
Matching Abstract and Concrete
Hardware Models for Design Understanding

Tino Flenker∗
∗Institute of Computer Science, University of Bremen

28359 Bremen, Germany
Email: flenker@informatik.uni-bremen.de

Görschwin Fey∗†
†Institute of Space Systems, German Aerospace Center

28359 Bremen, Germany
Email: goerschwin.fey@dlr.de

Abstract—Nowadays, before a microchip’s concrete implemen-
tation is available a more abstract model, e.g., on electronic system
level (ESL) is created. To ensure a better design understanding
a matching of both model’s variables is proposed. But how to
map a variable from the abstract model to a variable form the
concrete model? We evaluate a simulation based approach to
address this problem. We instrument both models to get traces
for each variable and propose three methods to figure out which
variable matches to a corresponding variable of the other model.

I. INTRODUCTION
Microchip’s complexity nowadays increases at tremendous

speed. To adhere to strict time-to-market constraints tools are
required which facilitate a rapid understanding and incorpo-
ration of hardware designs. That makes design understanding
(DU) an important research topic, because DU enables a faster
debugging by tool support. A faster understanding supports
new colleagues in a company and the training period can be
reduced.

To solve equivalence checking (EC) several approaches
are proposed. In [1][2] formal methods are used but it is
not feasible to perform EC using conventional equivalence
checkers due to significant internal differences in abstract and
concrete model.

Our approach uses a simulation based approach for EC.
Using simulation to find potentially equivalent nodes in two
circuits is common as a preprocessing step for formal EC. Such
equivalent nodes are often called cut-points. This also holds
when comparing abstract and concrete models [3][4][5][6]. For
EC complete equivalence of the models is expected often in-
cluding cycle accuracy [7]. However, for design understanding
the two models are expected to be quite different. Usually in
an abstract model the timing information is lost and cannot
be used. Because of that, traces will have a different length
and simple matching by comparing values one by one is not
possible.

In [8] the authors propose a method for non cycle accurate
EC. However, this approach is only suitable for register
transfer level (RTL) to RTL EC so it is not relevant for ESL to
RTL EC. The authors of [9] use a simulation-based approach
but assume that both models are available in SystemC [10].
Our approach aims to find corresponding parts of the abstract

This work was supported by the University of Bremen’s Graduate School
SyDe, funded by the German Excellence Initiative, and the German Research
Foundation (DFG, grant no. FE 797/6-2).

This work has also been partially funded from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No.
644905 (IMMORTAL).

model in the concrete model available in Verilog.
For DU we propose an approach to match abstract models

with concrete models. By this, the designer can directly find
the implementation of abstract functionality. Matching models
is reduced to mapping variables between the two abstraction
levels. We use simulation traces to perform the mapping. The
underlying assumption is that variables relating to the same
functionality yield similar simulation traces. In the following
we present three methods, which compare traces of concrete
and abstract models. The methods handle traces despite of
absence of timing information and despite of different lengths.
Experimental results show the quality of the approach.

II. METHODOLOGY
This section describes the proposed approach. First, the

work flow is presented and afterwards three methods for
variable matching are explained.

A. Work Flow
The main goal is to find relations between variables of

an abstract and a concrete hardware model. For that an
implementation written in a hardware description language
(HDL) and another implementation written in a higher level
programming language like C/C++ or SystemC are considered.
An example for an abstract implementation is an instruction
set simulator (ISS) of a processor.

To get a trace of each implementation some use cases are
needed, which execute the same functionality and are available
for both models. To get the traces, the hardware model can be
simulated and the values of registers and internal signals can
be printed. To get the abstract model’s trace, the model can be
instrumented so that the values can be printed, when needed.

For example, consider a processor and a corresponding ISS.
In addition a compiler and a program in C/C++ are needed.
Next, the program is compiled and on each implementation the
program is executed and a trace from each model is generated.

B. Trace Analysis
In this section three methods for trace analysis are intro-

duced. In short they are described as follows:
1) Get the set of each variable’s values.
2) Get the set and count the number of occurrences of

each variable’s values.
3) Consider the sequence of variable’s values.

The methods can also be used one after another. That means,
all indistinguishable variables after the first method is finished
are the input for the second method. Next, all remaining



t DataIn
1 0xff
2 0xff 0xff : 2
3 0xfc 0xfc : 1
4 0xff → 0xff : 3
5 0xff 0xac : 1
6 0xff
7 0xac

Figure 1. Folding a trace

variables after the second analysis constitute the input for the
last method.

1) Set: The first method collects all values of each variable
in a separate set. To match traces, the symmetric difference is
taken. The set from the variable with the smallest symmetric
difference is the best fit which is considered as a candidate.
If the best fit is computed for multiple variables, then each of
these variables are the candidates.

Here, it is assumed that signals for data get the same values
in both implementations. Consequently the result is the same
set of values. Hard to distinguish are control signals which
typically consist of a bit width of one. The sets of these signals
contain at most the values 0 and 1. In this way, a distinction
of the control signals is impossible.

2) Count: The second method encounters the drawback of
method one. This method assumes that different control signals
are toggled a different number of times. In this manner the
control signals can be distinguished. This method collects all
values of the different variables, too. But in addition to that,
each occurrence of a value is counted for each variable.

To match traces by this method, first the symmetric dif-
ference is also calculated. Traces with big differences are
no longer considered for this method. For further steps, the
intersections of the sets are examined. In addition a factor
is calculated to align traces of different lengths. The factor
is calculated by the number of operations of the first trace
divided by the number of operations of the second trace. Next,
for each value the difference after the alignment is computed.
For alignment the value’s number of occurrences is normalized
using the aforesaid factor. Then, for normalized occurrences of
each value the difference of the first trace and the aligned trace
is calculated. The sum of all differences is called divergence.
The variables with the trace of smallest divergence are the
candidates for the match.

3) Sequence: The third method additionally considers the
sequence of values. Here, the values for each variable are
folded and stored in order of occurrence. This is shown in
Fig. 1. Folding means if the value of a variable was not
changed over several clock ticks all equal values will be
collected and the number of folded lines is stored. One idea in
our heuristic is to match variables by considering sequences of
values. Two sequences with equal values of data indicate two
variables representing the same semantics on the functional
level. Moreover, if a signal stays for a long time on one value,
the corresponding variable in the other design needs to stay
on the same value for a long time, too.

Here the matching is computed as follows. Both traces
are observed value by value. If two values are not equal,
then the next identical value is determined. If no identical
value exists, the traces becoming discarded. For all remaining

W_FSM Buffer R_FSM

reset
clk/

/

ReqW

DataIn
/

AckW

/ /

WE
nb
l

DI
n

Fu
ll

RE
nb
l

DO
ut

Em
pt

?

†

‡

/

?: ReqR †: DataOut ‡: AckR
Figure 2. Bus bridge implementation for experiments

traces a penalty value is calculated. First, the penalty includes
the difference between length of folded traces. Next, the
differences of normalized occurrences of the first and the
aligned trace is added to the penalty for each value.

III. RESULTS
This section summarizes the experimental results. For

experiments a small bus bridge model is implemented (see
Fig. 2). On the inputs a write (ReqW) or read (ReqR)
request can be made. In the same clock tick the data is
read (DataOut) from or written (DataIn) to the buffer.
One clock tick later the model acknowledges whether data
was read (AckR) from or written (AckW) to the buffer. Two
finite state machines (FSMs) control the internal buffer and
protect against writing into a full buffer (W_FSM) and reading
from an empty buffer (R_FSM).

The abstract model is implemented in C++. The model is a
class and the buffer is represented by a queue of the standard
library. The concrete model is implemented in Verilog. The
model is module and the buffer is represented by memory
address pointer.

Table I. MATCHING OF VARIABLES BY METHODS

set count sequence

ReqR ReqR,ReqW,AckR,AckW ReqR ReqR
ReqW ReqR,ReqW,AckR,AckW ReqW,AckW ReqW,AckW
DataIn DataIn DataIn DataIn
AckR ReqR,ReqW,AckR,AckW AckR ReqR

AckW ReqR,ReqW,AckR,AckW ReqW,AckW ReqW,AckW
DataOut DataOut DataOut DataOut

Use cases which write to the buffer and read the results
are used. Table I presents the results of the experiments. The
headline shows which method is represented by the given
column. The first column lists the considered variables. The
trace of the given variable is compared to each trace of the
other model and the content of each cell lists the variables
with the best matching by the metrics shown in Section II-B.

Table I shows a good matching is achieved for the data
in- and outputs with each method. The results for the control
signals are not so clear. Taking only the set of values results
in a list of all control signals for all control signals. That is
obvious because the sets only consist out of 0 and 1 and sets
consisting of the same values are not distinguishable. To count
the number of occurrences for each value leads to better results.
The control signals for the read operation (ReqR, AckR) are
uniquely identified. For a distinction of the signals for write
operations the method seems not to be mature enough. Both
variables (ReqW, AckW) respectively match each other. An



extension of the use cases could cause an improvement. The
third method which considers the sequence of the values leads
to the same results for the write operation. However, both
variables of the read operation match to the same variable
(ReqR) which shows a deterioration to the second method,
because the matching of AckR by the counting method is
correct and here it is not.

REFERENCES
[1] K. Hao, F. Xie, S. Ray, and J. Yang, “Optimizing equivalence check-

ing for behavioral synthesis,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, March 2010, pp. 1500–1505.

[2] S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu, “Sequential
equivalence checking between system level and rtl descriptions,” Design
Automation for Embedded Systems, vol. 12, no. 4, pp. 377–396, 2008.

[3] A. Finder, J. Witte, and G. Fey, “Debugging HDL designs based
on functional equivalences with high-level specifications,” in IEEE
International Symposium on Design and Diagnostics of Electronic
Circuits Systems, 2013, pp. 60–65.

[4] B. Alizadeh and M. Fujita, “Automatic merge-point detection for
sequential equivalence checking of system-level and rtl descriptions,” in
Proceedings of the International Conference on Automated Technology
for Verification and Analysis, 2007, pp. 129–144.

[5] X. Feng and A. J. Hu, “Early cutpoint insertion for high-level software
vs. RTL formal combinational equivalence verification,” in Proceedings
of Design Automation Conference, 2006, pp. 1063–1068.

[6] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade, “A
formal verification method of scheduling in high-level synthesis,” in
Proceedings of the International Symposium on Quality Electronic
Design, 2006, pp. 71–78.

[7] S. Vasudevan, J. Abraham, V. Viswanath, and J. Tu, “Automatic
decomposition for sequential equivalence checking of system level and
rtl descriptions,” in Formal Methods and Models for Co-Design, 2006.
MEMOCODE ’06. Proceedings. Fourth ACM and IEEE International
Conference on, 2006, pp. 71–80.

[8] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma, “Non-
cycle-accurate sequential equivalence checking,” in Design Automation
Conference, ser. DAC ’09. New York, NY, USA: ACM, 2009, pp.
460–465.

[9] D. Große, M. Groß, U. Kühne, and R. Drechsler, “Simulation-based
equivalence checking between systemc models at different levels of
abstraction,” in Great Lakes Symposium on VLSI, 2011, pp. 223–228.

[10] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638, Jan
2012.


