInputs();
sc initialize();
symb->startSymb();
...7

Figure 3. Routine sc main()

not bound. So it is impossible to get the pointer of the
bool value in ’sc in<bool> in1’ of the AND gate as
shown in Figure 2. This pointer is needed to determine
the input gate. A solution to this problem is the already
shown method end of elaboration(), which is a vir-
tual method called for all modules, channels, and ports af-
ter elaboration, i.e. just before simulation starts. By de-
fault this method is empty, but can be redefined to per-
form static checking that cannot be executed during elabo-
ration. By calling sc initialize() or sc start()
¿from sc main() the SystemC scheduler is initialized
which causes a preparation of all modules and different
thread/process types. Thus, all gates are then known to
the class Symb, because they are reported after the elabora-
tion due to method end of elaboration() of each ba-
sic gate, where the corresponding report method, e.g. re-
portAND(name(),out,in1,in2) (see Figure 2), is
called. As a result each gate of the SystemC definition be-
comes an element of an internal hashtable of Symb. As
unique id’s the pointers of gates to their inputs and out-
put data are used. In Figure 3 the important commands
to be used in sc main() are shown again. By calling
symb->startSymb() the control is passed to the class
Symb: First for each gate in the hashtable the input gates are
searched and assigned to it. In the next step a topological
order of the netlist is computed. For this purpose a simple
algorithm propagates a marking from the primary inputs to
the outputs.

3.2. Set of Reachable States

Based on the topological order the BDDs for the circuit
outputs and the transition functions of the flipflops are built.
Hence for each flipflop a state variable and for each input
a variable has been created, i.e. a new BDD node. Now
computing the set of reachable states becomes simple. After
constructing the transition relation the fixpoint iteration of
image computation is done.

The relevant functions of class Symb are shown as
pseudo code in Figure 4. In our implementation we used the
STL library [12] for data structures, like hashtables, vectors,
etc.

class Symb
.

...

public:
// called in end of elaboration() of
// corresponding SystemC-gate
void reportAND(name,out,in1,in2);
void reportOR(name,out,in1,in2);
void reportNOT(name,out,in);
void reportFlipFlop(name,out,in);

// reachability analysis
void startSymb()

.
for (each gate)

.
inputs = findInputGates(gate);
interConnect(gate,inputs);7

computeTopologicalOrder();
computeTransitionRelation();
Reached = ResetStates;
do

.
ReachedBefore = Reached;
Reached = Reached

or Image(Reached);7 while (Reached != ReachedBefore);77 ;

Figure 4. Class Symb

4. Case Study

In this section experimental results are given. The al-
gorithm has been implemented in C++. All runtimes are
given in CPU seconds on an AMD Athlon 800MHz with
512 MByte of main memory. As a benchmark for our ex-
periments we considered a scalable bus arbiter. This cir-
cuit is often used for experiments in formal verification (see
e.g. [8, 10]). The

*
-cell arbiter circuit is defined in Sys-

temC based on the introduced basic gates. In the upper part
of Figure 5 a single arbiter cell is shown, whereas the com-
position to an

*
-cell arbiter is given in the lower part.

The results are given in Table 1. The number of ar-
biter cells is shown in column Cells, and column States
gives the number of reachable states computed by our al-
gorithm. The third column reports the size of the transition
relation

� � ! - 0$� 0 < + in number of BDD nodes. In the last
two columns the runtime in CPU seconds and the memory
needed are given, respectively. As can be seen, with increas-
ing number of arbiter cells the memory and runtime needed
grows exponentially. Nevertheless, for up to 11 cells the
states can be computed exactly allowing to formally argue
about the reachability and thus the complete verification of
the underlying FSM.



token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_out

token_out

token_in

req_in

override_in grant_out

override_out grant_in

ack_outCell 1

Cell 2

Cell n

0

grant_out

ack_out

override_out grant_intoken_in

W

T

override_intoken_out

req_in

Figure 5. The arbiter circuit

Table 1. Computation of reachable states

Cells States Size of
�-� ! - 0$�,0 < + time MByte

2 8 57 0.01 4.1
3 24 245 0.01 4.1
4 64 1,005 0.01 4.2
5 160 4,061 0.02 4.4
6 384 16,317 0.11 5.1
7 896 65,405 0.78 8.1
8 2048 261,885 3.95 15.2
9 4608 1,048,061 29.87 33.1

10 10240 4,193,277 169.36 132.1
11 22528 16,775,165 1332.18 460.2

5. Conclusions

We presented an algorithm to compute the set of reach-
able states for circuits given as a SystemC description. The
algorithm is based on symbolic computations using BDDs.
A case study of a scalable bus arbiter has shown that the
technique is applicable to larger designs and allows the for-
mal verification of circuits specified in SystemC.

It is focus of current work to include this technique in
a complete verification flow including property checking.
In contrast to the approach in [10] this will not be based
on simulation, but on formal proof techniques that allow
to guarantee the correct functional behavior. In addition,
further case studies are needed to get a better understanding
of the applicability of the approach.

References

[1] B. Bentley. Validating the Intel Pentium 4 micropro-
cessor. In Design Automation Conf., pages 244–248,
2001.

[2] R.E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Auto-
matic verification of finite–state concurrent systems
using temporal logic specifications. ACM Trans. on
Programming Languages and Systems, 8(2):244–263,
1986.

[4] O. Coudert and J.C. Madre. A unified framework for
the formal verification of sequential circuits. In Int’l
Conf. on CAD, pages 126–129, 1990.

[5] D. Dempster and M. Stuart. Verification Methodol-
ogy Manual - Techniques for Verifying HDL Designs.
Teamwork International, 2001.

[6] F. Ferrandi, M. Rendine, and D. Scuito. Functional
verification for SystemC descriptions using constraint
solving. In Design, Automation and Test in Europe,
pages 744–751, 2002.

[7] G. Hachtel and F. Somenzi. Logic Synthesis and Verifi-
cation Algorithms. Kluwer Academic Publisher, 1996.

[8] K.L. McMillan. Symbolic Model Checking. Kluwer
Academic Publisher, 1993.

[9] R. Gupta (moderator). IEEE design and test
roundtable on C++-based design. IEEE Design � Test
of Comp., pages 115–123, 2001. May-June.

[10] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-
valued ar-automata. In Design, Automation and Test
in Europe, pages 742–748, 2001.

[11] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org. Functional Specification for
SystemC 2.0.

[12] Silicon Graphics Computer Systems. Standard tem-
plate library programmer’s guide.
http://www.sgi.com/tech/stl, 1999.

[13] The VIS Group. VIS: A system for verification and
synthesis. In Computer Aided Verification, volume
1102 of LNCS, pages 428–432. Springer Verlag, 1996.


